Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (179)

Search Parameters:
Keywords = biaxial deformation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 4313 KB  
Article
Effects of Loading Conditions and Stirrup Arrangement on Corrosion-Induced Expansion Strain and Cracking in Reinforced Concrete Beams
by Wenqi Ma, Yingxin Zhou, Jianyu Yang, Tao Hu and Xiang Li
Buildings 2026, 16(1), 52; https://doi.org/10.3390/buildings16010052 - 23 Dec 2025
Viewed by 250
Abstract
To investigate the effects of loading type and stirrup arrangement on the corrosion and deterioration characteristics of reinforced concrete beams, constant current accelerated corrosion tests were conducted under no load, uniaxial compressive load, and biaxial compressive load conditions, with specimens without stirrups serving [...] Read more.
To investigate the effects of loading type and stirrup arrangement on the corrosion and deterioration characteristics of reinforced concrete beams, constant current accelerated corrosion tests were conducted under no load, uniaxial compressive load, and biaxial compressive load conditions, with specimens without stirrups serving as the control group. A comparative analysis was performed on the overall corrosion of the top surface of the concrete beams, the expansion strain of the concrete beams, and the crack distribution on the top surface of the beams with and without stirrups. The characteristics of the protective layer spalling in the concrete beams under different loading conditions were also discussed. The results showed that the expansion strain of specimens with normal stirrups was significantly higher than that of specimens without stirrups. Under uniaxial compressive loading, the expansion strain was lower compared to the no-load specimens. Under biaxial loading at 15% of the compressive strength, the expansion strain was minimal, suggesting that the loading compaction effect suppressed crack propagation. Furthermore, under biaxial loading, as the load level increased, the Poisson effect intensified the tensile deformation in the vertical direction, causing cracks to propagate rapidly. The extent and depth of the spalling of the protective layer increased significantly, exhibiting more severe deterioration characteristics. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

18 pages, 3123 KB  
Article
Study on the Dynamic Mechanical Response of Orthotropic Materials Under Biaxial Impact Loading
by Shumeng Pang, Weijun Tao, Haifeng Ou, Jie Liu, Jiangping Chen, Liangkun Liu, Shi Huan, Zhaodong Pan and Yiquan Huang
Materials 2025, 18(24), 5634; https://doi.org/10.3390/ma18245634 - 15 Dec 2025
Viewed by 197
Abstract
Although the dynamic response of orthotropic materials under uniaxial impact loading has been extensively studied, their behavior under multiaxial stress states, which more accurately represent real-world blast and impact scenarios, has received limited attention. To address this gap, this study employed a self-developed [...] Read more.
Although the dynamic response of orthotropic materials under uniaxial impact loading has been extensively studied, their behavior under multiaxial stress states, which more accurately represent real-world blast and impact scenarios, has received limited attention. To address this gap, this study employed a self-developed biaxial impact testing apparatus to systematically investigate the dynamic mechanical behavior of beech wood, a typical orthotropic material, under three biaxial loading configurations: radial-tangential, radial-longitudinal, and tangential-longitudinal. By combining theoretical derivation with experimental data, it systematically examines stress wave propagation characteristics, strain rate effects, and anisotropy evolution under different loading paths. The results reveal that beech wood exhibits significantly distinct dynamic responses along different material orientations, with a consistent strength hierarchy: longitudinal > radial > tangential. Biaxial loading notably enhances the equivalent stress–strain response and alters the deformation mechanisms and energy absorption behavior. Furthermore, lateral confinement and multiaxial stress coupling are identified as critical factors influencing the dynamic performance. This study provides the first systematic revelation of the strain rate strengthening mechanisms and wave propagation characteristics of orthotropic materials from the perspective of multiaxial dynamic loading, thereby offering theoretical and experimental foundations for developing advanced dynamic constitutive models suitable for complex impact conditions. These findings provide important guidance for the design and evaluation of lightweight impact-resistant structures in fields such as aerospace and protective engineering. Full article
Show Figures

Figure 1

17 pages, 16047 KB  
Article
Synchronous Biaxial Straining of Foils and Thin Films with In Situ Capabilities
by Michael Pegritz, Philipp Payer, Alice Lassnig, Stefan Wurster, Megan J. Cordill and Anton Hohenwarter
Instruments 2025, 9(4), 31; https://doi.org/10.3390/instruments9040031 - 26 Nov 2025
Viewed by 551
Abstract
A common method to examine the reliability of thin films and small volumes of irradiated materials being used in aerospace, energy, and protective coating applications is biaxial straining. With such tests, the fracture and deformation mechanisms occurring under multi-axial stress states can be [...] Read more.
A common method to examine the reliability of thin films and small volumes of irradiated materials being used in aerospace, energy, and protective coating applications is biaxial straining. With such tests, the fracture and deformation mechanisms occurring under multi-axial stress states can be investigated, which can strongly differ from the simpler uniaxial one. However, devices that can apply a precise and synchronously applied biaxial strain tend to be too large for foils or thin films and do not allow for additional observation methods to be applied to examine film fracture or deformation during the test. A prototype device that can apply synchronous equi-biaxial and semi-biaxial strains and can be combined with multiple in situ methods is introduced. The device is light and compact in design, which allows it to be mounted on optical light microscopes, atomic force microscopes, inside scanning electron microscopes, and even on X-ray beamlines for reflection or transmission measurements. Additionally, digital image correlation was utilized in two geometries to measure strains on a local or global level. The possible errors associated with the device and experiments on polyimide foils and a 100 nm tungsten film on polyimide are presented. Full article
Show Figures

Figure 1

25 pages, 5736 KB  
Article
Local Fracture of a Reinforced Concrete Beam Under High-Velocity Impact on Biaxial Bending and Torsion Deformation
by Anatoly Alekseytsev
Buildings 2025, 15(22), 4153; https://doi.org/10.3390/buildings15224153 - 18 Nov 2025
Viewed by 407
Abstract
Designing buildings and structures that meet advanced mechanical safety standards is a relevant task in the present-day socio-economic environment, given that structural safety is evaluated by resistance to progressive collapse. The design of key elements, capable of withstanding accidental actions, means preventing the [...] Read more.
Designing buildings and structures that meet advanced mechanical safety standards is a relevant task in the present-day socio-economic environment, given that structural safety is evaluated by resistance to progressive collapse. The design of key elements, capable of withstanding accidental actions, means preventing the escalation of progressive collapse. This task also involves evaluating the bearing capacity of reinforced concrete beams under high-velocity impacts triggering supplementary dynamic loading by bending and torsion moments. The authors present their method for the dynamic load analysis based on the development of limiting surfaces. For this purpose, the value of the J-integral is computed to analyze the fracture of a rebar, and the inability of a rebar to take loads is simulated by a normalized time function. The resulting conclusion is that the proposed design method, applied to key elements of buildings and structures, improves their mechanical safety in the case of dynamic loading that causes local damage and triggers resistance to combined stress, including bending in two planes and torsion. It has been established that at a bending load level constituting 80% of its ultimate value or higher, a combined impact bending-torsional load, as low as 25% of its own ultimate capacity, can cause the rupture of tensile reinforcement and lead to a loss of mechanical safety in conventionally designed beams. Full article
(This article belongs to the Special Issue Dynamic Response of Structures)
Show Figures

Figure 1

33 pages, 7351 KB  
Article
Constructal Design and Numerical Simulation Applied to Geometric Evaluation of Stiffened Steel Plates Subjected to Elasto-Plastic Buckling Under Biaxial Compressive Loading
by Andrei Ferreira Lançanova, Raí Lima Vieira, Elizaldo Domingues dos Santos, Luiz Alberto Oliveira Rocha, Thiago da Silveira, João Paulo Silva Lima, Emanuel da Silva Diaz Estrada and Liércio André Isoldi
Metals 2025, 15(8), 879; https://doi.org/10.3390/met15080879 - 6 Aug 2025
Cited by 1 | Viewed by 979
Abstract
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. [...] Read more.
Widely employed in diverse engineering applications, stiffened steel plates are often subjected to biaxial compressive loads. Under these conditions, buckling may occur, initially within the elastic range but potentially progressing into the elasto-plastic domain, which can lead to permanent deformations or structural collapse. To increase the ultimate buckling stress of plates, the implementation of longitudinal and transverse stiffeners is effective; however, this complexity makes analytical stress calculations challenging. As a result, numerical methods like the Finite Element Method (FEM) are attractive alternatives. In this study, the Constructal Design method and the Exhaustive Search technique were employed and associated with the FEM to optimize the geometric configuration of stiffened plates. A steel plate without stiffeners was considered, and 30% of its volume was redistributed into stiffeners, creating multiple configuration scenarios. The objective was to investigate how different arrangements and geometries of stiffeners affect the ultimate buckling stress under biaxial compressive loading. Among the configurations evaluated, the optimal design featured four longitudinal and two transverse stiffeners, with a height-to-thickness ratio of 4.80. This configuration significantly improved the performance, achieving an ultimate buckling stress 472% higher than the unstiffened reference plate. In contrast, the worst stiffened configuration led to a 57% reduction in performance, showing that not all stiffening strategies are beneficial. These results demonstrate that geometric optimization of stiffeners can significantly enhance the structural performance of steel plates under biaxial compression, even without increasing material usage. The approach also revealed that intermediate slenderness values lead to better stress distribution and delayed local buckling. Therefore, the methodology adopted in this work provides a practical and effective tool for the design of more efficient stiffened plates. Full article
Show Figures

Figure 1

20 pages, 5814 KB  
Article
The Effect of Inflatable Pressure on the Strain Deformation of Flexible Wing Skin Film
by Longbin Liu, Mengyang Fan and Xingfu Cui
Appl. Sci. 2025, 15(13), 7596; https://doi.org/10.3390/app15137596 - 7 Jul 2025
Viewed by 843
Abstract
Flexible inflatable film wings have many functional advantages that traditional fixed rigid wings do not possess, such as foldability, small size, light weight, convenient storage, transportation, and so on. More and more scholars and engineers are paying attention to flexible inflatable wings, which [...] Read more.
Flexible inflatable film wings have many functional advantages that traditional fixed rigid wings do not possess, such as foldability, small size, light weight, convenient storage, transportation, and so on. More and more scholars and engineers are paying attention to flexible inflatable wings, which have gradually become a new hot research topic. However, flexible wings rely on inflation pressure to maintain the shape and rigidity of the skin film, and the inflation pressure has a significant influence on the strain deformation and wing bearing characteristics of flexible wing skin film. Here, based on the flexible mechanics theory and balance principle of flexible inflatable film, a theoretical model of structural deformation and internal inflation pressure was constructed, and finite element simulation analysis under different internal inflation pressure conditions was carried out as well. The results demonstrate that the biaxial deformation of flexible wing skin film is closely related to internal inflation pressure, local size, configuration, and film material properties. However, strain deformation along the wingspan direction is quite distinguishing, skin films work under the condition of biaxial plane deformation, and the strain deformation of the spanning direction is obviously higher than that of the chord direction, which all increases with internal inflation pressure. Therefore, it is necessary to pay more attention to bearing strain deformation characteristics to meet the bearing stiffness requirements, which could effectively provide a theoretical reference for the structural optimization design and inflation scheme setting of flexible inflatable wings. Full article
Show Figures

Figure 1

19 pages, 12050 KB  
Article
Optimization of Biaxial Tensile Specimen Shapes on Aerospace Composite with Large Deformation
by Haowen Luo, Jiangtao Wang, Xueren Wang and Xiangyang Liu
Aerospace 2025, 12(7), 587; https://doi.org/10.3390/aerospace12070587 - 29 Jun 2025
Viewed by 1103
Abstract
This study focuses on optimizing cruciform specimen configurations for the biaxial tensile testing of soft composite materials used in the aerospace industry under conditions of large deformation. A comprehensive evaluation system based on stress–strain uniformity and load transfer efficiency was established, and the [...] Read more.
This study focuses on optimizing cruciform specimen configurations for the biaxial tensile testing of soft composite materials used in the aerospace industry under conditions of large deformation. A comprehensive evaluation system based on stress–strain uniformity and load transfer efficiency was established, and the stability of these metrics during the tensile process was analyzed. Using finite element simulation and multi-parameter analysis, the main parameter set affecting specimen performance was identified. The influence of different parameters on stress–strain uniformity and load transfer efficiency was investigated. Based on the optimization criteria, an optimized planar cross-shaped specimen configuration was developed. This configuration demonstrated excellent performance stability during deformation, with final stress uniformity error controlled to within 2.2%. The final strain uniformity error was maintained at 2.9%. The fluctuation range of load transfer efficiency did not exceed 1.5%. This study provides guidelines for designing specimens for large deformation testing of soft composite materials and can be used as a reference for future work on optimizing specimens. Full article
(This article belongs to the Special Issue Advanced Composite Materials in Aerospace)
Show Figures

Figure 1

28 pages, 11508 KB  
Article
Non-Destructive Integrity Assessment of Austenitic Stainless-Steel Membranes via Magnetic Property Measurements
by Haeng Sung Heo, Jinheung Park, Jehyun You, Shin Hyung Rhee and Myoung-Gyu Lee
Materials 2025, 18(12), 2898; https://doi.org/10.3390/ma18122898 - 19 Jun 2025
Viewed by 964
Abstract
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic [...] Read more.
This study proposes a novel non-destructive methodology for assessing structural integrity in liquefied natural gas (LNG) carrier cargo containment systems (CCSs), addressing limitations of conventional inspection techniques like visual inspection and vacuum box testing. The method leverages strain-induced martensitic transformation (SIMT) in austenitic stainless steel (SUS304L), widely used in CCS membranes, quantifying magnetic permeability increase via a Feritscope to evaluate deformation history and damage. To analyze SUS304L SIMT behavior, uniaxial tensile (UT) and equi-biaxial tensile (EBT) tests were conducted, as these stress states predominate in CCS membranes. Microstructural evolution was examined using X-ray diffraction (XRD) and electron backscatter diffraction (EBSD), allowing a quantitative assessment of the transformed martensite volume fraction versus plastic strain. Subsequently, Feritscope measurements under the same conditions were calibrated against the XRD-measured martensite volume fraction for accuracy. Based on testing, this study introduces three complementary Feritscope approaches for evaluating CCS health: outlier detection, quantitative damaged area analysis, and time-series analysis. The methodology integrates data-driven quantitative assessment with conventional qualitative inspection, enhancing safety and maintenance efficiency. Full article
Show Figures

Figure 1

14 pages, 3555 KB  
Article
A DFT Study on the Effect of Biaxial Strain on the Electronic Properties of Graphene Doped with B, N, Al, Si, S, and Ga
by Dinara Akhmetsadyk, Daniyar Ismailov, Danatbek Murzalinov, Gulmaira Partizan and Valentina Grichshenko
Materials 2025, 18(12), 2791; https://doi.org/10.3390/ma18122791 - 13 Jun 2025
Cited by 1 | Viewed by 1379
Abstract
This study presents a density functional theory (DFT) investigation of the electronic response of graphene doped with various atoms (B, N, Al, Si, S, Ga) under biaxial strain. The calculations were performed using the PBE exchange–correlation functional within the generalized gradient approximation (GGA), [...] Read more.
This study presents a density functional theory (DFT) investigation of the electronic response of graphene doped with various atoms (B, N, Al, Si, S, Ga) under biaxial strain. The calculations were performed using the PBE exchange–correlation functional within the generalized gradient approximation (GGA), as implemented in the DMol3 code. The Fermi energy was used as the primary indicator to evaluate strain sensitivity across a deformation range from −0.05 to +0.05. The results reveal a strong dependence of the electronic response on the type of dopant. Ga- and Al-doped graphene systems exhibit the most pronounced Fermi level shifts, up to 0.6 eV, indicating high sensitivity to mechanical strain. In contrast, B- and N-doped graphene show more moderate but stable and linear changes, which may be advantageous for predictable sensor behavior. These findings highlight the critical role of dopant selection in engineering strain-responsive graphene materials and support a design framework for their integration into high-performance flexible electronics and sensing applications. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

13 pages, 3206 KB  
Article
Influence of Yttria Nanoclusters on the Void Nucleation in BCC Iron During Multi-Axial Tensile Deformation: A Molecular Dynamics Simulation
by Zhenyu Wei, Yongjie Sun, Yeshang Hu, Lei Peng, Jingyi Shi, Yifan Shi, Shangming Chen and Yiyi Ma
Crystals 2025, 15(5), 476; https://doi.org/10.3390/cryst15050476 - 18 May 2025
Viewed by 740
Abstract
Oxide dispersion-strengthened (ODS) steels are among the most promising candidate structural materials for fusion and Generation-IV (Gen-IV) fission reactors, but the ductility of ODS steels is inferior to its strength properties. Therefore, we investigate void nucleation, considered as the first step of ductile [...] Read more.
Oxide dispersion-strengthened (ODS) steels are among the most promising candidate structural materials for fusion and Generation-IV (Gen-IV) fission reactors, but the ductility of ODS steels is inferior to its strength properties. Therefore, we investigate void nucleation, considered as the first step of ductile damage in metal, using molecular dynamics simulations. Given that the materials are subjected to extremely complex stress states within the reactor, we present the void nucleation process of 1–4 nm Y2O3 nanoclusters in bcc iron during uniaxial, biaxial, and triaxial tensile deformation. We find that the void nucleation process is divided into two stages depending on whether the dislocations are emitted. Void nucleation occurs at smaller strain in biaxial and triaxial tensile deformation in comparation to uniaxial tensile deformation. Increasing the size of clusters results in a smaller strain for void nucleation. The influence of 1 nm clusters on the process of void nucleation is slight, and the void nucleation process of 1 nm cluster cases is similar to that of pure iron. In addition, void nucleation is affected by both stress and strain concentration around the clusters, and the voids grow first in the areas of high stress triaxiality. Full article
(This article belongs to the Section Crystalline Metals and Alloys)
Show Figures

Figure 1

13 pages, 3747 KB  
Article
Elastic–Plastic Fracture Analysis on Defective Q345 Steel in the Process of Small-Scale Creep Crack Propagation
by Huajing Guo, Wenjie Tang, Xiaolong Tong and Bin Sun
Buildings 2025, 15(10), 1662; https://doi.org/10.3390/buildings15101662 - 15 May 2025
Viewed by 768
Abstract
Q345 steel is usually used on structures working under high temperature where creep deformation could endanger their structural integrity. In order to support the application of steel structures made of Q345 under high temperature, a fracture analysis on defective Q345 steel in the [...] Read more.
Q345 steel is usually used on structures working under high temperature where creep deformation could endanger their structural integrity. In order to support the application of steel structures made of Q345 under high temperature, a fracture analysis on defective Q345 steel in the process of small-scale creep crack propagation has been performed. Three-dimensional finite element models with a semi-elliptical surface crack have been established, and the crack propagation process of Q345 steel has been simulated at 400 °C. The constraint effect near the crack tip in the process of creep crack propagation has been analyzed using the J-A2 two-parameter method in which the influence of the crack aspect ratio, loading level, and biaxial loading ratio was studied. The previously developed constraint-based R6 procedure was adopted to assess the structural integrity of the cracked structure under small-scale creep conditions. The results showed that small-scale creep crack propagation behavior exhibits great influence on both crack tip fields and a constraint effect near the crack tip. The increase in the biaxial loading ratio, loading level, and aspect ratio of the crack could lead to an increase in the J integral, an enhancement of the constraint effect, and a decrease in the safe area in the failure assessment diagram for the cracked structure in the process of small-scale creep crack propagation. Full article
Show Figures

Figure 1

17 pages, 10148 KB  
Article
Mechanical Properties of Aluminum Alloy Tubes Fabricated Through Surface Mechanical Grinding Treatment and Graphene Lubrication Under Biaxial Stress States
by Yang Cai, Xiao-Lei Cui, Chunhuan Guo, Fengchun Jiang and Piaoping Yang
Materials 2025, 18(9), 2038; https://doi.org/10.3390/ma18092038 - 29 Apr 2025
Viewed by 791
Abstract
To enhance the mechanical properties of 6063-T4 aluminum alloy tubes, surface mechanical grinding treatment was conducted under graphene-assisted lubrication. The effects of rotational speed and cooling conditions on the mechanical properties of aluminum alloy tubes under biaxial stress were systematically explored. It was [...] Read more.
To enhance the mechanical properties of 6063-T4 aluminum alloy tubes, surface mechanical grinding treatment was conducted under graphene-assisted lubrication. The effects of rotational speed and cooling conditions on the mechanical properties of aluminum alloy tubes under biaxial stress were systematically explored. It was found that increasing the rotational speed and cooling rate facilitates the formation of finer lamellar grains, higher-density nano-precipitates, and a reduced dislocation density on the tube surface. These microstructural characteristics significantly contribute to an increased yield strength and sustained strain hardening capacity during bulging deformation. This study proposes an innovative approach for improving the strength and toughness of light alloy components during integral forming, providing meaningful insights for future engineering applications. Full article
Show Figures

Figure 1

33 pages, 2465 KB  
Article
A Unified Size-Dependent Theory for Analyzing the Free Vibration Behavior of an FG Microplate Under Fully Simply Supported Conditions and Magneto-Electro-Thermo-Mechanical Loads Considering Couple Stress and Thickness Stretching Effects
by Chih-Ping Wu and Cheng-Dao Hsu
J. Compos. Sci. 2025, 9(5), 201; https://doi.org/10.3390/jcs9050201 - 24 Apr 2025
Cited by 3 | Viewed by 937
Abstract
This work develops a unified size-dependent shear deformation theory (SDSDT) to analyze the free vibration behavior of a functionally graded (FG) magneto-electro-elastic (MEE) microplate under fully simply supported conditions, open- or closed-circuit surface conditions, biaxial compression, magnetic and electric potentials, and uniform temperature [...] Read more.
This work develops a unified size-dependent shear deformation theory (SDSDT) to analyze the free vibration behavior of a functionally graded (FG) magneto-electro-elastic (MEE) microplate under fully simply supported conditions, open- or closed-circuit surface conditions, biaxial compression, magnetic and electric potentials, and uniform temperature changes based on consistent couple stress theory (CCST). The FG-MEE microplate is composed of BaTiO3 (a piezoelectric material) and CoFe2O4 (a magnetostrictive material). Various CCST-based SDSDTs, considering couple stress and thickness stretching effects, can be reproduced by employing a generalized shape function that characterizes shear deformation distributions along the thickness direction within the unified SDSDT. These CCST-based SDSDTs encompass the size-dependent classical plate theory (CPT), first-order shear deformation theory (SDT), Reddy’s refined SDT, exponential SDT, sinusoidal SDT, and hyperbolic SDT. The unified SDSDT is validated by comparing its solutions with relevant three-dimensional solutions available in the literature. After validation and comparison studies, we conduct a parametric study, whose results indicate that the effects of thickness stretching, material length-scale parameter, inhomogeneity index, and length-to-thickness ratio, as well as the magnitude of biaxial compressive forces, electric potential, magnetic potential, and uniform temperature changes significantly impact the microplate’s natural frequency. Full article
Show Figures

Figure 1

46 pages, 9978 KB  
Review
Experimental and Numerical Methods for Hydraulic Fracturing at Laboratory Scale: A Review
by Atif Ismail and Saman Azadbakht
Geosciences 2025, 15(4), 142; https://doi.org/10.3390/geosciences15040142 - 9 Apr 2025
Cited by 3 | Viewed by 3272
Abstract
Hydraulic fracturing experimentation is an essential tool for understanding the application of hydraulic fracturing in producing hydrocarbons from unconventional reservoirs. Laboratory testing methods such as uniaxial, biaxial, and true triaxial testing have limited accuracy due to the simplified consideration of in situ stresses, [...] Read more.
Hydraulic fracturing experimentation is an essential tool for understanding the application of hydraulic fracturing in producing hydrocarbons from unconventional reservoirs. Laboratory testing methods such as uniaxial, biaxial, and true triaxial testing have limited accuracy due to the simplified consideration of in situ stresses, geological conditions, and subsurface temperature variations. Despite these limitations, hydraulic fracturing experimentation provides valuable insights for the execution of hydraulic fracturing in field conditions. Key factors influencing the accuracy and generalization of experimental results include sample specifications, stress regime, saturation conditions, and fracturing fluid properties. However, extending laboratory-scale conclusions to the field scale requires appropriate scaling factors. This paper provides an overview of the main concepts in hydraulic fracture modeling, including design considerations, laboratory scaling, uniaxial, biaxial, and triaxial testing in hydraulic fracturing experimentation and major numerical simulation methodologies. Numerical methods, such as the discrete element method, discontinuous deformation analysis, rigid body spring network, and virtual internal bond, effectively simulate complex mechanisms like fracture initiation, propagation, fracture–fluid interactions, and the influence of rock microstructure, complementing the experimental findings. Advancements in these models, including the integration of nonlinear elasticity in virtual internal bonds and coupling with finite element analysis or fluid network models, continue to enhance the predictive accuracy and efficiency, particularly in complex geological settings, offering promising applications for optimizing shale gas production, acid fracturing, and geotechnical engineering. Furthermore, this review discusses the importance of in situ stresses, geological conditions, and temperature in both laboratory experiments and numerical simulations, highlighting future directions to consider in laboratory-scale analyses of hydraulic fracturing. Full article
(This article belongs to the Section Geomechanics)
Show Figures

Figure 1

18 pages, 8981 KB  
Article
Numerical Simulation Study on Through-Anchor Cable Reinforcement Control of Inter-Roadway Coal Pillars in Double-Roadway Layouts
by Linjun Peng, Shunyu Xu and Manchao He
Sustainability 2025, 17(6), 2416; https://doi.org/10.3390/su17062416 - 10 Mar 2025
Cited by 2 | Viewed by 909
Abstract
This study investigates the traditional coal pillar support methods employed in double-roadway excavation of high-mining-height longwall faces, specifically those with widths ranging from 20 m to 30 m. It highlights that these methods not only result in substantial coal pillar loss and low [...] Read more.
This study investigates the traditional coal pillar support methods employed in double-roadway excavation of high-mining-height longwall faces, specifically those with widths ranging from 20 m to 30 m. It highlights that these methods not only result in substantial coal pillar loss and low recovery rates but also create conditions for stress concentration due to inadequate dimensions, thereby increasing the risk of accidents. Based on the engineering context of the Jinjitan Coal Mine’s 113 and 111 working faces, this paper optimizes coal pillar dimensions through theoretical calculations and Flac3D numerical simulations, with the results indicating that the optimal coal pillar width is 12 m. Analysis of a 12 m inter-roadway coal pillar focuses on the bearing characteristics of auxiliary transport roadways and coal transportation roadways. Five different reinforcement schemes are examined, including (no support, conventional anchor reinforcement, presser anchor cable through reinforcement, constant-resistance large-deformation anchor cable through reinforcement, and a combination of presser with negative Poisson’s ratio (NPR) constant-resistance large-deformation anchor cable support). The findings reveal that in the investigation of the reinforcement mechanism for the 12 m wide coal pillar, employing NPR constant-resistance large-deformation anchor cables alongside presser anchor cables effectively mitigates the compression deformation caused by dynamic loading disturbances from the overlying rock layers. This approach not only dissipates energy but also transforms the coal pillar from a biaxial stress state to a triaxial stress state. The reinforcement scheme successfully reduces the peak stress of the coal pillar from 68.5 MPa to 35.3 MPa, significantly enhancing both the peak strength and residual strength of the coal pillar, thereby ensuring the stability of the inter-roadway coal pillar and the safe recovery of the working face. Full article
Show Figures

Figure 1

Back to TopTop