Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (25)

Search Parameters:
Keywords = beer maturation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 603 KiB  
Review
The Science of Aging: Understanding Phenolic and Flavor Compounds and Their Influence on Alcoholic Beverages Aged with Alternative Woods
by Tainá Francisca Cordeiro de Souza, Bruna Melo Miranda, Julio Cesar Colivet Briceno, Joaquín Gómez-Estaca and Flávio Alves da Silva
Foods 2025, 14(15), 2739; https://doi.org/10.3390/foods14152739 - 5 Aug 2025
Abstract
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can [...] Read more.
Aging in wooden barrels is a proven technique that enhances the sensory complexity of alcoholic beverages by promoting the extraction of volatile and phenolic compounds. While oak has been traditionally used, there is a growing interest in exploring alternative wood species that can impart distinct sensory characteristics and promote innovative maturation processes. This review examines the impact of alternative woods on the aging of beverages, such as wine, cachaça, tequila, and beer, focusing on their influence on aroma, flavor, color, and chemical composition. A bibliometric analysis highlights the increasing scientific attention toward wood diversification and emerging aging technologies, including ultrasound and micro-oxygenation, which accelerate maturation while preserving sensory complexity. The role of toasting techniques in modulating the release of phenolic and volatile compounds is also discussed, emphasizing their contribution to unique sensory profiles. Additionally, regulatory aspects and sustainability considerations are explored, suggesting that alternative woods can expand flavor possibilities while supporting environmentally sustainable practices. This review underscores the potential of non-traditional wood species to drive innovation in the aging of alcoholic beverages and provide new sensory experiences that align with evolving consumer preferences and market trends. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
27 pages, 1726 KiB  
Article
Integrated Spectroscopic Analysis of Wild Beers: Molecular Composition and Antioxidant Properties
by Dessislava Gerginova, Plamena Staleva, Zhanina Petkova, Konstantina Priboyska, Plamen Chorbadzhiev, Ralitsa Chimshirova and Svetlana Simova
Int. J. Mol. Sci. 2025, 26(14), 6993; https://doi.org/10.3390/ijms26146993 - 21 Jul 2025
Viewed by 266
Abstract
Wild ales represent a diverse category of spontaneously fermented beers, influenced by complex microbial populations and variable ingredients. This study employed an integrated metabolomic profiling approach combining proton nuclear magnetic resonance (1H NMR) spectroscopy, liquid chromatography–mass spectrometry (LC-MS), and spectrophotometric assays [...] Read more.
Wild ales represent a diverse category of spontaneously fermented beers, influenced by complex microbial populations and variable ingredients. This study employed an integrated metabolomic profiling approach combining proton nuclear magnetic resonance (1H NMR) spectroscopy, liquid chromatography–mass spectrometry (LC-MS), and spectrophotometric assays (DPPH and FRAP) to characterize the molecular composition and antioxidant potential of 22 wild ales from six countries. A total of 53 compounds were identified and quantified using NMR, while 62 compounds were identified by using LC-MS. The compounds in question included organic acids, amino acids, sugars, alcohols, bitter acids, phenolic compounds, and others. Ingredient-based clustering revealed that the addition of dark fruits resulted in a significant increase in the polyphenolic content and antioxidant activity. Concurrently, herb-infused and light-fruit beers exhibited divergent phytochemical profiles. Prolonged aging (>18 months) has been demonstrated to be associated with increased levels of certain amino acids, fermentation-derived aldehydes, and phenolic degradation products. However, the influence of maturation duration on the antioxidant capacity was found to be less significant than that of the type of fruit. Country-specific metabolite trends were revealed, indicating the influence of regional brewing practices on beer composition. Correlation analysis was employed to identify the major contributors to antioxidant activity, with salicylic, dihydroxybenzoic, and 4-hydroxybenzoic acids being identified as the most significant. These findings underscore the biochemical intricacy of wild ales and exemplify metabolomics’ capacity to correlate compositional variation with functionality and authenticity in spontaneously fermented beverages. Full article
(This article belongs to the Section Biochemistry)
Show Figures

Graphical abstract

16 pages, 699 KiB  
Article
Antioxidant Capacity, Phenolic and Organoleptic Profiles of Beers Maturated with Bilberries
by Petar Nedyalkov, Vesela Shopska, Giuseppe Perretti and Maria Kaneva
Fermentation 2025, 11(6), 334; https://doi.org/10.3390/fermentation11060334 - 10 Jun 2025
Cited by 1 | Viewed by 578
Abstract
Beer is probably one of the oldest alcoholic beverages, and regarding consumption, is third place after water and tea. Due to the consumer’s pursuit of novel tastes and aromas, craft brewers are trying to meet the consumer’s need, so brewing beer with a [...] Read more.
Beer is probably one of the oldest alcoholic beverages, and regarding consumption, is third place after water and tea. Due to the consumer’s pursuit of novel tastes and aromas, craft brewers are trying to meet the consumer’s need, so brewing beer with a fruit addition is the new twist. Fruit incorporation into the brewing process leads to alterations in the sensory properties and chemical composition of beers, but most of the articles published on this topic are mainly concentrated on beers with fruits different from bilberries. The data on bilberry beers are still scarce. Therefore, our projects are based in this field to investigate beer production with bilberries. In our previous research, we found interesting changes in the protein profile of bilberry beers with different original extracts. Therefore, the aim of this study was to investigate the influence of the original extract of beer maturated with bilberries on the phenolic profile (determined by HPLC analysis), the antioxidant capacity (measured by the ABTS, DPPH, FRAP, and CUPRAC methods), and sensory characteristics. The reported data can contribute to the development and production of bilberry beers with high antioxidant capacity and pleasant sensory properties. Full article
(This article belongs to the Special Issue Wine and Beer Fermentation, 2nd Edition)
Show Figures

Figure 1

17 pages, 2454 KiB  
Article
Cacao Mucilage Valorisation to Produce Craft Beers: A Case Study Towards the Sustainability of the Cocoa Industry in Los Ríos Province
by José Villarroel-Bastidas, Jonathan Steven Párraga-Maquilón, Cinthya Elizabeth Zapata-Zambrano, María de Guide Córdoba, Alicia Rodríguez, Alejandro Hernández and Josué Briones-Bitar
Beverages 2025, 11(3), 57; https://doi.org/10.3390/beverages11030057 - 22 Apr 2025
Cited by 1 | Viewed by 893
Abstract
Cacao mucilage is a rich medium for microbial development due to the presence of various sugars, water, pectin, mineral salts, and yeasts of the Saccharomyces cerevisiae type. This study aims to provide added value to this commonly discarded residue, thereby contributing to the [...] Read more.
Cacao mucilage is a rich medium for microbial development due to the presence of various sugars, water, pectin, mineral salts, and yeasts of the Saccharomyces cerevisiae type. This study aims to provide added value to this commonly discarded residue, thereby contributing to the economic growth of the Rio Chila area in the Valencia Canton of Los Ríos Province. The methods applied for developing beer consist of malting, grinding, mashing, filtering, boiling, cooling, fermentation (during which cacao mucilage is added), and maturation, followed by physical–chemical analyses. The Fine aroma cacao mucilage presented values of 0.66% acidity, 7.63 °Brix, pH 4.43, absorbance 1.13, transmittance 23.67%, suspended solids 0.04 g: 2.66%, density 1.07 g/mL, turbidity 6.94 NTU, °GL 8.47% vol., foam quantity 1.70 cm, colorimetry L* 50.77, colorimetry a* 18.08, colorimetry b* 50.53, and bitterness degree 39.00. The analyses presented values within the normal parameters applied to beers at the national level (INEN standards). Escherichia coli, Salmonella, and total microorganisms showed no contamination in the microbiological analyses. In the sensory analyses, appearance, aroma, flavour, and mouthfeel were evaluated, with the best experiment being the combination of Fine aroma cacao with a concentration of 30% mucilage and added Cascade hops. This study took into account the concentrations of cacao mucilage (20% and 30%) from the varieties (Fine aroma and CCN-51), as well as the addition of the brewing hops Cascade and Northern Brewer. Regarding the physicochemical characteristics, adding this cacao derivative did not affect craft beer and conformed to the ranges of the NTE INEN 2262 standard. Thus, this research proposes an alternative use for cocoa mucilage, contributing to waste reduction and broadening its potential applications. Full article
Show Figures

Figure 1

14 pages, 4174 KiB  
Article
Characterization of Guanine Deaminase from Kluyveromyces marxianus and Its Industrial Application to Reduce Guanine Content in Beer
by Peng Zhou, Junhao Xu, Zixuan Wang, Baoguo Li and Zhijun Zhao
Foods 2025, 14(7), 1085; https://doi.org/10.3390/foods14071085 - 21 Mar 2025
Viewed by 651
Abstract
Guanine deaminase (GDA) catalyzes the first step in purine catabolism by converting guanine to xanthine. Despite its significant role in the development of low-purine food, studies on GDA remain limited compared to other metabolic deaminases. To identify a GDA with high enzyme activity [...] Read more.
Guanine deaminase (GDA) catalyzes the first step in purine catabolism by converting guanine to xanthine. Despite its significant role in the development of low-purine food, studies on GDA remain limited compared to other metabolic deaminases. To identify a GDA with high enzyme activity and appropriate optimum parameters, GDAs from Kluyveromyces lactis, Kluyveromyces marxianus, Lentilactobacillus kefiri, and Lactobacillus buchneri were heterologously expressed in Escherichia coli. The GDA from Kluyveromyces marxianus (KM-GD) showed the most potent enzyme activity (2.21 IU/mL) at 30 °C and pH 6.5, which is close to the pH of saccharified wort. Furthermore, analyzing the crystal structures of GDAs from different sources revealed that hydrogen bonds could enhance substrate affinity and strengthen enzyme activity. In addition, active pockets with an appropriate size may contribute to high enzyme activity. Finally, KM-GD helped reduce guanine by 80.33% in beer wort and by 80.00% in matured beer, thus suggesting its promise for industrial application in low-purine food production. Full article
(This article belongs to the Section Food Biotechnology)
Show Figures

Graphical abstract

13 pages, 1535 KiB  
Article
Metabolomic Nuclear Magnetic Resonance Insights into Wine and Grape Ale Maturation
by Dessislava Gerginova, Plamen Chorbadzhiev and Svetlana Simova
Beverages 2025, 11(1), 29; https://doi.org/10.3390/beverages11010029 - 18 Feb 2025
Cited by 3 | Viewed by 987
Abstract
The chemical profiles of young and mature wines produced from three grape varieties Merlot, Mavrud, and Sauvignon blanc were analyzed using 1H nuclear magnetic resonance (NMR) spectroscopy and advanced statistical methods. Furthermore, grape ales―a hybrid of beer and wine—were subjected to analysis [...] Read more.
The chemical profiles of young and mature wines produced from three grape varieties Merlot, Mavrud, and Sauvignon blanc were analyzed using 1H nuclear magnetic resonance (NMR) spectroscopy and advanced statistical methods. Furthermore, grape ales―a hybrid of beer and wine—were subjected to analysis to facilitate a comparison of their composition with that of traditional wines. The analysis yielded a total of 37 compounds, which were identified and quantified. Orthogonal partial least squares discriminant analysis (OPLS-DA) models were employed to distinguish the chemical profiles of young and mature wines, as well as those of grape ales. The findings demonstrate that the fermentation and aging processes result in the formation of distinctive chemical signatures in wines, with key compounds such as shikimic acid and fructose contributing to this differentiation. The identified compounds comprise seven alcohols (2,3-butanediol, glycerol, 2-methylpropan-1-ol, 3-methyl-butan-1-ol, myo-inositol, 1-propanol, 2-phenylethanol), six organic acids (galacturonic, citric, lactic, malic, shikimic, succinic), three amino acids (alanine, proline, tyrosine), four sugars (arabinose, fructose, galactose, glucose), coutaric acid, and acetoin. The levels of these 22 components enabled the successful differentiation of young and mature wines among the three grape varieties. These findings underscore the substantial chemical distinctions between grape ales and wines, thereby emphasizing the potential of grape ales as an innovative fermented beverage. Full article
(This article belongs to the Section Quality, Nutrition, and Chemistry of Beverages)
Show Figures

Graphical abstract

15 pages, 257 KiB  
Article
Influence of Apple Juice Type on Fermentation Process and Volatile Compounds of Hard Apple Cider
by Kristina Habschied, Ivana Ivić, Vinko Krstanović, Dragan Kovačević, Andreja Kovačević and Krešimir Mastanjević
Appl. Sci. 2024, 14(23), 11210; https://doi.org/10.3390/app142311210 - 2 Dec 2024
Viewed by 1362
Abstract
Fermented apple cider is a refreshing alcoholic drink known since ancient times, and it is obtained by fermenting apple fruit juice. Using the standards of alcohol concentration (up to 8%) and carbonation, it belongs to drinks similar to beer. It can be produced [...] Read more.
Fermented apple cider is a refreshing alcoholic drink known since ancient times, and it is obtained by fermenting apple fruit juice. Using the standards of alcohol concentration (up to 8%) and carbonation, it belongs to drinks similar to beer. It can be produced using wild yeasts, but currently a fermentation starter can be purchased. This work aims to produce fermented cider using commercial pasteurized juices: clear apple juice and organic cloudy juice using commercial yeast for cider production. After fermentation, the physico-chemical characteristics of the drink were determined, alongside volatile compounds of the freshly produced ciders, as well after 1, 2, and 3 weeks of maturation. Acids, alcohols, carbonyl compounds, terpenes, esters, and volatile phenols were determined using headspace–solid phase microextraction–gas chromatography–mass spectrometry (HS-SPME-GC/MS). The results show that the fermentation was slower (14 days) in the cloudy juice in contrast to the sample produced from clear apple juice (10 days). Also, the volatile compounds related to aroma were abundantly found in the cider produced from cloudy apple juice compared to the cider produced from the clear apple juice. The conducted sensory analysis was in favor of cloudy juice. Full article
21 pages, 2447 KiB  
Article
Methods for Estimating the Detection and Quantification Limits of Key Substances in Beer Maturation with Electronic Noses
by Julia Kruse, Julius Wörner, Jan Schneider, Helene Dörksen and Miriam Pein-Hackelbusch
Sensors 2024, 24(11), 3520; https://doi.org/10.3390/s24113520 - 30 May 2024
Cited by 3 | Viewed by 2246
Abstract
To evaluate the suitability of an analytical instrument, essential figures of merit such as the limit of detection (LOD) and the limit of quantification (LOQ) can be employed. However, as the definitions k nown in the literature are mostly applicable to one signal [...] Read more.
To evaluate the suitability of an analytical instrument, essential figures of merit such as the limit of detection (LOD) and the limit of quantification (LOQ) can be employed. However, as the definitions k nown in the literature are mostly applicable to one signal per sample, estimating the LOD for substances with instruments yielding multidimensional results like electronic noses (eNoses) is still challenging. In this paper, we will compare and present different approaches to estimate the LOD for eNoses by employing commonly used multivariate data analysis and regression techniques, including principal component analysis (PCA), principal component regression (PCR), as well as partial least squares regression (PLSR). These methods could subsequently be used to assess the suitability of eNoses to help control and steer processes where volatiles are key process parameters. As a use case, we determined the LODs for key compounds involved in beer maturation, namely acetaldehyde, diacetyl, dimethyl sulfide, ethyl acetate, isobutanol, and 2-phenylethanol, and discussed the suitability of our eNose for that dertermination process. The results of the methods performed demonstrated differences of up to a factor of eight. For diacetyl, the LOD and the LOQ were sufficiently low to suggest potential for monitoring via eNose. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

17 pages, 1634 KiB  
Article
Use of Botanical Ingredients: Nice Opportunities to Avoid Premature Oxidation of NABLABs by Increasing Their ORAC Values Strongly Impacted by Dealcoholization or Pasteurization
by Margaux Simon, Hubert Kageruka and Sonia Collin
Molecules 2024, 29(10), 2370; https://doi.org/10.3390/molecules29102370 - 17 May 2024
Cited by 4 | Viewed by 1163
Abstract
Even when fresh, non-alcoholic, and low-alcoholic beers (NABLABs) exhibit significant staling defects due to premature oxidation. In this study, the antioxidant power of eleven fresh commercial NABLABs was assessed by means of three different assays: the oxygen radical absorbance capacity (ORAC), the linoleic [...] Read more.
Even when fresh, non-alcoholic, and low-alcoholic beers (NABLABs) exhibit significant staling defects due to premature oxidation. In this study, the antioxidant power of eleven fresh commercial NABLABs was assessed by means of three different assays: the oxygen radical absorbance capacity (ORAC), the linoleic acid-induced oxidation (TINH), and the indicator time test (ITT). Only the first two assays, both involving radicalar degradations initiated by AAPH, were found to correlate with each other. NABLABs displayed lower ORAC values than conventional beers (on average, 6127 μmol eq. Trolox/L), except for three samples made with special-colored malts or dry-hopped. Dealcoholization was the step with the greatest impact on the ORAC value (up to a 95% loss) and on flavan-3-ols, sotolon, and polyfunctional thiols, while pasteurization strongly affected color, TBA, and Strecker aldehydes. ORAC assays applied to hop, alternative cereals, and various botanical ingredients indicated that mashing with red sorghum, dry hopping/spicing, and wood maturation could bring the antioxidant power of a NABLAB close to those of conventional beers. With an ORAC value not reached by any other tested botanical ingredient (5234 µmol eq. Trolox/g), African Vernonia amygdalina leaves (traditionally used for Rwandan Ikigage beers) emerged here as the best candidate. Full article
(This article belongs to the Section Flavours and Fragrances)
Show Figures

Figure 1

24 pages, 7837 KiB  
Article
Sour Beer as Bioreservoir of Novel Craft Ale Yeast Cultures
by Chiara Nasuti, Jennifer Ruffini, Laura Sola, Mario Di Bacco, Stefano Raimondi, Francesco Candeliere and Lisa Solieri
Microorganisms 2023, 11(9), 2138; https://doi.org/10.3390/microorganisms11092138 - 23 Aug 2023
Cited by 4 | Viewed by 3391
Abstract
The increasing demand for craft beer is driving the search for novel ale yeast cultures from brewing-related wild environments. The focus of bioprospecting for craft cultures is to identify feral yeasts suitable to imprint unique sensorial attributes onto the final product. Here, we [...] Read more.
The increasing demand for craft beer is driving the search for novel ale yeast cultures from brewing-related wild environments. The focus of bioprospecting for craft cultures is to identify feral yeasts suitable to imprint unique sensorial attributes onto the final product. Here, we integrated phylogenetic, genotypic, genetic, and metabolomic techniques to demonstrate that sour beer during aging in wooden barrels is a source of suitable craft ale yeast candidates. In contrast to the traditional lambic beer maturation phase, during the aging of sour-matured production-style beer, different biotypes of Saccharomyces cerevisiae dominated the cultivable in-house mycobiota, which were followed by Pichia membranifaciens, Brettanomyces bruxellensis, and Brettanomyces anomalus. In addition, three putative S. cerevisiae × Saccharomyces uvarum hybrids were identified. S. cerevisiae feral strains sporulated, produced viable monosporic progenies, and had the STA1 gene downstream as a full-length promoter. During hopped wort fermentation, four S. cerevisiae strains and the S. cerevisiae × S. uvarum hybrid WY213 exceeded non-Saccharomyces strains in fermentative rate and ethanol production except for P. membranifaciens WY122. This strain consumed maltose after a long lag phase, in contrast to the phenotypic profile described for the species. According to the STA1+ genotype, S. cerevisiae partially consumed dextrin. Among the volatile organic compounds (VOCs) produced by S. cerevisiae and the S. cerevisiae × S. uvarum hybrid, phenylethyl alcohol, which has a fruit-like aroma, was the most prevalent. In conclusion, the strains characterized here have relevant brewing properties and are exploitable as indigenous craft beer starters. Full article
Show Figures

Figure 1

11 pages, 747 KiB  
Article
Life Cycle Assessment of Craft Beer Brewing at Different Scales on a Unit Operation Basis
by María Belén Salazar Tijerino, M. Fernanda San Martín-González, Juan Antonio Velasquez Domingo and Jen-Yi Huang
Sustainability 2023, 15(14), 11416; https://doi.org/10.3390/su151411416 - 23 Jul 2023
Cited by 7 | Viewed by 6060
Abstract
Beer brewing is a complex process that comprises many fundamental unit operations. Over the last few years, craft brewing has become very popular, and the number of small-scale commercial brewers has drastically increased. However, due to the use of traditional beer-making methods, energy [...] Read more.
Beer brewing is a complex process that comprises many fundamental unit operations. Over the last few years, craft brewing has become very popular, and the number of small-scale commercial brewers has drastically increased. However, due to the use of traditional beer-making methods, energy utilization in craft breweries tends to be inefficient, resulting in poor sustainability. Therefore, there is a necessity for a holistic analysis on the energy profile of craft beer brewing to evaluate its environmental performance on a unit operation basis. In this study, a gate-to-gate life cycle assessment was conducted to analyze and compare the environmental profiles of craft beer brewing, including ale and lager, at commercial (microbrewery) and pilot scales. A process simulation model was developed to estimate the electricity and/or natural gas uses of each unit operation, including heating, mashing, boiling, whirlpool, cooling, fermentation, and maturation. The model accurately predicted the steam use for pilot-scale brewing and the electricity and gas bills of a microbrewery. The beers brewed at the microbrewery scale (21.5-barrel brewhouse) had 2–11-fold lower environmental impacts than those brewed at the pilot scale (1-barrel brewhouse), and lager beer generally produced 11–32% higher impacts than ale. The fermentation and maturation steps in brewing were the major contributors to global warming and terrestrial acidification, whereas the mashing step was predominantly responsible for marine eutrophication. This study provides craft brewers with a useful tool for identifying the hotspots of energy use in their processes and developing potential improvement strategies. Full article
(This article belongs to the Special Issue Life Cycle Assessment of Sustainable Food Supply Chain)
Show Figures

Figure 1

21 pages, 5834 KiB  
Article
Biorefinery Development Based on Brewers’ Spent Grain (BSG) Conversion: A Forecasting Technology Study in the Brazilian Scenario
by Rafael Benjamin Werneburg Evaristo, Andréia Alves Costa, Paulo Gustavo Barboni Dantas Nascimento and Grace Ferreira Ghesti
Biomass 2023, 3(3), 217-237; https://doi.org/10.3390/biomass3030013 - 30 Jun 2023
Cited by 5 | Viewed by 4352
Abstract
Brewers’ spent grain (BSG) is an important waste produced by beer companies and has a high potential to be transformed into commercial by-products. The present paper reports a forecasting technology study with the aid of bibliographic review and patent analysis tools aiming to [...] Read more.
Brewers’ spent grain (BSG) is an important waste produced by beer companies and has a high potential to be transformed into commercial by-products. The present paper reports a forecasting technology study with the aid of bibliographic review and patent analysis tools aiming to investigate the maturity of certain technologies, considering the use of BSG on a closed-loop biorefinery and circular bioeconomy concept integrated into a brewery. To evaluate the possibilities of production of high-added-value products in Brazil, we present an overview of BSG’s scientific, technological, and marketing products and applications. The comparison between the numbers of articles versus patents shows that the solutions proposed by research articles are not being transformed into maturated viable technologies. The results suggest that there is a gap between the scientific research in the institutions and their applications in the industry, which lead to the destination of BSG for more economically attractive investments when compared with research in Brazil. Ultimately, from the carried-out analysis, it is possible to propose a brewing process connected to the biorefinery system, showing its possibility in the newly arising brewery industries. Full article
(This article belongs to the Special Issue Biorefineries, Circular Cities, and the Bioeconomy)
Show Figures

Graphical abstract

22 pages, 4605 KiB  
Article
Study of a First Approach to the Controlled Fermentation for Lambic Beer Production
by Vanesa Postigo, Margarita García and Teresa Arroyo
Microorganisms 2023, 11(7), 1681; https://doi.org/10.3390/microorganisms11071681 - 28 Jun 2023
Cited by 8 | Viewed by 2952
Abstract
Non-Saccharomyces yeasts represent a great source of biodiversity for the production of new beer styles, since they can be used in different industrial areas, as pure culture starters, in co-fermentation with Saccharomyces, and in spontaneous fermentation (lambic and gueuze production, with [...] Read more.
Non-Saccharomyces yeasts represent a great source of biodiversity for the production of new beer styles, since they can be used in different industrial areas, as pure culture starters, in co-fermentation with Saccharomyces, and in spontaneous fermentation (lambic and gueuze production, with the main contribution of Brettanomyces yeast). The fermentation process of lambic beer is characterized by different phases with a characteristic predominance of different microorganisms in each of them. As it is a spontaneous process, fermentation usually lasts from 10 months to 3 years. In this work, an attempt was made to perform a fermentation similar to the one that occurred in this process with lactic bacteria, Saccharomyces yeast and Brettanomyces yeast, but controlling their inoculation and therefore decreasing the time necessary for their action. For this purpose, after the first screening in 100 mL where eight Brettanomyces yeast strains from D.O. “Ribeira Sacra” (Galicia) were tested, one Brettanomyces bruxellensis strain was finally selected (B6) for fermentation in 1 L together with commercial strains of Saccharomyces cerevisiae S-04 yeast and Lactobacillus brevis lactic acid bacteria in different sequences. The combinations that showed the best fermentative capacity were tested in 14 L. Volatile compounds, lactic acid, acetic acid, colour, bitterness, residual sugars, ethanol, melatonin and antioxidant capacity were analysed at different maturation times of 1, 2, 6 and 12 months. Beers inoculated with Brettanomyces yeast independently of the other microorganisms showed pronounced aromas characteristic of the Brettanomyces yeast. Maturation after 12 months showed balanced beers with “Brett” aromas, as well as an increase in the antioxidant capacity of the beers. Full article
(This article belongs to the Special Issue Yeasts Biochemistry and Biotechnology)
Show Figures

Graphical abstract

13 pages, 2461 KiB  
Article
Immobilization of Alpha Acetolactate Decarboxylase in Hybrid Gelatin/Alginate Support for Application to Reduce Diacetyl Off-Flavor in Beer
by Gustavo P. Costa, Leonardo B. Queiroz, Vitor Manfroi, Rafael C. Rodrigues and Plinho F. Hertz
Catalysts 2023, 13(3), 601; https://doi.org/10.3390/catal13030601 - 16 Mar 2023
Cited by 4 | Viewed by 2289
Abstract
Beer production is the largest among alcoholic beverages. Its production process is complex and demands several steps. Lager beers commonly present an off-flavor of butter that is due to the presence of diacetyl, and to avoid such a problem, a long period of [...] Read more.
Beer production is the largest among alcoholic beverages. Its production process is complex and demands several steps. Lager beers commonly present an off-flavor of butter that is due to the presence of diacetyl, and to avoid such a problem, a long period of maturation (3–5 weeks) is required. Another way is the application of (α-acetolactate decarboxylase) ALDC to accelerate the process. The objectives of the present work were to develop a low-cost support using gelatin, a residue from capsules from the nutraceutical industry, to immobilize the ALDC enzyme. For this, the yield, efficiency and activity recovered, and the stability of free and immobilized enzymes at different temperatures and pH were evaluated. To evaluate the capacity of immobilized enzymes when applied directly to beer and their operational stability, three concentrations of glutaraldehyde (1%, 2.5% and 5%) were tested in distilled water as a cross-linking agent. The best results obtained were 95.6%, 27.0% and 23.6%, respectively, for yield, efficiency and activity recovery. Immobilization provided a high activity over a wide pH range. The immobilized enzyme showed greater stability at temperatures of 50 and 60 °C. The immobilized derivative showed adequate reuse capacity, and its dehydrated form had excellent activity after long periods of storage. Full article
(This article belongs to the Special Issue Immobilized Biocatalysts II)
Show Figures

Figure 1

12 pages, 1053 KiB  
Article
Bioactive Properties and Phenolic Composition of Wood-Aged Beers: Influence of Oak Origin and the Use of Pale and Dark Malts
by Julio C. Machado, Pedro D. M. Nicola, Olga Viegas, Mickael C. Santos, Miguel A. Faria and Isabel M. P. L. V. O. Ferreira
Foods 2023, 12(6), 1237; https://doi.org/10.3390/foods12061237 - 14 Mar 2023
Cited by 1 | Viewed by 2478
Abstract
Ageing beer in contact with wood is a common technological procedure that has been used for centuries to improve colour, structure, and certain flavours. Herein, the impact of the addition of French and American oak wood to two beer styles, pale and dark, [...] Read more.
Ageing beer in contact with wood is a common technological procedure that has been used for centuries to improve colour, structure, and certain flavours. Herein, the impact of the addition of French and American oak wood to two beer styles, pale and dark, on beer phenolic composition (total phenolics, total flavonoids, and HPLC-DAD) and bioactivity (FRAP, DPPH, anti-inflammatory activity in RAW 264.7, and antiproliferative in Caco-2 cells) was assessed. Thirteen phenolics were quantified with values according to previous reports. Dark malt resulted in higher values of total phenolics, to which m-hydroxybenzoic, syringic, p-coumaric acids, and xanthohumol contributed considerably; the exception was (+)-catechin and salicylic acid, which were found to be higher in pale beers. American oak significantly increased 3,4-dihydroxyphenylacetic, vanillic, and syringic acids up to roughly 3, 2, and 10 times, respectively, when compared with French wood. FRAP and DPPH values varied between pale and dark beers, with a less pronounced effect after wood addition. All samples presented considerable cellular antioxidant and anti-inflammatory as well as antiproliferative activity, but differences were found only for the antiproliferative activity, which was higher for the dark beers, which reached about 70% inhibition. Overall, the influence of malts was more pronounced than that of wood, in the studied conditions, highlighting the overwhelming impact of malts on the bioactivity of beer. Full article
(This article belongs to the Section Drinks and Liquid Nutrition)
Show Figures

Figure 1

Back to TopTop