Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,841)

Search Parameters:
Keywords = betting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 1584 KB  
Article
Highly Efficient Adsorption of Pb(II) by Magnesium-Modified Zeolite: Performance and Mechanisms
by Yuting Yang, Xiong Wang, Sumra Siddique Abbasi, Bin Zhou, Qing Huang, Shujuan Zhang, Xinsheng Xiao, Hao Li, Huayi Chen and Yueming Hu
Toxics 2026, 14(1), 85; https://doi.org/10.3390/toxics14010085 (registering DOI) - 17 Jan 2026
Abstract
In this study, magnesium-modified clinoptilolite (MZ) was successfully synthesized via precipitation and calcination to efficiently remove Pb(II) from aqueous solutions. The material was systematically characterized using BET, XRD, SEM-EDX, FT-IR, and XPS. Adsorption kinetics followed a pseudo-second-order model (R2 = 0.9956), with [...] Read more.
In this study, magnesium-modified clinoptilolite (MZ) was successfully synthesized via precipitation and calcination to efficiently remove Pb(II) from aqueous solutions. The material was systematically characterized using BET, XRD, SEM-EDX, FT-IR, and XPS. Adsorption kinetics followed a pseudo-second-order model (R2 = 0.9956), with MZ removing over 70% of Pb(II) within the first 3 h. Isotherm data were best described by the Langmuir model (R2 = 0.9686), confirming monolayer chemical adsorption, with a maximum adsorption capacity (qₘ) of 1656 mg/g. Notably, MZ maintained high adsorption capacity across a pH range of 3.0~5.5, and its performance was largely unaffected by the presence of high concentrations of competing ions (0.1~1.0 M NaNO3). Mechanistic analysis revealed that the loaded MgO facilitates the chemical conversion of Pb(II) to hydroxycarbonate (Pb3(CO3)2(OH)2) via surface complexation, which constitutes the primary removal mechanism. These findings demonstrate that magnesium modification can transform natural zeolites into high-capacity, stable adsorbents, offering promising potential for the treatment of Pb(II)-contaminated water. Full article
19 pages, 2956 KB  
Article
Mechanisms and Efficacy of Thermally Modified Dolomite-Rich Phosphate Tailings as a Novel Adsorbent for Phosphorus Removal
by Yongjie Guo, Caixia Guo, Jiangli Li, Yuanchong Huang, Shuai Xu, Xing Zhao and Kunzhi Li
Water 2026, 18(2), 235; https://doi.org/10.3390/w18020235 - 16 Jan 2026
Viewed by 186
Abstract
The global environmental challenges of solid waste accumulation and aquatic eutrophication demand innovative and sustainable strategies. This study introduces a circular “waste-treats-waste” approach by converting dolomite-rich phosphate tailings (PT), a widespread industrial by-product, into a high-value adsorbent for phosphorus (P) removal. Thermal modification [...] Read more.
The global environmental challenges of solid waste accumulation and aquatic eutrophication demand innovative and sustainable strategies. This study introduces a circular “waste-treats-waste” approach by converting dolomite-rich phosphate tailings (PT), a widespread industrial by-product, into a high-value adsorbent for phosphorus (P) removal. Thermal modification at 950 °C for 1 h dramatically enhanced the adsorption capacity by approximately 45 times, from 2.52 mg/g (raw PT) to 112.41 mg/g. This performance is highly competitive with, and often superior to, many engineered adsorbents. The calcination process was pivotal, decomposing carbonates into highly active CaO and MgO while developing a porous structure. Using a multi-technique characterization approach (X-ray diffraction (XRD), Fourier transform infrared spectra (FTIR), TESCAN VEGA3 tungsten filament scanning electron microscope (SEM), the Brunauer–Emmett–Teller method (BET)), the key immobilization mechanism was identified as hydroxyapatite formation, driven by Ca2+/Mg2+-phosphate precipitation and surface complexation. Nonlinear regression analysis revealed that the adsorption kinetics obeyed the pseudo-second-order model, and the equilibrium data were best described by the Freundlich isotherm. This indicates a chemisorption process occurring on a heterogeneous surface, consistent with the complex structure created by thermal modification. Notably, post-adsorption pore structure expansion suggested synergistic pore-filling and surface reorganization. This work not only demonstrates a circular economy paradigm for repurposing industrial solid waste on a global scale but also offers a cost-effective and high-performance pathway for controlling phosphorus pollution in aquatic systems, contributing directly to resource efficiency and sustainable environmental remediation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 5349 KB  
Article
Research on Efficient Methylene Blue Adsorbents Based on Reduced Graphene Oxide–Calcium Sodium Aluminosilicate Nanocomposites
by Zhengyuan Zhou, Zhu Han, Yunye Fan, Jiaxin Kang, Xiaohong Li, Yue Cheng and Runhua Liao
Coatings 2026, 16(1), 112; https://doi.org/10.3390/coatings16010112 - 14 Jan 2026
Viewed by 178
Abstract
A series of reduced graphene oxide–calcium sodium aluminosilicate (rGO-CSA) composites with various rGO/CSA weight ratios (i.e., rGO/CSA 1/2.5, 1/5, 1/10, and 1/15) were successfully synthesized via hydrothermal reaction of CSA particles and GO nanosheets. The chemical compositions and morphology of as-synthesized rGO-CSA composites [...] Read more.
A series of reduced graphene oxide–calcium sodium aluminosilicate (rGO-CSA) composites with various rGO/CSA weight ratios (i.e., rGO/CSA 1/2.5, 1/5, 1/10, and 1/15) were successfully synthesized via hydrothermal reaction of CSA particles and GO nanosheets. The chemical compositions and morphology of as-synthesized rGO-CSA composites were characterized by XRD, SEM, BET and FTIR. Results from SEM revealed that CSA particles were deposited on the surface of rGO nanosheets resulting in rGO-CSA nanocomposites. N2-BET results showed that rGO-CSA4 composites with an rGO/CSA loading ratio of 1/15 showed a high specific surface area of 824.7 m2/g, which is higher than that of raw rGO (370.7 m2/g) and CSA (719.8 m2/g) materials. According the BET and SEM, it can be confirmed that the combination of rGO with CSA can reduce stacking during the drying process of rGO. The as-prepared rGO-CSA nanocomposites exhibited an excellent performance in the adsorption of methylene blue (MB). The rGO-CSA3 material exhibits an MB saturation adsorption capacity of 66.3 mg/g. Since rGO is the only adsorption-active material in the rGO-CSA3 composite, the rGO (9.09 wt%) in rGO-CSA exhibited an MB saturation adsorption capacity of 729.4 mg/L after content correction, which is far greater than the value of raw rGO material. The rGO-CSA3 composites showed superior adsorption efficiency of MB, mainly due to CSA particles effectively reducing rGO nanosheets stacking during the drying process. Full article
(This article belongs to the Section Environmental Aspects in Colloid and Interface Science)
Show Figures

Figure 1

15 pages, 2593 KB  
Article
Zirconium Phosphate Supported on Biochar for Effective Recovery of Rare Earth Elements from Tailwater: A Case Study of La3+
by Ning Zheng, Chenliang Peng, Xia Zhu, Weichang Kong and Yang Yang
Metals 2026, 16(1), 84; https://doi.org/10.3390/met16010084 - 13 Jan 2026
Viewed by 101
Abstract
The efficient recovery of rare earth elements (REEs) from low-concentration mine tailwater is crucial for resource sustainability. In this study, a novel composite adsorbent, sesame stalk biochar-supported zirconium phosphate (sBC/ZrP), was synthesized for the selective adsorption and recovery of La3+ as a [...] Read more.
The efficient recovery of rare earth elements (REEs) from low-concentration mine tailwater is crucial for resource sustainability. In this study, a novel composite adsorbent, sesame stalk biochar-supported zirconium phosphate (sBC/ZrP), was synthesized for the selective adsorption and recovery of La3+ as a representative REE. The material was characterized using SEM-EDS, BET, XRD, FTIR, and XPS. Batch adsorption experiments were conducted to evaluate the effects of pH, coexisting ions, and the adsorption kinetics and thermodynamics. The results showed that sBC/ZrP exhibited a high adsorption capacity (up to 185.83 mg/g at 35 °C for 4 h) and strong selectivity for La3+, particularly in the presence of common competing cations, although Al3+ demonstrated significant interference. The adsorption process followed pseudo-second-order kinetics and the Langmuir isotherm model, indicating monolayer chemisorption, and was determined to be spontaneous and endothermic. The material maintained over 90% adsorption efficiency after five consecutive adsorption–desorption cycles. The mechanism primarily involved complexation of La3+ with the P-OH and Zr-O groups on the composite. This work demonstrates that sBC/ZrP is a highly efficient, stable, and reusable adsorbent with significant potential for the recovery of REEs from mining tailwater. Full article
(This article belongs to the Special Issue Advances in Recycling of Valuable Metals—2nd Edition)
Show Figures

Figure 1

24 pages, 11128 KB  
Article
Fibrous Polycaprolactone-Based Composite Materials with the Addition of Hardystonite: Haemostatic Potential, Antioxidant Activity, and Biocompatibility Assessment
by Anna Kaczmarek, Marcin H. Kudzin, Michał Juszczak, Katarzyna Woźniak, Paulina Król, César I. Hernández Vázquez, Zdzisława Mrozińska and Jerzy J. Chruściel
Macromol 2026, 6(1), 5; https://doi.org/10.3390/macromol6010005 - 13 Jan 2026
Viewed by 100
Abstract
Fibrous polycaprolactone-based composite materials with the addition of hardystonite (1, 3, and 5 wt.%) were developed using the electrospinning method. The obtained PCL and PCL-HT nonwovens were evaluated in terms of their physiochemical properties (SEM, EDS, BET, and zeta potential). Furthermore, the antioxidant [...] Read more.
Fibrous polycaprolactone-based composite materials with the addition of hardystonite (1, 3, and 5 wt.%) were developed using the electrospinning method. The obtained PCL and PCL-HT nonwovens were evaluated in terms of their physiochemical properties (SEM, EDS, BET, and zeta potential). Furthermore, the antioxidant potential [measured by thiobarbituric acid reactive substance (TBARS) levels], blood plasma coagulation parameters, and cyto- and genotoxicity towards PBM and Hs68 cells were assessed to determine the biochemical activity of the composites. The conducted experiments confirmed that hardystonite was successfully incorporated into the PCL matrix. No substantial changes in the fibres’ surface morphology and the structure of the composites were observed. Similarly, the specific surface area, total pore volume, and average pore size did not change significantly. The addition of hardystonite to the polymer solution resulted in a shift in zeta potential toward less negative values. With regard to plasma coagulation parameters, no significant changes were observed in the aPTT, PT, or TT, likely due to the counterbalancing effect of Zn2+ and Ca2+ ions. Furthermore, the PCL-HT composites exhibited a lowered TBARS level, suggesting antioxidant properties, which could be attributed to the presence of zinc in hardystonite. The PCL and PCL-HT composites demonstrated no cytotoxic or genotoxic effects on the tested blood or skin cell types, suggesting their safety. Full article
Show Figures

Figure 1

22 pages, 3584 KB  
Article
Photocatalytic Performance of the Synergetic Coupling of NiO-MgO Nanostructures on a g-C3N4 Composite Towards Methylene Blue Under Visible-Light Irradiation
by Shaojun Hao, Siew Wen Ching, Timm Joyce Tiong, Yeow Hong Yap and Chao-Ming Huang
J. Compos. Sci. 2026, 10(1), 45; https://doi.org/10.3390/jcs10010045 - 13 Jan 2026
Viewed by 227
Abstract
In this study, a ternary Ni/Mg/g-C3N4 composite was synthesized via a controlled precipitation–calcination route and evaluated for its visible-light-assisted degradation of methylene blue (MB). The structural, morphological, and optical characteristics of the composites were systematically investigated using XRD, FT-IR, FESEM, [...] Read more.
In this study, a ternary Ni/Mg/g-C3N4 composite was synthesized via a controlled precipitation–calcination route and evaluated for its visible-light-assisted degradation of methylene blue (MB). The structural, morphological, and optical characteristics of the composites were systematically investigated using XRD, FT-IR, FESEM, BET, and UV–Vis analyses. The results confirmed the successful construction of Ni/Mg/g-C3N4 heterojunctions with strong interfacial coupling and enhanced surface porosity. Among all samples, the Ni/Mg/CN20 composite exhibited the highest activity, achieving 66% MB degradation within 180 min under visible light. This superior performance was attributed to synergistic effects arising from efficient interfacial charge transfer, broadened light absorption, and abundant active sites. The composite also displayed excellent thermal stability. This work demonstrates that the rational control of g-C3N4 loading plays a decisive role in tuning the physicochemical and catalytic properties of Ni/Mg/g-C3N4 composites. The findings provide new insights into the design of cost-effective, thermally stable, and high-performance photocatalysts for visible-light-driven wastewater treatment. Full article
(This article belongs to the Section Composites Applications)
Show Figures

Figure 1

14 pages, 2170 KB  
Article
Pore and Thermochemical Properties of Biochar Materials Produced from Moso Bamboo Under Different Carbonization Conditions
by Hervan Marion Morgan, An-De Yan, Yong-Shun Lu, Chi-Hung Tsai and Wen-Tien Tsai
Materials 2026, 19(2), 310; https://doi.org/10.3390/ma19020310 - 13 Jan 2026
Viewed by 136
Abstract
In this study, moso bamboo (Phyllostachys edulis, PE) was pyrolyzed in a high-temperature carbonization furnace to produce porous biochar materials with high carbon contents under different carbonization temperatures (500, 600, 700, 800, and 900 °C) and heating rates (10 and 20 [...] Read more.
In this study, moso bamboo (Phyllostachys edulis, PE) was pyrolyzed in a high-temperature carbonization furnace to produce porous biochar materials with high carbon contents under different carbonization temperatures (500, 600, 700, 800, and 900 °C) and heating rates (10 and 20 °C/min). Preliminary characterization of the PE precursor was conducted to evaluate its thermochemical properties, including proximate analysis, elemental analysis, and thermal decomposition behavior. The results indicated that PE biomass is a suitable precursor for biochar production at temperatures above 400 °C, owing to its low ash content (<1%) and high volatile matter (>80%). The pore structure and thermochemical properties of PE-derived biochars were found to improve with increasing carbonization temperature. Optimal pore characteristics were achieved at 800 °C with a heating rate of 10 °C/min, resulting in a Brunauer–Emmett–Teller (BET) surface area of 496 m2/g and a total pore volume of 0.18 cm3/g. In contrast, biochars produced at a heating rate of 20 °C/min exhibited significantly higher carbon contents (90.7–95.7%) compared with those obtained at 10 °C/min (75.4–89.0%). This phenomenon was attributed to enhanced carbon volatilization associated with the longer residence time during slower heating. Observations from scanning electron microscopy (SEM) were consistent with the development of porous structures in the PE-based biochars. Full article
(This article belongs to the Section Carbon Materials)
Show Figures

Figure 1

15 pages, 1764 KB  
Article
Enhanced Removal of the Antibiotic Sulfamethoxazole by a B-Doped Mesoporous Carbon Nanosheet/Peroxymonosulfate System: Characterization and Mechanistic Insights
by Thi-Hai Anh Nguyen, Tran Van Tam and Minh-Tri Nguyen-Le
Compounds 2026, 6(1), 6; https://doi.org/10.3390/compounds6010006 - 12 Jan 2026
Viewed by 129
Abstract
This study investigates the activation mechanism of boron-doped carbon (BMC) catalysts for the degradation of the antibiotic sulfamethoxazole (SMX) via persulfate (PMS) activation. The catalysts were synthesized using a sequential double-melting calcination method, resulting in mesoporous carbon nanosheets characterized by hierarchical macro-mesopores and [...] Read more.
This study investigates the activation mechanism of boron-doped carbon (BMC) catalysts for the degradation of the antibiotic sulfamethoxazole (SMX) via persulfate (PMS) activation. The catalysts were synthesized using a sequential double-melting calcination method, resulting in mesoporous carbon nanosheets characterized by hierarchical macro-mesopores and atomically dispersed dual active sites. Comprehensive characterization was performed using BET, SEM, TEM, FT-IR, XPS, XRD, and Raman techniques. The optimized BMC catalyst demonstrated excellent performance, achieving complete removal of sulfamethoxazole (100%) and a high mineralization rate (~90%) within 45 min. Mechanistic analysis, including electron paramagnetic resonance (EPR), revealed that the degradation predominantly follows a singlet oxygen (1O2)-dominated pathway. The system exhibited broad applicability to various pollutants, along with notable operational stability and robust resistance to common environmental interferents. Persulfate activation was primarily attributed to boron-active sites, while the hierarchical mesoporous structure facilitated both pollutant enrichment and catalytic efficiency. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2025))
Show Figures

Figure 1

13 pages, 2863 KB  
Article
Waste-Towel-Derived Hard Carbon as High Performance Anode for Sodium Ion Battery
by Daofa Ying, Kuo Chen, Jiarui Liu, Ziqian Xiang, Jiazheng Lu, Chuanping Wu, Baohui Chen, Yang Lyu, Yutao Liu and Zhen Fang
Polymers 2026, 18(2), 206; https://doi.org/10.3390/polym18020206 - 12 Jan 2026
Viewed by 240
Abstract
Developing cost-effective yet high-performance hard carbon anodes is critical for advancing the commercialization of sodium-ion batteries (SIBs), as they offer a balance of low cost, high capacity, and compatibility with Na+ storage mechanisms. Herein, waste towels, an abundant, low-cost precursor with a [...] Read more.
Developing cost-effective yet high-performance hard carbon anodes is critical for advancing the commercialization of sodium-ion batteries (SIBs), as they offer a balance of low cost, high capacity, and compatibility with Na+ storage mechanisms. Herein, waste towels, an abundant, low-cost precursor with a high carbon yield (>49%), were utilized to synthesize hard carbons via a two-step process: pre-oxidation at 250 °C to stabilize the fibrous structure, followed by carbonization at 1100 °C (THC-1100), 1300 °C (THC-1300), or 1500 °C (THC-1500). Electrochemical evaluations revealed that THC-1300, carbonized at an intermediate temperature, exhibited superior Na+ storage performance compared to its counterparts: it delivered a high reversible specific capacity of ~320 mAh/g at 1.0 C (1 C = 320 mA/g), with 78% capacity retention after 200 cycles, demonstrating excellent long-term cyclic stability. Its rate capability was equally impressive, achieving specific capacities of 341.5, 331.2, 302.0 and 234.8 mAh/g at 0.2, 0.5, 2.0 and 5.0 C, respectively, indicating efficient Na+ diffusion even at high current densities. Notably, THC-1300 also showed an improved initial Coulombic efficiency (ICE) of 75.4%, reflecting reduced irreversible Na+ consumption during the first cycle. These enhancements are attributed to the synergistic effects of THC-1300’s optimized structural and textural properties: a balanced interlayer spacing (d(002) = 0.387 nm) that facilitates rapid Na+ intercalation, a low BET surface area (1.62 m2/g) helps to minimize electrolyte side reactions. The combined advantages of high specific capacity, improved ICE, and remarkable cycling stability position this waste-towel-derived hard carbon as a highly viable and sustainable candidate for anode materials in next-generation SIBs, addressing both performance and cost requirements for large-scale energy storage applications. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

19 pages, 1207 KB  
Article
An Auditable and Trusted Lottery System in the Cloud
by Gwan-Hwan Hwang, Tao-Ku Chang and Yi-Syuan Lu
Appl. Sci. 2026, 16(2), 741; https://doi.org/10.3390/app16020741 - 11 Jan 2026
Viewed by 201
Abstract
Public blockchains offer transparency and tamper resistance, but implementing national-scale lotteries directly on-chain is impractical because each bet would require a separate transaction, incurring substantial gas costs and facing throughput limitations. This paper presents an auditable lottery architecture designed to address these scalability [...] Read more.
Public blockchains offer transparency and tamper resistance, but implementing national-scale lotteries directly on-chain is impractical because each bet would require a separate transaction, incurring substantial gas costs and facing throughput limitations. This paper presents an auditable lottery architecture designed to address these scalability challenges and eliminate the reliance on trusted third parties. The proposed approach decouples high-volume bet recording from on-chain enforcement. Bets are recorded off-chain in a transaction-positioned Merkle tree (TP-Merkle tree), while the service provider commits only the per-round root hash and summary metadata to an Ethereum smart contract. Each player receives a signed receipt and a compact Merkle proof (Slice), enabling independent inclusion checks and third-party audits. A programmable appeal mechanism allows any participant to submit receipts and cryptographic evidence to the contract; if misbehavior is proven, compensation is executed automatically from a pre-deposited margin. A proof-of-concept implementation demonstrates the system’s feasibility, and extensive experiments evaluate collision behavior, storage overhead, proof size, and gas consumption, demonstrating that the proposed design can support national-scale betting volumes (tens of millions of bets per round) while occupying only a small fraction of on-chain resources. Full article
(This article belongs to the Special Issue Advanced Blockchain Technology and Its Applications)
Show Figures

Figure 1

16 pages, 13794 KB  
Article
BTK-Inhibitor Loaded Polymeric Nanoparticles Alleviate Systemic Lupus Erythematosus by Targeting Elimination of Autoreactive BAFFRhigh B Cells
by Yamin Zhang, Jingjing Wen, Biling Jiang, Hao Jiang, Jian Xu and Juan Tao
Int. J. Mol. Sci. 2026, 27(2), 729; https://doi.org/10.3390/ijms27020729 - 11 Jan 2026
Viewed by 149
Abstract
Systemic lupus erythematosus (SLE) is a chronic and refractory autoimmune disease characterized by multi-organ damage, for which reliably safe and effective treatment remains an unmet need. Autoantibodies, secreted by autoreactive B cells, deposition is the central pathogenesis of organ damage in SLE. Current [...] Read more.
Systemic lupus erythematosus (SLE) is a chronic and refractory autoimmune disease characterized by multi-organ damage, for which reliably safe and effective treatment remains an unmet need. Autoantibodies, secreted by autoreactive B cells, deposition is the central pathogenesis of organ damage in SLE. Current studies reported B cell receptor and B cell activating factor (BAFF)-mediated signals regulate the activation and survival of B cells and production of autoantibodies. We showed that marginal zone B cells and CD11c+T-bet+ autoreactive B cells expressed higher levels of BAFF receptor and BTK in MRL/lpr mice. Here, a liposome-delivery system capable of targeting BAFFRhigh autoreactive B cells by conjugating anti-BAFFR antibody on the surface of the PEG-liposomes and loading BTK-inhibitor ibrutinib (BTEL) was rationally designed. Notably, the BTEL nanoparticles could inhibit the survival and activation of B cells, and systemic administration of BTEL could alleviate the development of the lupus mouse model by decreasing the production of anti-dsDNA autoantibodies, along with reduced secretion of inflammatory cytokines and kidney damage, and without apparent side effects. These findings suggest the potential of BTEL in targeting autoreactive B cells, blocking signaling pathways, and improving the efficacy of BTK inhibitors, providing a promising therapeutic approach for SLE, while also reducing toxicity. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Graphical abstract

17 pages, 4456 KB  
Article
Sustainable Adsorption of Rhodamine B and Heavy Metals Using Sewage Sludge-Derived Biochar
by Yerkanat N. Kanafin, Assylzhan Mukhametrakhimova, Rauza Turpanova and Stavros G. Poulopoulos
ChemEngineering 2026, 10(1), 11; https://doi.org/10.3390/chemengineering10010011 - 9 Jan 2026
Viewed by 107
Abstract
The sustainable management of sewage sludge remains a key environmental challenge for rapidly urbanizing regions such as Kazakhstan. This study explores the potential of sewage sludge-derived biochar as an efficient, low-cost adsorbent for removing Rhodamine B (RhB) dye and toxic metals from water. [...] Read more.
The sustainable management of sewage sludge remains a key environmental challenge for rapidly urbanizing regions such as Kazakhstan. This study explores the potential of sewage sludge-derived biochar as an efficient, low-cost adsorbent for removing Rhodamine B (RhB) dye and toxic metals from water. Sewage sludge was pyrolyzed at 700 °C (BC) and subsequently activated with hydrochloric acid (BCH) and sodium hydroxide (BCN) to improve its surface functionality and porosity. The morphology, surface area, porosity, and functional groups of the obtained biochars were characterized using SEM-EDS, BET, FTIR, and XRD analyses. Batch adsorption experiments demonstrated that the pseudo-second-order kinetic model (R2 = 0.99) best described the data, indicating chemisorption-controlled uptake. Experimental RhB adsorption capacity was 14.53 mg/g for BCH at RhB concentration of 75 mg/L after 120 min. Moreover, BCH exhibited enhanced metal adsorption capacities of 22.85 mg/g (Cu2+), 17.55 mg/g (Zn2+), 15.08 mg/g (Cd2+), 7.97 mg/g (Cr3+), and 3.68 mg/g (As3+). These results confirm that acid activation significantly improves adsorption efficiency compared with pristine biochar due to increased surface area and the introduction of oxygen-containing functional groups. Overall, sewage sludge-derived biochar shows strong potential as a sustainable adsorbent for dye and heavy metal removal. Full article
Show Figures

Figure 1

15 pages, 5038 KB  
Article
Investigation of the Effects of Hydrogen-Based Mineral Phase Transformation Cooling on the Grinding Characteristics of Specific Iron Ore
by Shijie Zhou, Pengcheng Tian, Jianping Jin and Da Li
Separations 2026, 13(1), 25; https://doi.org/10.3390/separations13010025 - 9 Jan 2026
Viewed by 115
Abstract
Grinding is an essential process in mineral processing. Hydrogen-based mineral phase transformation, used to efficiently process refractory iron ores, can alter the physical and chemical properties of the ore, affecting its grinding characteristics. This paper uses iron ore from Baoshan, Shanxi Province, as [...] Read more.
Grinding is an essential process in mineral processing. Hydrogen-based mineral phase transformation, used to efficiently process refractory iron ores, can alter the physical and chemical properties of the ore, affecting its grinding characteristics. This paper uses iron ore from Baoshan, Shanxi Province, as the raw material for laboratory-scale hydrogen-based mineral phase transformation (HMPT) experiments and grinding tests. It examines the impact of four cooling methods on the ore’s grinding characteristics. The results show that samples cooled in a reducing atmosphere to 200 °C and then water-quenched exhibit the best relative grindability. For the same grinding time, the content of coarse-sized particles (+0.074 mm) in the product is lowest, while the fine-sized particles (−0.030 mm) is highest. The grinding kinetic parameters of the samples with this cooling method are the highest. After 2 min of grinding, the value of n is 1.3363, and the particle size distribution of the product is the most uniform. The BET and SEM test results indicate that samples with this cooling method have more internal pores, the largest pore size, and the most surface cracks and pores. This paper clarifies the effects of the HMPT cooling methods on grinding characteristics, providing a theoretical foundation for the efficient separation of iron ores. Full article
Show Figures

Figure 1

10 pages, 221 KB  
Article
Office-Based LA-BET Without Sedation or Nerve Block: Prospective Evaluation of a Simplified Local Anesthesia Protocol
by Cheng-Yu Hsieh, Yi-Fan Chou and Chuan-Jen Hsu
J. Clin. Med. 2026, 15(2), 543; https://doi.org/10.3390/jcm15020543 - 9 Jan 2026
Viewed by 125
Abstract
Background/Objectives: Balloon eustachian tuboplasty (BET) is an effective surgical option for obstructive eustachian tube dysfunction (OETD). However, the feasibility of performing BET under local anesthesia (LA) using simplified analgesic protocols remains underexplored. We examined the feasibility of a streamlined LA-BET protocol. Methods [...] Read more.
Background/Objectives: Balloon eustachian tuboplasty (BET) is an effective surgical option for obstructive eustachian tube dysfunction (OETD). However, the feasibility of performing BET under local anesthesia (LA) using simplified analgesic protocols remains underexplored. We examined the feasibility of a streamlined LA-BET protocol. Methods: Fifty patients (sixty-four ears) diagnosed with primary OETD between March 2024 and December 2025 were enrolled. All patients underwent BET under LA using intramuscular ketorolac and topical lidocaine gel without sedation or nerve blocks. Pain scores, blood pressure changes, and patient acceptance were analyzed for each patient; Eustachian Tube Dysfunction Questionnaire-7 (ETDQ-7) scores, tympanogram types, and Valsalva results were analyzed for each ear. All outcome measures were assessed 3 months postoperatively. Results: The mean ETDQ-7 score significantly improved from 24.9 ± 7.4 to 11.9 ± 5.4 (p < 0.001). The minimal clinically important difference (MCID ≥ 3.7) was achieved in 90.6% of ears, and normalization (ETDQ-7 ≤ 14.5) in 75.0%. The proportion of ears with positive Valsalva maneuvers increased from 39.1 to 76.6% (p < 0.01), and type A tympanograms improved from 64.1 to 84.4% (p = 0.018). Mean pain scores were 3.5 during insertion, 2.1 during balloon inflation, and 0.6 after deflation. All patients completed the procedure, and 96% would undergo LA again. Conclusions: LA-BET performed using intramuscular ketorolac and topical lidocaine gel is safe, tolerable, and effective. This protocol provides symptom relief and functional improvement without sedation or nerve block and offers a practical outpatient alternative for chronic OETD management. Full article
12 pages, 2594 KB  
Article
The Effect of Sport-Specific Brain Endurance Training on Performance in Elite Orienteering Athletes
by Kenneth Buch, Richard Thomas, Walter Staiano and Simon Lønbro
Sports 2026, 14(1), 32; https://doi.org/10.3390/sports14010032 - 8 Jan 2026
Viewed by 249
Abstract
Aim: To investigate the effect of a 6-week sport-specific BET intervention on cognitive and physical performance in elite orienteering athletes. Methods: A single-arm cross-over study with an initial 6-week control period (CON) followed by a 6-week brain endurance training (BET). Thirteen Danish national [...] Read more.
Aim: To investigate the effect of a 6-week sport-specific BET intervention on cognitive and physical performance in elite orienteering athletes. Methods: A single-arm cross-over study with an initial 6-week control period (CON) followed by a 6-week brain endurance training (BET). Thirteen Danish national team orienteering athletes participated in the study. CON athletes adhered to planned physical, cognitive, and technical training. BET athletes added 20 min of route choice assessment (RCA) training after each weekly aerobic training session. The 30 min Stroop color-word task and a sport-specific RCA task evaluated general and sport-specific cognitive performance. A submaximal (1000 m) and a maximal (5000 m) running test were also conducted. Endpoints were assessed pre and post CON and post BET. Results: Average time used per RCA task was 1.4 ± 0.4 s lower following BET (27%) (p = 0.009) compared with no change after CON. Similarly, the total number of correct Stroop answers increased by 13.8 ± 5.21 points (2%) after BET with no change after CON. RCA time use declined steeply from session 1–7, whereafter average time use plateaued. Running performance did not differ significantly between periods. Conclusion: BET improved sport-specific performance and aspects of general cognitive performance, and may effectively improve cognitive parts important for elite orienteering performance. Full article
Show Figures

Figure 1

Back to TopTop