Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (279)

Search Parameters:
Keywords = beef muscle

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 286 KiB  
Article
Animal Performance and Carcass Characteristics of Crossbred Bulls Finished in Different Production Systems in the Tropics
by Jean Fagner Pauly, Jéssica Geralda Ferracini, Henrique Rorato Freire, Bianka Rocha Saraiva, Maribel Valero Velandia, Ana Guerrero, Rodolpho Martin do Prado and Ivanor Nunes do Prado
Appl. Sci. 2025, 15(15), 8497; https://doi.org/10.3390/app15158497 (registering DOI) - 31 Jul 2025
Viewed by 140
Abstract
Extensive beef systems in the tropics are the cheapest but require more land and longer rearing times with environmental impact. This study was carried out to evaluate three beef bull’s production systems in tropics: pasture-based system (PASTU), feedlot system immediately after weaning (FELOT) [...] Read more.
Extensive beef systems in the tropics are the cheapest but require more land and longer rearing times with environmental impact. This study was carried out to evaluate three beef bull’s production systems in tropics: pasture-based system (PASTU), feedlot system immediately after weaning (FELOT) and a system with the combination of rearing in pasture and finishing in feedlot (PRIME) on animal performance and carcass characteristics of 30 bulls crossbred Angus x Nellore. The final weight, average daily gain and carcass weight (hot and cold) were higher (p < 0.050) for the FELOT system, intermediate for the PRIME system and lowest for the PASTU system. The carcass dressing (hot and cold), dripping losses, ratio (Longissimus dorsi) and degree of finishing were similar (p > 0.050). The carcass pH24h was higher for the PRIME system (p < 0.010). Subcutaneous fat thickness (mm) was lower for the PASTU system (p < 0.050). Marbling was better for the PRIME system. The tissular composition was similar among systems related to muscle percentage but PASTU showed the highest bone percentage (p < 0.050) and lowest of adipose (p < 0.050). PRIME enable cost-effective, fast beef production with less environmental impact. Full article
(This article belongs to the Section Food Science and Technology)
18 pages, 1863 KiB  
Article
A Daily Accumulation Model for Predicting PFOS Residues in Beef Cattle Muscle After Oral Exposure
by Ian Edhlund, Lynn Post and Sara Sklenka
Toxics 2025, 13(8), 649; https://doi.org/10.3390/toxics13080649 - 31 Jul 2025
Viewed by 492
Abstract
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) have been found worldwide in water, soil, plants, and animals, including humans. A primary route of exposure for humans and animals to PFAS is through the diet and drinking water. Perfluorooctane sulfonate (PFOS), a long-chain PFAS with a relatively long half-life, has been associated with adverse health effects in humans and laboratory animals. There are few toxicokinetic studies on PFOS in domestic livestock raised for human food consumption, which are critical for assessing human food safety. This work aimed to develop a simple daily accumulation model (DAM) for predicting PFOS residues in edible beef cattle muscle. A one-compartment toxicokinetic model in a spreadsheet format was developed using simple calculations to account for daily PFAS into and out of the animal. The DAM was used to simulate two case studies to predict resultant PFOS residues in edible beef cattle tissues. The results demonstrated that the model can reasonably predict PFOS concentrations in beef cattle muscle in a real-world scenario. The DAM was then used to simulate dietary PFOS exposure in beef cattle throughout a typical lifespan in order to derive a generic bioaccumulation factor. The DAM is expected to work well for other PFAS in beef cattle, PFAS in other livestock species raised for meat, and other chemical contaminants with relatively long half-lives. Full article
Show Figures

Graphical abstract

14 pages, 1632 KiB  
Article
Is the Mineral Content of Muscle Tissue (Longissimus Lumborum) in Cattle Finished During the Rainy Season in the Eastern Amazon Influenced by Different Farming Systems?
by Ana Paula Damasceno Ferreira, Jamile Andréa Rodrigues da Silva, Miguel Pedro Mourato, José António Mestre Prates, Thomaz Cyro Guimarães de Carvalho Rodrigues, André Guimarães Maciel e Silva, Andrea Viana da Cruz, Adriny dos Santos Miranda Lobato, Welligton Conceição da Silva, Elton Alex Corrêa da Silva, Antônio Marcos Quadros Cunha, Vanessa Vieira Lourenço-Costa, Éder Bruno Rebelo da Silva, Tatiane Silva Belo and José de Brito Lourenço-Júnior
Animals 2025, 15(15), 2186; https://doi.org/10.3390/ani15152186 - 25 Jul 2025
Viewed by 281
Abstract
The scientific literature currently lacks studies that evaluate the nutritional composition of the tissues of cattle raised in different systems, so that the nutritional effects can be known and used to enhance consumption and use in the diet. The aim was therefore to [...] Read more.
The scientific literature currently lacks studies that evaluate the nutritional composition of the tissues of cattle raised in different systems, so that the nutritional effects can be known and used to enhance consumption and use in the diet. The aim was therefore to assess whether the mineral content of muscle tissue (longissimus lumborum) in cattle finished during the rainy season in the Eastern Amazon is influenced by different farming systems. The treatments consisted of four systems (three pasture production systems and one feedlot system). 1. native wetland pasture in Santa Cruz do Arari (Mesoregion of Marajó); 2. native wetland pasture in Monte Alegre (Mesoregion of Baixo Amazonas); 3. cultivated dryland pasture in São Miguel do Guamá (Mesoregion of Nordeste Paraense); and 4. Confinement in Santa Izabel do Pará (Metropolitan Region of Belém). The analyses were carried out on samples of the longissimus lumborum muscle tissue of 48 male, castrated, crossbred Nelore cattle, twelve per breeding system, from commercial farms, destined for meat production, finished during the rainiest period of the year (between January and June). In systems 1 and 2, the animals were slaughtered in licensed slaughterhouses; the animals in systems 3 and 4 were slaughtered in commercial slaughterhouses. Food sampling and chemical analysis, soil sample collection and analysis, longissimus lumborum muscle tissue collection, sample preparation and digestion, and inductively coupled plasma optical emission spectrometry were evaluated. The experimental design was completely randomized in a linear model with four rearing systems and one period (rainy). The data was compared using the Statistical Analysis Systems (SAS) program. All analyses were carried out considering a significance level of 0.05. Samples of the diets offered (pasture and concentrate) were also collected. The Amazon systems influenced the macro- and micromineral content in the muscles of cattle (p < 0.05). The interaction between pasture systems vs. confinement showed differences in the minerals calcium (Ca), magnesium (Mg), phosphorus (P), copper (Cu), zinc (Zn), iron (Fe), and manganese (Mn) (p < 0.05). However, there was no difference in the values of sodium (Na), potassium (K), and sulfur (S) between the rearing systems (p > 0.05). By contrast, the cultivated pasture system vs. extensive pasture showed differences in all the elements evaluated (p < 0.05). The rearing systems of the Eastern Amazon influenced the mineral content of beef, which continues to be an excellent source of macro- and microminerals and can compose the human diet. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

16 pages, 2433 KiB  
Article
A Single-Cell Assessment of Intramuscular and Subcutaneous Adipose Tissue in Beef Cattle
by Mollie M. Green, Hunter R. Ford, Alexandra P. Tegeler, Oscar J. Benitez, Bradley J. Johnson and Clarissa Strieder-Barboza
Agriculture 2025, 15(14), 1545; https://doi.org/10.3390/agriculture15141545 - 18 Jul 2025
Viewed by 1379
Abstract
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of [...] Read more.
Deposition of intramuscular fat (IM), also known as marbling, is the deciding factor of beef quality grade in the U.S. Defining molecular mechanisms underlying the differential deposition of adipose tissue in distinct anatomical areas in beef cattle is key to the development of strategies for marbling enhancement while limiting the accumulation of excessive subcutaneous adipose tissue (SAT). The objective of this exploratory study was to define the IM and SAT transcriptional heterogeneity at the whole tissue and single-nuclei levels in beef steers. Longissimus dorsi muscle samples (9–11th rib) were collected from two finished beef steers at harvest to dissect matched IM and adjacent SAT (backfat). Total RNA from IM and SAT was isolated and sequenced in an Illumina NovaSeq 6000. Nuclei from the same samples were isolated by dounce homogenization, libraries generated with 10× Genomics, and sequenced in an Illumina NovaSeq 6000, followed by analysis via Cell Ranger pipeline and Seurat in RStudio (v4.3.2) By the expression of signature marker genes, single-nuclei RNA sequencing (snRNAseq) analysis identified mature adipocytes (AD; ADIPOQ, LEP), adipose stromal and progenitor cells (ASPC; PDGFRA), endothelial cells (EC; VWF, PECAM1), smooth muscle cells (SMC; NOTCH3, MYL9) and immune cells (IMC; CD163, MRC1). We detected six cell clusters in SAT and nine in IM. Across IM and SAT, AD was the most abundant cell type, followed by ASPC, SMC, and IMC. In SAT, AD made up 50% of the cellular population, followed by ASPC (31%), EC (14%), IMC (1%), and SMC (4%). In IM depot, AD made up 23% of the cellular population, followed by ASPC at 19% of the population, EC at 28%, IMC at 7% and SMC at 12%. The abundance of ASPC and AD was lower in IM vs. SAT, while IMC was increased, suggesting a potential involvement of immune cells on IM deposition. Accordingly, both bulk RNAseq and snRNAseq analyses identified activated pathways of inflammation and metabolic function in IM. These results demonstrate distinct transcriptional cellular heterogeneity between SAT and IM depots in beef steers, which may underly the mechanisms by which fat deposits in each depot. The identification of depot-specific cell populations in IM and SAT via snRNAseq analysis has the potential to reveal target genes for the modulation of fat deposition in beef cattle. Full article
Show Figures

Figure 1

16 pages, 410 KiB  
Article
Effects of Dietary Supplementation with Extruded Linseed on Growth Performance and Meat Quality of Young Holstein Bulls
by Stella Dokou, Maria Eleni Filippitzi, Anestis Tsitsos, Vasiliki Papanikolopoulou, Stergios Priskas, Vangelis Economou, Eleftherios Bonos, Ilias Giannenas and Georgios Arsenos
Animals 2025, 15(14), 2123; https://doi.org/10.3390/ani15142123 - 17 Jul 2025
Viewed by 297
Abstract
Beef production in Greece is a sector that has been characterized by a decline in both the output and the number of beef-producing animals over the last decades. The major challenge is low beef self-sufficiency; only 19.1% of demand is met by domestic [...] Read more.
Beef production in Greece is a sector that has been characterized by a decline in both the output and the number of beef-producing animals over the last decades. The major challenge is low beef self-sufficiency; only 19.1% of demand is met by domestic production. The latter leads to a growing reliance on imports of both live animals and carcasses. Hence, the fattening of young bulls from dairy breeds could be an option to address this challenge subject to improving the quality of produced meat. The objective of the present study was to investigate the effects of extruded linseed in the diet of young bulls on their performance and meat quality. Sixty-eight young Holstein bulls were equally assigned in two experimental groups: the control group (CON, n = 34) and Linseed Group (LS, n = 34). Bulls in the CON group received a basal total mixed ration while LS young bulls were offered the same basal ration supplemented with linseed (5% on dry matter basis) during the final fattening stage. All bulls were subjected to three individual weightings at the beginning, the middle and the end of the trial. The feed offered was recorded daily and feed refusals were weighed for each pen to calculate feed intake. After slaughter, the Longissimus dorsi muscle from each carcass was collected to evaluate meat pH, color, chemical composition, tenderness and fatty acid profile. Analysis of variance was used to evaluate the effect of dietary intervention on performance and examined meat parameters, with significance set at p < 0.05, using SPSS software (version 29.0). Average daily gain, dry matter intake and feed conversion ratio were not affected by the dietary intervention (p > 0.05). Similarly, carcass yield and dressing percentage remained unaffected (p > 0.05). Adding extruded linseed did not result in differences in meat quality traits (p > 0.05), except for meat pH, which was significantly decreased in the LS group (p < 0.05), indicating more efficient post-mortem glycolysis. Finally, the inclusion of extruded linseed resulted in higher levels of α-linolenic acid in the meat (p < 0.05). These results suggest that including 5% extruded linseed (on a DM basis) in the diet of young Holstein bulls increased meat n-3 content, improved beef pH and maintained production performance. Full article
(This article belongs to the Special Issue Beef Cattle Feedlot: Nutrition, Production and Management)
Show Figures

Figure 1

24 pages, 4222 KiB  
Article
Transcriptome and Cellular Evidence of Depot-Specific Function in Beef Cattle Intramuscular, Subcutaneous, and Visceral Adipose Tissues
by Alexandra P. Tegeler, Hunter R. Ford, Jean Franco Fiallo-Diez, Tainara C. Michelotti, Bradley J. Johnson, Oscar J. Benitez, Dale R. Woerner and Clarissa Strieder-Barboza
Biology 2025, 14(7), 848; https://doi.org/10.3390/biology14070848 - 11 Jul 2025
Viewed by 400
Abstract
Deposition of intramuscular adipose tissue (IMAT) is the primary determinant for beef quality grade in the U.S. Accumulation of subcutaneous (SCAT) and visceral (VIAT) adipose tissue precedes that of IMAT and often leads to excessive adiposity in beef cattle. Approaches to increase marbling [...] Read more.
Deposition of intramuscular adipose tissue (IMAT) is the primary determinant for beef quality grade in the U.S. Accumulation of subcutaneous (SCAT) and visceral (VIAT) adipose tissue precedes that of IMAT and often leads to excessive adiposity in beef cattle. Approaches to increase marbling while limiting subcutaneous and visceral adiposity are limited. Our objective is to define the depot-specific transcriptome profile and adipocyte function in IMAT, SCAT, and VIAT in beef steers. Transcriptomics revealed the upregulation of adipogenic and lipogenic genes in SCAT and VIAT vs. IMAT. Functional transcriptome analysis demonstrated the activation of pathways for lipid metabolic processes and biosynthesis in SCAT, accompanied by increased preadipocyte proliferation, adipocyte size, and insulin responses of SCAT in vitro. While IMAT had a greater abundance of preadipocytes, they proliferated at a lower rate and differentiated into adipocytes that were smaller and less responsive to insulin compared to SCAT. The upregulation of extracellular matrix genes in IMAT suggests that fat accumulation may be limited by the muscle microenvironment. The activation of inflammatory and immune response pathways, combined with a higher abundance of immune cells, highlighted VIAT as an immune-responsive depot. Our findings reveal transcriptional and cellular profiles underlying fat deposition in SCAT, VIAT, and IMAT in beef cattle. Full article
Show Figures

Figure 1

18 pages, 2866 KiB  
Article
Mechanisms of Exogenous L-Lysine in Influencing the Quality of Low-Sodium Marinated Braised Beef
by Chongxian Zheng, Pengsen Wang, Mingming Huang, Tong Jiang, Jianying Zhao, Yanwei Mao and Huixin Zuo
Foods 2025, 14(13), 2302; https://doi.org/10.3390/foods14132302 - 28 Jun 2025
Viewed by 287
Abstract
During the processing of marinated braised beef, excessive sodium intake is likely to occur, which can lead to various health issues. Exogenous L-lysine (L-Lys), as an essential amino acid for the human body, has the capability to enhance the quality of low-sodium meat [...] Read more.
During the processing of marinated braised beef, excessive sodium intake is likely to occur, which can lead to various health issues. Exogenous L-lysine (L-Lys), as an essential amino acid for the human body, has the capability to enhance the quality of low-sodium meat products. This study aimed to investigate the effects of exogenous L-Lys on the quality of low-sodium plain boiled beef and marinated braised beef, as well as its underlying mechanisms of action. Among them, the substitution rate of KCl was 60%. This study was conducted with three batches of experiments, each batch serving as an independent parallel. For low-sodium plain boiled beef, the optimal addition level of L-Lys was screened out through the research on the effects on meat quality indicators, water distribution, microstructure, and sensory evaluation. For the quality of low-sodium plain boiled beef, in terms of microstructure, the addition of L-Lys reduced muscle fiber breakage and voids, thereby improving its microstructural characteristics. Combined with quantitative descriptive analysis (QDA), the optimal level of additional L-Lys was subsequently determined to be 0.6%. It was further processed into marinated braised beef in soy sauce, and a comparative analysis was conducted with low-sodium marinated braised beef in soy sauce without L-Lys addition for shear force, meat color, thiobarbituric acid reactive substances (TBARS), and total viable count (TVC) during the storage periods of 0, 3, 6, 9, and 12 d. The results show that the redness (a*) value significantly increased within 0–12 d (p < 0.05), leading to a more stable meat color. Moreover, the addition of L-Lys significantly reduced the shear force and thiobarbituric acid reactive species (TBARS) values in the marinated braised beef (p < 0.05), thereby optimizing the tenderness of the marinated braised beef and inhibiting lipid oxidation. Although the total viable count (TVC) of the L-Lys group was higher than that of conventional low-sodium marinated braised beef in soy sauce from 9 to 12 d, both groups of products had undergone spoilage by day 12; therefore, the addition of L-Lys had no effect on the shelf life of the products. Comprehensive analysis suggested that the addition of exogenous L-Lys could optimize beef quality by enhancing hydration, improving muscle structural properties, and exerting antioxidant synergistic effects. Full article
(This article belongs to the Special Issue Animal Source Food Processing and Quality Control)
Show Figures

Figure 1

23 pages, 1900 KiB  
Article
Application of a Dynamic Exposure Population Toxicokinetic Model for Perfluorooctane Sulfonic Acid (PFOS) and Extension to Perfluorodecanoic Acid (PFDA) at a North American Beef Cattle Farm with a History of Biosolids Land Application
by Barbara A. Astmann, Antti T. Mikkonen, Thomas L. Simones, Meghan Flanagan, Duncan Pfaehler, Ivan Lenov and Andrew E. Smith
Toxics 2025, 13(7), 541; https://doi.org/10.3390/toxics13070541 - 27 Jun 2025
Cited by 1 | Viewed by 739
Abstract
Historical application of wastewater treatment sludge (biosolids) has introduced per- and polyfluoroalkyl substances (PFAS) into agricultural systems and led to contamination of crops and livestock. Previous work validated a dynamic exposure and population toxicokinetic (DE_PopTK) modeling approach for estimating perfluorooctane sulfonic acid (PFOS) [...] Read more.
Historical application of wastewater treatment sludge (biosolids) has introduced per- and polyfluoroalkyl substances (PFAS) into agricultural systems and led to contamination of crops and livestock. Previous work validated a dynamic exposure and population toxicokinetic (DE_PopTK) modeling approach for estimating perfluorooctane sulfonic acid (PFOS) and perfluorohexane sulfonic acid (PFHxS) concentrations in cattle tissues at sites primarily dominated by water contamination. This work expands the efforts to validate the DE_PopTK model at a self-contained beef farm in Maine with PFAS exposures from feed grown on site where soil is contaminated from historical biosolids applications. The model is also extended to estimate perfluorodecanoic acid (PFDA) exposure and tissue levels. Farm-specific data were obtained to consider farm management practices, spatial variation of PFAS in soil, animal growth, and seasonal and annual variability in estimating daily exposures based on water, feed, and soil intake. A dynamic exposure pattern was observed as cattle accumulated PFAS while consuming feed grown on contaminated land and eliminated it while grazing on non-contaminated pastures. Model-estimated PFOS and PFDA levels in serum and muscle were in good agreement with biomonitoring data collected at the farm over a four-year period to reflect periods of accumulation and depuration, with the percentage error ranging from 16% to 73% when comparing modeled and measured data. Our findings demonstrated that understanding farm exposures and collecting site-specific data were integral to model performance. The model was applied to simulate management strategies and complement economic analyses to demonstrate that, with modifications to management practices, it is feasible for the farm to achieve lower PFOS and PFDA levels in beef and maintain economic viability despite elevated PFAS soil levels. Full article
Show Figures

Graphical abstract

13 pages, 334 KiB  
Article
Effect of Type of Aging on Quality and Sensory Perception of Picanha (Biceps femoris) from Female Angus Calves
by Alberto Ortiz, María Freire, Lucía León, Francisco Javier Mesías and David Tejerina
Foods 2025, 14(13), 2219; https://doi.org/10.3390/foods14132219 - 24 Jun 2025
Viewed by 295
Abstract
This study investigated the meat quality, sensory properties and microbiology of Angus beef after a short dry or wet aging. For that, a total of 16 Biceps femoris muscles from female Aberdeen Angus x Charoles calves were used. Half of these underwent a [...] Read more.
This study investigated the meat quality, sensory properties and microbiology of Angus beef after a short dry or wet aging. For that, a total of 16 Biceps femoris muscles from female Aberdeen Angus x Charoles calves were used. Half of these underwent a technological aging process in the carcass (dry aging) for 7 days, whilst the remaining were filleted, vacuum-packed and stored at refrigerated conditions (wet aging) for 7 days at 4 ± 2 °C. The type of aging affected the ratio of the myoglobin forms but did not translate into differences in the instrumental colour measurements. Dry aging led to minor water release after the application of a force (17.58 dry-aged vs. 31.09 wet-aged) or after cooking and yielded higher hardness and lower shear force in the Warner–Braztler shear force test compared to wet aging. Nevertheless, these differences were not appreciated at the sensory level. Higher counts of mesophilic aerobic bacteria (11.66%) and enterobacteria (3.68%) were found in samples subjected to dry aging. Full article
(This article belongs to the Special Issue Green Processing Technology of Meat and Meat Products: 3rd Edition)
Show Figures

Figure 1

17 pages, 430 KiB  
Article
Effect of Rumen-Protected Cod Liver Oil Supplementation on Fatty Acid Profile of Meat from Limousin and Red Angus Cattle
by Andrzej Zachwieja, Ewa Pecka-Kiełb, Anna Zielak-Steciwko, Bożena Króliczewska, Jowita Kaszuba and Robert Kupczyński
Animals 2025, 15(13), 1856; https://doi.org/10.3390/ani15131856 - 23 Jun 2025
Viewed by 351
Abstract
In beef cattle production, both diet and breed are key factors influencing the composition and quality of meat. This study evaluated the effects of rumen-protected cod liver oil supplementation on meat and fat quality parameters in Limousin (n = 30) and Red [...] Read more.
In beef cattle production, both diet and breed are key factors influencing the composition and quality of meat. This study evaluated the effects of rumen-protected cod liver oil supplementation on meat and fat quality parameters in Limousin (n = 30) and Red Angus (n = 30) bulls maintained under identical conditions. During the final three weeks of finishing, animals received 100/g/day of cod liver oil. Red Angus bulls exhibited a significantly higher intramuscular fat content in meat compared to Limousin (p < 0.01). The study demonstrated a reduction (p < 0.05) in intramuscular fat content in both breeds receiving cod liver oil supplementation. In Limousin, cis-oleic acid (C18:1 cis-9) levels increased significantly in meat (p < 0.05) without a concurrent increase in trans isomers. Subcutaneous fat in both breeds showed a significant increase in monounsaturated fatty acids in the supplemented group compared to the control (p < 0.01). Limousin bulls also showed reduced levels of myristic acid (C14:0) and stearic acid (C18:0) in subcutaneous fat. Additionally, Limousin muscle tissue showed significantly higher (p < 0.01) concentrations of C18:3n3, C22:6n3, and total polyunsaturated fatty acids (PUFAs) compared to Red Angus. These finding indicate that the short-term dietary inclusion of rumen-protected cod liver oil in cattle rations enhances the nutritional profile of beef, potentially offering benefits for human health. Full article
(This article belongs to the Special Issue Beef Cattle Feedlot: Nutrition, Production and Management)
Show Figures

Figure 1

14 pages, 1299 KiB  
Article
Post-Slaughter Age Classification and Sex Determination in Deboned Beef Using Lipofuscin Autofluorescence and Amelogenin Gene Analysis
by Büşra Cumhur, Mustafa Yenal Akkurt, Tuğçe Anteplioğlu, Oğuz Kul, Ufuk Kaya and Bengi Çınar
Vet. Sci. 2025, 12(6), 593; https://doi.org/10.3390/vetsci12060593 - 17 Jun 2025
Viewed by 2139
Abstract
Beef meat quality and value are influenced by the breed, sex, and age of slaughtered animals. This study aimed to evaluate lipofuscin pigment autofluorescence as a method for age classification in beef meat samples and to determine the sex of market-obtained meat using [...] Read more.
Beef meat quality and value are influenced by the breed, sex, and age of slaughtered animals. This study aimed to evaluate lipofuscin pigment autofluorescence as a method for age classification in beef meat samples and to determine the sex of market-obtained meat using PCR-based amelogenin gene amplification. Deboned beef meat samples from M. longissimus dorsi and M. biceps femoris were collected from 67 slaughtered cows with known age and sex. Additionally, 48 market samples were tested for sex identification and age classification using the same methods. Lipofuscin deposition was first observed at 1.5 years, and autofluorescence analysis effectively distinguished between meat from younger animals (1.5–2.2 years) and older ones (3–13 years), with a statistically significant difference (p < 0.001). Lipofuscin levels and excitation intensity increased with age, and no differences were found between the two muscles analyzed. The sex determination results were fully consistent with the records, and 55.2% of animals aged 3 years and older were identified as female. These findings demonstrate the reliability of lipofuscin autofluorescence for binary age determination in beef and support the potential of combining age and sex classification to identify meat derived from older dairy cows in the marketplace. Full article
(This article belongs to the Special Issue Advancements in Livestock Histology and Morphology)
Show Figures

Figure 1

33 pages, 1914 KiB  
Review
Maternal Overnutrition in Beef Cattle: Effects on Fetal Programming, Metabolic Health, and Postnatal Outcomes
by Borhan Shokrollahi, Myungsun Park, Gi-Suk Jang, Shil Jin, Sung-Jin Moon, Kyung-Hwan Um, Sun-Sik Jang and Youl-Chang Baek
Biology 2025, 14(6), 645; https://doi.org/10.3390/biology14060645 - 2 Jun 2025
Cited by 1 | Viewed by 1045
Abstract
Maternal overnutrition and targeted supplements during pregnancy strongly affect fetal development in beef cattle, influencing gene expression, tissue development, and productivity after birth. As modern feeding practices often result in cows receiving energy and protein above requirements, understanding the balance between adequate nutrition [...] Read more.
Maternal overnutrition and targeted supplements during pregnancy strongly affect fetal development in beef cattle, influencing gene expression, tissue development, and productivity after birth. As modern feeding practices often result in cows receiving energy and protein above requirements, understanding the balance between adequate nutrition and overconditioning is critical for sustainable beef production. This review synthesizes findings from recent studies on maternal overnutrition and supplementation, focusing on macronutrients (energy, protein, methionine) and key micronutrients (e.g., selenium, zinc). It evaluates the timing and impact of supplementation during different gestational stages, with emphasis on fetal muscle and adipose tissue development, immune function, and metabolic programming. The role of epigenetic mechanisms, such as DNA methylation and non-coding RNAs, is also discussed in relation to maternal dietary inputs. Mid-gestation supplementation promotes muscle growth by activating muscle-specific genes, whereas late-gestation diets enhance marbling and carcass traits. However, maternal overnutrition may impair mitochondrial efficiency, encourage fat deposition over muscle, and promote collagen synthesis, reducing meat tenderness. Recent evidence highlights sex-specific fetal programming differences, the significant impact of maternal diets on offspring gut microbiomes, and breed-specific nutritional responses, and multi-OMICs integration reveals metabolic reprogramming mechanisms. Targeted trace mineral and methionine supplementation enhance antioxidant capacity, immune function, and reproductive performance. Precision feeding strategies aligned with gestational requirements improve feed efficiency and minimize overfeeding risks. Early interventions, including protein and vitamin supplementation, optimize placental function and fetal development, supporting stronger postnatal growth, immunity, and fertility. Balancing nutritional adequacy without excessive feeding supports animal welfare, profitability, and sustainability in beef cattle systems. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

16 pages, 13118 KiB  
Article
Global Whole-Genome Resequencing of Beef Cattle Reveals Characteristic Traits Related Genes in Pinan Cattle
by Dongdong Bo, Yuanyuan Wang, Yilin Bai, Jing Li, Jiameng Shen, Jinxiao Wei and Yueyu Bai
Animals 2025, 15(11), 1626; https://doi.org/10.3390/ani15111626 - 31 May 2025
Viewed by 497
Abstract
Beef cattle breed improvement holds strategic significance in the livestock industry. Pinan cattle, developed through years of selective breeding in Xinye County, Henan Province, exhibit superior traits including thin skin, fine bone structure, rapid growth, high dressing percentage, excellent meat yield, and superior [...] Read more.
Beef cattle breed improvement holds strategic significance in the livestock industry. Pinan cattle, developed through years of selective breeding in Xinye County, Henan Province, exhibit superior traits including thin skin, fine bone structure, rapid growth, high dressing percentage, excellent meat yield, and superior feed efficiency. However, research on the genetic characteristics of Pinan cattle remains in its infancy. In this study, we investigated population genetic diversity and positive selection signals in Pinang cattle based on whole-genome resequencing data. Using a selective sweep approach, we identified 98 candidate genes associated with growth, reproduction, and immunity, along with 13 high-confidence missense mutations, which may underlie key traits in this population. Based on the critical roles of the NDN and PARVA genes in reproduction and muscle development, the predominant T allele at the NDN c.581T > A and PARVA c.893T > A loci in the Pinan cattle population may partially explain their advantages in sexual precocity and rapid growth compared to other breeds or populations. This study provides an important theoretical basis for the genetic improvement of native beef cattle and lays a scientific foundation for further investigation into the growth and development mechanisms of Pinan cattle. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

17 pages, 577 KiB  
Article
Economic Performance and Meat Quality Traits of Extensively Reared Beef Cattle in Greece
by Vasiliki Papanikolopoulou, Stella Dokou, Anestis Tsitsos, Stergios Priskas, Sotiria Vouraki, Angeliki Argyriadou and Georgios Arsenos
Animals 2025, 15(11), 1601; https://doi.org/10.3390/ani15111601 - 29 May 2025
Viewed by 483
Abstract
Extensive cattle farming significantly contributes to Greece’s agricultural economy. In such systems, animals mainly graze on natural grasslands whose biodiversity significantly affects meat quality traits. In Greece, the sector faces several economic challenges, while the literature investigating beef quality produced by these systems [...] Read more.
Extensive cattle farming significantly contributes to Greece’s agricultural economy. In such systems, animals mainly graze on natural grasslands whose biodiversity significantly affects meat quality traits. In Greece, the sector faces several economic challenges, while the literature investigating beef quality produced by these systems is scarce. Hence, this study aimed to (i) evaluate farms’ economic performance; (ii) assess meat quality; and (iii) investigate the presence of heavy metals in liver samples of extensively reared beef cattle. The study involved three farms located in the Axios River Delta, a protected area of significant ecological importance in Northern Greece. A designated questionnaire was used to collect farm technical (herd size, meat production, grazing, feeding, reproduction, animal health) and economic data (income, variable costs). Meat samples of the Longissimus dorsi muscle (ninth rib) from 54 carcasses were collected and subjected to physicochemical (color, pH, texture, chemical composition, fatty acid profile) and microbiological analyses. Additionally, heavy metal analysis was conducted on 14 liver samples. A comparative analysis using parametric and non-parametric tests was performed to assess differences in meat quality traits between the 1st and 15th days of storage. The economic analysis showed that all studied farms operated with losses, with the average gross margin excluding subsidies being negative at EUR 130.5 ± 92.60/year per animal. Beef exhibited low fat content (1.1 ± 1.12%), with an average pH24 value of 5.5 ± 0.36, respectively. The concentrations of polyunsaturated, monounsaturated, and saturated fatty acids were 2.7 ± 0.72%, 44.6 ± 4.71%, and 47.3 ± 4.91%, respectively. Over the 15-day storage period, the yellowness (b*) value (p < 0.01), hue angle (p < 0.001), cohesiveness (p < 0.01), and springiness (p < 0.01) significantly decreased, while the lightness (L*) value significantly increased (p < 0.01). The mean Total Mesophilic Viable Counts and Total Enterobacterales were 5.0 log10 CFU/g and 2.34 log10 CFU/g, respectively, while heavy metal concentrations in bovine livers were below the maximum limits set by the European Commission. The results suggest that, despite the financial losses observed, beef’s improved color parameters during storage, along with other favorable quality traits, highlight the potential of extensive cattle farming to meet consumer demand and support value-added marketing. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

16 pages, 2628 KiB  
Article
Machine Learning-Based Analysis of Differentially Expressed Genes in the Muscle Transcriptome Between Beef Cattle and Dairy Cattle
by Shuai Li, Yaqiang Guo, Chenxi Huo, Lin Zhu, Caixia Shi, Risu Na, Mingjuan Gu and Wenguang Zhang
Int. J. Mol. Sci. 2025, 26(11), 5046; https://doi.org/10.3390/ijms26115046 - 23 May 2025
Cited by 1 | Viewed by 468
Abstract
Muscle is a crucial component of cattle, playing a vital role in determining the final quality of beef. This study aimed to identify candidate genes associated with muscle growth and lipid metabolism in beef and dairy cattle by utilizing the public database of [...] Read more.
Muscle is a crucial component of cattle, playing a vital role in determining the final quality of beef. This study aimed to identify candidate genes associated with muscle growth and lipid metabolism in beef and dairy cattle by utilizing the public database of the National Center for Biotechnology Information (NCBI) to download bovine muscle transcriptome data. Through differential expression analysis, weighted gene co-expression network analysis (WGCNA), and SHapley Additive exPlanation (SHAP) explains machine learning models, we integrated and screened for relevant genes. The results showed a total of 2588 differentially expressed genes (DEGs), with 933 upregulated and 1655 downregulated in beef cattle compared to dairy cattle. In the WGCNA, the purple, black, green, red, brown, and blue modules were identified as significant modules. Based on the results of five different machine learning models, the Adaptive Boosting (AdaBoost) model demonstrated superior classification performance (accuracy = 0.84) compared to the other four models and was therefore selected as the optimal model. SHAP analysis was then employed to interpret the results, yielding the top 500 SHAP genes. In combination with DEGs and WGCNA, a total of 117 genes were identified. Subsequent functional enrichment analysis of these 117 genes revealed significant enrichment in pathways such as lipoprotein metabolic process, muscle contraction, and cytoskeleton in muscle cells, followed by interaction network analysis of genes and pathways. Ultimately, the APOA1, ACTB, S1PR1, PKLR, and SLC27A6 genes were identified as potential key regulators of lipid metabolism and muscle growth in beef and dairy cattle. In summary, this study provides a feasible method for handling large-scale transcriptome data and lays a foundation for future research on meat quality and improving the economic benefits of Holstein cattle. Full article
(This article belongs to the Section Molecular Informatics)
Show Figures

Figure 1

Back to TopTop