Economic Performance and Meat Quality Traits of Extensively Reared Beef Cattle in Greece
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Farms
2.2. Data Collection and Sampling
2.3. Meat pH
2.4. Meat Color
2.5. Meat Tenderness
2.6. Meat Chemical Composition and Fatty Acid Profile
2.7. Heavy Metal Analysis
2.8. Microbiological Analysis
2.9. Statistical Analysis
3. Results
3.1. Economic Performance of Studied Farms
3.2. Descriptive Statistics of Beef Quality Traits
3.3. Comparative Analysis of Beef Quality Traits Between the 1st and 15th Days of Storage
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Santos, D.; Monteiro, M.J.; Voss, H.-P.; Komora, N.; Teixeira, P.; Pintado, M. The Most Important Attributes of Beef Sensory Quality and Production Variables That Can Affect It: A Review. Livest. Sci. 2021, 250, 104573. [Google Scholar] [CrossRef]
- Priolo, A.; Micol, D.; Agabriel, J. Effects of Grass Feeding Systems on Ruminant Meat Colour and Flavour. A Review. Anim. Res. 2001, 50, 185–200. [Google Scholar] [CrossRef]
- Masebo, N.T.; Marliani, G.; Shannon Del Re, F.; Abram, L.; Cavallini, D.; Di Pietro, M.; Beltrame, A.; Schiavon, E.; Bolcato, M.; Bermudez, J.H.; et al. Evaluation of antimicrobial and non-steroidal anti-inflammatory treatments for BRD on health and welfare in fattening bulls: A cross-sectional study. Vet. Q. 2024, 44, 1–11. [Google Scholar] [CrossRef]
- Guerrero, A.; Sañudo, C.; Albertí, P.; Ripoll, G.; Campo, M.M.; Olleta, J.L.; Panea, B.; Khliji, S.; Santolaria, P. Effect of Production System before the Finishing Period on Carcass, Meat and Fat Qualities of Beef. Animal 2013, 7, 2063–2072. [Google Scholar] [CrossRef]
- Del Campo, M.; Brito, G.; De Lima, J.M.S.; Martins, D.V.; Sañudo, C.; Julián, R.S.; Hernández, P.; Montossi, F. Effects of Feeding Strategies Including Different Proportion of Pasture and Concentrate, on Carcass and Meat Quality Traits in Uruguayan Steers. Meat Sci. 2008, 80, 753–760. [Google Scholar] [CrossRef]
- Maltin, C.A.; Lobley, G.E.; Grant, C.M.; Miller, L.A.; Kyle, D.J.; Horgan, G.W.; Matthews, K.R.; Sinclair, K.D. Factors Influencing Beef Eating Quality 2. Effects of Nutritional Regimen and Genotype on Muscle Fibre Characteristics. Anim. Sci. 2001, 72, 279–287. [Google Scholar] [CrossRef]
- French, P.; O’Riordan, E.G.; Monahan, F.J.; Mooney, M.T.; Troy, D.J.; Moloney, A.P. Meat Quality of Steers finished on Autumn Grass, Grass Silage or Concentrate-Based Diets. Meat Sci. 2000, 56, 173–180. [Google Scholar] [CrossRef]
- Vastolo, A.; Serrapica, F.; Cavallini, D.; Fusaro, I.; Atzori, A.S.; Todaro, M. Alternative and novel livestock feed: Reducing environmental impact. Front. Vet. Sci. 2024, 11, 1441905. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.; Magistrali, A.; Butler, G.; Stergiadis, S. Nutritional Benefits from Fatty Acids in Organic and Grass-Fed Beef. Foods 2022, 11, 646. [Google Scholar] [CrossRef]
- Sakowski, T.; Grodkowski, G.; Gołebiewski, M.; Slósarz, J.; Kostusiak, P.; Solarczyk, P.; Puppel, K. Genetic and Environmental Determinants of Beef Quality—A Review. Front. Vet. Sci. 2022, 9, 819605. [Google Scholar] [CrossRef]
- Bressan, M.C.; Rodrigues, E.C.; Rossato, L.V.; Neto-Fonseca, I.; Alves, S.P.; Bessa, R.J.B.; Gama, L.T. Discrimination of Meat Produced by Bos Taurus and Bos Indicus Finished under an Intensive or Extensive System. Animals 2020, 10, 1737. [Google Scholar] [CrossRef] [PubMed]
- Vasta, V.; Luciano, G.; Dimauro, C.; Röhrle, F.; Priolo, A.; Monahan, F.J.; Moloney, A.P. The Volatile Profile of Longissimus Dorsi Muscle of Heifers Fed Pasture, Pasture Silage or Cereal Concentrate: Implication for Dietary Discrimination. Meat Sci. 2011, 87, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Nuernberg, K.; Dannenberger, D.; Nuernberg, G.; Ender, K.; Voigt, J.; Scollan, N.D.; Wood, J.D.; Nute, G.R.; Richardson, R.I. Effect of a Grass-Based and a Concentrate Feeding System on Meat Quality Characteristics and Fatty Acid Composition of Longissimus Muscle in Different Cattle Breeds. Livest. Prod. Sci. 2005, 94, 137–147. [Google Scholar] [CrossRef]
- Fraser, M.D.; Davies, D.A.; Vale, J.E.; Nute, G.R.; Hallett, K.G.; Richardson, R.I.; Wright, I.A. Performance and Meat Quality of Native and Continental Cross Steers Grazing Improved Upland Pasture or Semi-Natural Rough Grazing. Livest. Sci. 2009, 123, 70–82. [Google Scholar] [CrossRef]
- Gatellier, P.; Mercier, Y.; Juin, H.; Renerre, M. Effect of Finishing Mode (Pasture- or Mixed-Diet) on Lipid Composition, Colour Stability and Lipid Oxidation in Meat from Charolais Cattle. Meat Sci. 2005, 69, 175–186. [Google Scholar] [CrossRef]
- Stampa, E.; Schipmann-Schwarze, C.; Hamm, U. Consumer Perceptions, Preferences, and Behavior Regarding Pasture-Raised Livestock Products: A Review. Food Qual. Prefer. 2020, 82, 103872. [Google Scholar] [CrossRef]
- Willett, W.; Rockström, J.; Loken, B.; Springmann, M.; Lang, T.; Vermeulen, S.; Garnett, T.; Tilman, D.; DeClerck, F.; Wood, A.; et al. Food in the Anthropocene: The EAT–Lancet Commission on Healthy Diets from Sustainable Food Systems. The Lancet 2019, 393, 447–492. [Google Scholar] [CrossRef]
- Font-i-Furnols, M.; Guerrero, L. Consumer Preference, Behavior and Perception about Meat and Meat Products: An Overview. Meat Sci. 2014, 98, 361–371. [Google Scholar] [CrossRef]
- Opio, C.; Gerber, P.; Mottet, A.; Falcucci, A.; Tempio, G.; MacLeod, M.; Vellinga, T.; Henderson, B.; Steinfeld, H. Greenhouse Gas Emissions from Ruminant Supply Chains–A Global Life Cycle Assessment; Food and Agriculture Organization of the United Nations: Rome, Italy, 2013. [Google Scholar]
- Vokou, D.; Giannakou, U.; Kontaxi, C.; Vareltzidou, S. Axios, Aliakmon, and Gallikos Delta Complex (Northern Greece). In The Wetland Book: II: Distribution, Description, and Conservation; Finlayson, C.M., Milton, G.R., Prentice, R.C., Davidson, N.C., Eds.; Springer: Dordrecht, The Netherlands, 2018; pp. 1137–1147. ISBN 978-94-007-4001-3. [Google Scholar]
- Yang, Z.; Sui, H.; Song, Y.; Li, Y.; Shao, H.; Wang, J. Spatial Distribution, Sources and Risk Assessment of Potentially Toxic Elements Contamination in Surface Soils of Yellow River Delta, China. Mar. Pollut. Bull. 2022, 184, 114213. [Google Scholar] [CrossRef]
- Vignati, D.A.L.; Secrieru, D.; Bogatova, Y.I.; Dominik, J.; Céréghino, R.; Berlinsky, N.A.; Oaie, G.; Szobotka, S.; Stanica, A. Trace Element Contamination in the Arms of the Danube Delta (Romania/Ukraine): Current State of Knowledge and Future Needs. J. Environ. Manag. 2013, 125, 169–178. [Google Scholar] [CrossRef]
- Gourdouvelis, D.; Dotas, V.; Kaimakamis, I.; Zagorakis, K.; Yiakoulaki, M. Typology and Structural Characterisation of Suckler Cow Farming System in Central Macedonia, Greece. Ital. J. Anim. Sci. 2019, 18, 1082–1092. [Google Scholar] [CrossRef]
- Kitsopanidis, G.I. Economics of Extensive Beef Cattle Farming in Greece. New Medit 2004, 3, 32–36. [Google Scholar]
- Karatosidi, D.; Ligda, C.; Colonna, M.A.; Avgeris, E.; Tarricone, S. Meat Quality in Katerini and Podolian Young Bulls Raised on Pasture: A Comparison between Organic Production Systems in Greek and Italian Environments. Animals 2023, 13, 3102. [Google Scholar] [CrossRef]
- Tsitsos, A.; Economou, V.; Chouliara, E.; Koutouzidou, G.; Arsenos, G.; Ambrosiadis, I. Effect of Chitosan and Alginate-Based Edible Membranes with Oregano Essential Oil and Olive Oil in the Microbiological, Physicochemical and Organoleptic Characteristics of Mutton. Microorganisms 2023, 11, 507. [Google Scholar] [CrossRef]
- King, D.A.; Hunt, M.C.; Barbut, S.; Claus, J.R.; Cornforth, D.P.; Joseph, P.; Kim, Y.H.B.; Lindahl, G.; Mancini, R.A.; Nair, M.N.; et al. American Meat Science Association Guidelines for Meat Color Measurement. Meat Muscle Biol. 2023, 6, 12473. [Google Scholar] [CrossRef]
- Skaperda, Z.; Argyriadou, A.; Nechalioti, P.M.; Alvanou, M.; Makri, S.; Bouroutzika, E.; Kyriazis, I.D.; Tekos, F.; Veskoukis, A.S.; Kallitsis, T.; et al. Redox Biomarker Baseline Levels in Cattle Tissues and Their Relationships with Meat Quality. Antioxidants 2021, 10, 958. [Google Scholar] [CrossRef]
- Tsitsos, A.; Dokou, S.; Chatzimanou, T.; Giannenas, I.; Economou, V.; Arsenos, G. Improvement of the Meat Quality of Holstein Bulls Fed a Diet Enriched with Oregano Oil. Animals 2024, 14, 3408. [Google Scholar] [CrossRef]
- AOAC 991.36-1996; Fat(Crude) in Meat and Meat Products—Solvent. AOAC International: Rockville, MD, USA, 1996.
- U.S. Food and Drug Administration. Guidelines for the Validation of Chemical Methods for the FDA Foods Program, Version 1; FDA: Silver Spring, MD, USA, 2012. [Google Scholar]
- ISO 4833-1:2013; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms–Part 1: Colony Count at 30 °C by the Pour Plate Technique. International Organization for Standardization: Geneva, Switzerland, 2013.
- ISO 21528-2:2017; Microbiology of the Food Chain—Horizontal Method for the Detection and Enumeration of Enterobacteriaceae–Part 2: Colony-Count Technique. International Organization for Standardization: Geneva, Switzerland, 2017.
- ISO 16649-2:2001; Microbiology of Food and Animal Feeding Stuffs—Horizontal Method for the Enumeration of Beta-Glucuronidase-Positive Escherichia Coli–Part 2: Colony-Count Technique at 44 °C Using 5-Bromo-4-Chloro-3-Indolyl Beta-D-Glucuronide. International Organization for Standardization: Geneva, Switzerland, 2001.
- European Commission. Commission Regulation (EC) No 2073/2005 of 15 November 2005 on Microbiological Criteria for Foodstuffs; European Commission: Brussels, Belgium, 2005. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021. [Google Scholar]
- Revelle, W. Psych: Procedures for Psychological, Psychometric, and Personality Research, R Package Version 2.4.12; Northwestern University: Evanston, IL, USA, 2024. [Google Scholar]
- Wickham, H.; François, R.; Henry, L.; Müller, K.; Vaughan, D. Dplyr: A Grammar of Data Manipulation. R Package Version 1.1.4; Posit PBC: Boston, MA, USA, 2023. [Google Scholar]
- Bernués, A.; Ruiz, R.; Olaizola, A.; Villalba, D.; Casasús, I. Sustainability of Pasture-Based Livestock Farming Systems in the European Mediterranean Context: Synergies and Trade-Offs. Livest. Sci. 2011, 139, 44–57. [Google Scholar] [CrossRef]
- Escribano, A.J.; Gaspar, P.; Mesías, F.J.; Escribano, M. The Role of the Level of Intensification, Productive Orientation and Self-Reliance in Extensive Beef Cattle Farms. Livest. Sci. 2016, 193, 8–19. [Google Scholar] [CrossRef]
- Michaličková, M.; Syrůček, J.; Krupová, Z.; Krupa, E. Economy of Suckler Cow Herds. Náš Chov. 2016, 76, 44–47. [Google Scholar]
- Corlett, M.T.; Pethick, D.W.; Kelman, K.R.; Jacob, R.H.; Gardner, G.E. Consumer Perceptions of Meat Redness Were Strongly Influenced by Storage and Display Times. Foods 2021, 10, 540. [Google Scholar] [CrossRef] [PubMed]
- Mancini, R.A.; Hunt, M.C. Current Research in Meat Color. Meat Sci. 2005, 71, 100–121. [Google Scholar] [CrossRef] [PubMed]
- Bureš, D.; Barton, L. Growth Performance, Carcass Traits and Meat Quality of Bulls and Heifers Slaughtered at Different Ages. Czech J. Anim. Sci. 2012, 57, 34–43. [Google Scholar] [CrossRef]
- Jung, S.; Ghoul, M.; De Lamballerie-Anton, M. Influence of High Pressure on the Color and Microbial Quality of Beef Meat. LWT-Food Sci. Technol. 2003, 36, 625–631. [Google Scholar] [CrossRef]
- Keane, M.G.; Allen, P. Effects of Production System Intensity on Performance, Carcass Composition and Meat Quality of Beef Cattle. Livest. Prod. Sci. 1998, 56, 203–214. [Google Scholar] [CrossRef]
- Holman, B.W.B.; Hopkins, D.L. The Use of Conventional Laboratory-Based Methods to Predict Consumer Acceptance of Beef and Sheep Meat: A Review. Meat Sci. 2021, 181, 108586. [Google Scholar] [CrossRef]
- Humada, M.J.; Sañudo, C.; Serrano, E. Chemical Composition, Vitamin E Content, Lipid Oxidation, Colour and Cooking Losses in Meat from Tudanca Bulls Finished on Semi-Extensive or Intensive Systems and Slaughtered at 12 or 14 months. Meat Sci. 2014, 96, 908–915. [Google Scholar] [CrossRef]
- Ruiz de Huidobro, F.; Miguel, E.; Onega, E.; Blázquez, B. Changes in Meat Quality Characteristics of Bovine Meat during the First 6 Days Post Mortem. Meat Sci. 2003, 65, 1439–1446. [Google Scholar] [CrossRef]
- Duarte, T.L.; Bolkenov, B.; Klopatek, S.C.; Oltjen, J.W.; King, D.A.; Shackelford, S.D.; Wheeler, T.L.; Yang, X. Evaluating the Shelf Life and Sensory Properties of Beef Steaks from Cattle Raised on Different Grass Feeding Systems in the Western United States. Foods 2022, 11, 2141. [Google Scholar] [CrossRef]
- de Huidobro, F.R.; Miguel, E.; Blázquez, B.; Onega, E. A Comparison between Two Methods (Warner–Bratzler and Texture Profile Analysis) for Testing Either Raw Meat or Cooked Meat. Meat Sci. 2005, 69, 527–536. [Google Scholar] [CrossRef]
- Abd Rashid, A.N.; Kormin, F.; Asman, S. Quality Analysis of Meats Using FTIR Spectroscopy, Colour Spectrophotometer, Texture Analyser and Physical Image Analysis. J. Sustain. Sci. Manag. 2020, 16, 103–119. [Google Scholar] [CrossRef]
- Chinzorig, O.; Hwang, I. Mechanical Texture Profile of Hanwoo Muscles as a Function of Heating Temperatures. J. Anim. Sci. Technol. 2018, 60, 22. [Google Scholar] [CrossRef]
- Bulgaru, V.; Popescu, L.; Netreba, N.; Ghendov-Mosanu, A.; Sturza, R. Assessment of Quality Indices and Their Influence on the Texture Profile in the Dry-Aging Process of Beef. Foods 2022, 11, 1526. [Google Scholar] [CrossRef]
- Apaoblaza, A.; Matarneh, S.K.; England, E.M.; Scheffler, T.L.; Duckett, S.K.; Gerrard, D.E. 135 Grass Fed or Dark, Firm, and Dry? J. Anim. Sci. 2016, 94, 63. [Google Scholar] [CrossRef]
- Page, J.K.; Wulf, D.M.; Schwotzer, T.R. A Survey of Beef Muscle Color and pH. J. Anim. Sci. 2001, 79, 678–687. [Google Scholar] [CrossRef]
- Immonen, K.; Kauffman, R.G.; Schaefer, D.M.; Puolanne, E. Glycogen Concentrations in Bovine Longissimus Dorsi Muscle. Meat Sci. 2000, 54, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Fruet, A.P.B.; Stefanello, F.S.; Trombetta, F.; De Souza, A.N.M.; Rosado Júnior, A.G.; Tonetto, C.J.; Flores, J.L.C.; Scheibler, R.B.; Bianchi, R.M.; Pacheco, P.S.; et al. Growth Performance and Carcass Traits of Steers Finished on Three Different Systems Including Legume-Grass Pasture and Grain Diets. Anim. Int. J. Anim. Biosci. 2019, 13, 1552–1562. [Google Scholar] [CrossRef]
- Daley, C.A.; Abbott, A.; Doyle, P.S.; Nader, G.A.; Larson, S. A Review of Fatty Acid Profiles and Antioxidant Content in Grass-Fed and Grain-Fed Beef. Nutr. J. 2010, 9, 10. [Google Scholar] [CrossRef] [PubMed]
- Rotta, P.; Prado, R.; do Prado, I.; Valero, M.; Visentainer, J.; Silva, R. The Effects of Genetic Groups, Nutrition, Finishing Systems and Gender of Brazilian Cattle on Carcass Characteristics and Beef Composition and Appearance: A Review. ASIAN-Australas. J. Anim. Sci. 2009, 22, 1718–1734. [Google Scholar] [CrossRef]
- Scollan, N.; Hocquette, J.-F.; Nuernberg, K.; Dannenberger, D.; Richardson, I.; Moloney, A. Innovations in Beef Production Systems That Enhance the Nutritional and Health Value of Beef Lipids and Their Relationship with Meat Quality. Meat Sci. 2006, 74, 17–33. [Google Scholar] [CrossRef]
- Food and Drug Administration. Guidance for industry: A Food Labeling Guide (Appendix A: Definitions of Nutrient Content Claims). U.S. Department of Health and Human Services. 2013. Available online: https://www.fda.gov/files/food/published/Food-Labeling-Guide-%28PDF%29.pdf (accessed on 14 May 2025).
- McNeill, S.H.; Harris, K.B.; Field, T.G.; Van Elswyk, M.E. The evolution of lean beef: Identifying lean beef in today’s US marketplace. Meat Sci. 2012, 90, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Archile-Contreras, A.C.; Mandell, I.B.; Purslow, P.P. Disparity of Dietary Effects on Collagen Characteristics and Toughness between Two Beef Muscles. Meat Sci. 2010, 86, 491–497. [Google Scholar] [CrossRef] [PubMed]
- Leheska, J.M.; Thompson, L.D.; Howe, J.C.; Hentges, E.; Boyce, J.; Brooks, J.C.; Shriver, B.; Hoover, L.; Miller, M.F. Effects of Conventional and Grass-Feeding Systems on the Nutrient Composition of Beef. J. Anim. Sci. 2008, 86, 3575–3585. [Google Scholar] [CrossRef] [PubMed]
- Nogoy, K.M.C.; Sun, B.; Shin, S.; Lee, Y.; Zi Li, X.; Choi, S.H.; Park, S. Fatty Acid Composition of Grain- and Grass-Fed Beef and Their Nutritional Value and Health Implication. Food Sci. Anim. Resour. 2022, 42, 18–33. [Google Scholar] [CrossRef]
- Hwang, Y.-H.; Joo, S.-T. Fatty Acid Profiles, Meat Quality, and Sensory Palatability of Grain-Fed and Grass-Fed Beef from Hanwoo, American, and Australian Crossbred Cattle. Korean J. Food Sci. Anim. Resour. 2017, 37, 153–161. [Google Scholar] [CrossRef]
- Brugiapaglia, A.; Lussiana, C.; Destefanis, G. Fatty Acid Profile and Cholesterol Content of Beef at Retail of Piemontese, Limousin and Friesian Breeds. Meat Sci. 2014, 96, 568–573. [Google Scholar] [CrossRef]
- Smith, S.B.; Gill, C.A.; Lunt, D.K.; Brooks, M.A. Regulation of fat and fatty acid composition in beef cattle. Asian-Australas. J. Anim. Sci. 2009, 22, 1225–1233. [Google Scholar] [CrossRef]
- Jaishankar, M.; Tseten, T.; Anbalagan, N.; Mathew, B.B.; Beeregowda, K.N. Toxicity, Mechanism and Health Effects of Some Heavy Metals. Interdiscip. Toxicol. 2014, 7, 60–72. [Google Scholar] [CrossRef]
- Balali-Mood, M.; Naseri, K.; Tahergorabi, Z.; Khazdair, M.R.; Sadeghi, M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front. Pharmacol. 2021, 12, 643972. [Google Scholar] [CrossRef]
- Wilkinson, J.M.; Hill, J.; Phillips, C.J.C. The Accumulation of Potentially-Toxic Metals by Grazing Ruminants. Proc. Nutr. Soc. 2003, 62, 267–277. [Google Scholar] [CrossRef]
- Yabe, J.; Nakayama, S.M.M.; Ikenaka, Y.; Muzandu, K.; Ishizuka, M.; Umemura, T. Accumulation of Metals in the Liver and Kidneys of Cattle from Agricultural Areas in Lusaka, Zambia. J. Vet. Med. Sci. 2012, 74, 1345–1347. [Google Scholar] [CrossRef]
- López-Alonso, M.; Miranda, M.; Benedito, J.L.; Pereira, V.; García-Vaquero, M. Essential and Toxic Trace Element Concentrations in Different Commercial Veal Cuts in Spain. Meat Sci. 2016, 121, 47–52. [Google Scholar] [CrossRef]
- European Commission. Commission Regulation (EU) 2023/915 of 25 April 2023 on Maximum Levels for Certain Contaminants in Food and Repealing Regulation (EC) No 1881/2006; European Commission: Brussels, Belgium, 2023. [Google Scholar]
- Yim, D.-G.; Jin, S.-K.; Hur, S.-J. Microbial Changes under Packaging Conditions during Transport and Comparison between Sampling Methods of Beef. J. Anim. Sci. Technol. 2019, 61, 47–53. [Google Scholar] [CrossRef]
- Stopforth, J.D.; Lopes, M.; Shultz, J.E.; Miksch, R.R.; Samadpour, M. Microbiological Status of Fresh Beef Cuts. J. Food Prot. 2006, 69, 1456–1459. [Google Scholar] [CrossRef] [PubMed]
- Tsitsos, A.; Economou, V.; Chouliara, E.; Ambrosiadis, I.; Arsenos, G. A Comparative Study on Microbiological and Chemical Characteristics of Small Ruminant Carcasses from Abattoirs in Greece. Foods 2022, 11, 2370. [Google Scholar] [CrossRef]
- Larsen, M.H.; Dalmasso, M.; Ingmer, H.; Langsrud, S.; Malakauskas, M.; Mader, A.; Møretrø, T.; Smole Možina, S.; Rychli, K.; Wagner, M.; et al. Persistence of Foodborne Pathogens and Their Control in Primary and Secondary Food Production Chains. Food Control 2014, 44, 92–109. [Google Scholar] [CrossRef]
- Erkmen, O.; Bozoglu, T.F. Food Microbiology, 2 Volume Set: Principles into Practice; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2016. [Google Scholar]
- Mladenović, K.G.; Grujović, M.Ž.; Kiš, M.; Furmeg, S.; Tkalec, V.J.; Stefanović, O.D.; Kocić-Tanackov, S.D. Enterobacteriaceae in Food Safety with an Emphasis on Raw Milk and Meat. Appl. Microbiol. Biotechnol. 2021, 105, 8615–8627. [Google Scholar] [CrossRef] [PubMed]
- Kukhtyn, M.; Salata, V.; Berhilevych, O.; Malimon, Z.; Tsvihun, A.; Gutyj, B.; Horiuk, Y. Evaluation of Storage Methods of Beef by Microbiological and Chemical Indicators. Potravin. Slovak J. Food Sci. 2020, 14, 602–611. [Google Scholar] [CrossRef]
- Kim, H.J.; Kim, D.; Kim, H.J.; Song, S.O.; Song, Y.H.; Jang, A. Evaluation of the Microbiological Status of Raw Beef in Korea: Considering the Suitability of Aerobic Plate Count Guidelines. Korean J. Food Sci. Anim. Resour. 2018, 38, 43. [Google Scholar] [CrossRef]
- Lamanna, M.; Muca, E.; Buonaiuto, G.; Formigoni, A.; Cavallini, D. From posts to practice: Instagram’s role in veterinary dairy cow nutrition education—How does the audience interact and apply knowledge? A survey study. J. Dairy Sci. 2025, 108, 1659–1671. [Google Scholar] [CrossRef]
- Axios Meat. Available online: https://axiosmeat.gr/en/ (accessed on 14 May 2025).
Trait | Day of Analysis | N | Mean (±SD 1) | Min 2 | Max 3 |
---|---|---|---|---|---|
pH | 1st | 36 | 5.5 (0.36) | 4.63 | 6.03 |
15th | 35 | 5.6 (0.30) | 4.78 | 6.10 | |
Lightness—L* | 1st | 36 | 35.5 (1.78) | 29.51 | 40.97 |
15th | 36 | 36.6 (1.41) | 31.36 | 42.21 | |
Redness—a* | 1st | 36 | 17.9 (2.11) | 11.78 | 23.13 |
15th | 35 | 18.0 (2.24) | 13.78 | 21.55 | |
Yellowness—b* | 1st | 36 | 9.3 (2.32) | 6.18 | 13.42 |
15th | 35 | 8.4 (1.78) | 5.17 | 11.03 | |
Chroma | 1st | 36 | 20.3 (2.77) | 13.88 | 26.74 |
15th | 35 | 19.8 (2.08) | 14.72 | 24.03 | |
Hue angle | 1st | 36 | 0.5 (0.05) | 0.37 | 0.57 |
15th | 35 | 0.4 (0.04) | 0.36 | 0.52 | |
Hardness 1 (g) | 1st | 33 | 1170.8 (849.39) | 149.25 | 3114.81 |
15th | 33 | 905.5 (323.06) | 415.77 | 1625.34 | |
Hardness 2 (g) | 1st | 33 | 1027.6 (683.86) | 138.59 | 2402.50 |
15th | 33 | 757.7 (278.89) | 353.6 | 1412.85 | |
Springiness | 1st | 33 | 0.8 (0.12) | 0.51 | 1.03 |
15th | 33 | 0.7 (0.11) | 0.52 | 0.93 | |
Cohesiveness | 1st | 33 | 0.6 (0.10) | 0.42 | 0.80 |
15th | 33 | 0.5 (0.09) | 0.40 | 0.83 | |
Chewiness (g) | 1st | 33 | 585.3 (469.34) | 93.61 | 2114.8 |
15th | 33 | 353.4 (145.96) | 124.64 | 624.94 |
Trait | N | Mean (±SD 1) | Min 2 | Max 3 |
---|---|---|---|---|
Moisture (%) | 33 | 75.8 (1.86) | 72.10 | 79.0 |
Protein (%) | 33 | 22.8 (0.88) | 20.20 | 24.40 |
Fat (%) | 33 | 1.1 (1.12) | 0.01 | 5.70 |
Collagen (%) | 33 | 1.5 (0.46) | 0.10 | 2.30 |
Salt (%) | 33 | 0.8 (0.80) | 0.01 | 3.60 |
Ash (%) | 33 | 1.1 (0.74) | 0.30 | 3.0 |
SFAs 4 (%) | 32 | 52.9 (4.77) | 42.12 | 62.10 |
UFAs 5 (%) | 32 | 47.3 (4.91) | 37.90 | 57.88 |
MUFAs 6 (%) | 32 | 44.6 (4.71) | 35.72 | 55.09 |
PUFAs 7 (%) | 32 | 2.7 (0.72) | 1.18 | 4.68 |
Myristic acid (C14:0, %) | 32 | 2.2 (0.37) | 1.54 | 2.89 |
Pentadecanoic acid (C15:0, %) | 26 | 0.5 (0.14) | 0.25 | 0.77 |
Palmitoleic acid (C16:1, %) | 32 | 2.8 (0.77) | 1.79 | 5.89 |
Heptadecanoic acid (C17:0, %) | 32 | 0.9 (0.16) | 0.60 | 1.24 |
Cis-10 Heptadecenoic acid (C17:1, %) | 19 | 0.4 (0.13) | 0.25 | 0.67 |
Stearic acid (C18:0, %) | 32 | 24.9 (3.93) | 14.67 | 32.86 |
Palmitic acid (C16:0, %) | 32 | 23.8 (1.65) | 19.94 | 26.79 |
Elaidic acid (C18:1 n-9 trans, %) | 30 | 1.9 (0.52) | 0.76 | 3.10 |
Oleic acid (C18:1 n-9 cis, %) | 32 | 38.9 (4.17) | 30.84 | 46.91 |
Linoleic acid (C18:2 n-6 cis, %) | 32 | 0.2 (0.12) | 0.01 | 0.44 |
Arachidic acid (C20:0, %) | 20 | 0.03 (0.01) | 0.01 | 0.04 |
Linolenic acid (C18:3 n-3, %) | 20 | 0.4 (0.10) | 0.19 | 0.53 |
Trait | Day of Storage | Mean (±SD 1) | t 2 | df 3 | p-Value |
---|---|---|---|---|---|
Lightness-L* | 1st | 35.50 (1.78) | 2.834 | 34 | 0.007 |
15th | 36.59 (1.41) | ||||
Yellowness-b* | 1st | 9.28 (2.32) | −2.862 | 34 | 0.008 |
15th | 8.37 (1.78) | ||||
Hue Angle | 1st | 0.48 (0.05) | 4.246 | 34 | <0.001 |
15th | 0.43 (0.04) |
Trait | Day of Storage | Median (IQR 1) | p-Value |
---|---|---|---|
Cohesiveness | 1st | 0.63 (0.13) | 0.008 |
15th | 0.52 (0.10) | ||
Springiness | 1st | 0.81 (0.14) | 0.006 |
15th | 0.70 (0.17) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papanikolopoulou, V.; Dokou, S.; Tsitsos, A.; Priskas, S.; Vouraki, S.; Argyriadou, A.; Arsenos, G. Economic Performance and Meat Quality Traits of Extensively Reared Beef Cattle in Greece. Animals 2025, 15, 1601. https://doi.org/10.3390/ani15111601
Papanikolopoulou V, Dokou S, Tsitsos A, Priskas S, Vouraki S, Argyriadou A, Arsenos G. Economic Performance and Meat Quality Traits of Extensively Reared Beef Cattle in Greece. Animals. 2025; 15(11):1601. https://doi.org/10.3390/ani15111601
Chicago/Turabian StylePapanikolopoulou, Vasiliki, Stella Dokou, Anestis Tsitsos, Stergios Priskas, Sotiria Vouraki, Angeliki Argyriadou, and Georgios Arsenos. 2025. "Economic Performance and Meat Quality Traits of Extensively Reared Beef Cattle in Greece" Animals 15, no. 11: 1601. https://doi.org/10.3390/ani15111601
APA StylePapanikolopoulou, V., Dokou, S., Tsitsos, A., Priskas, S., Vouraki, S., Argyriadou, A., & Arsenos, G. (2025). Economic Performance and Meat Quality Traits of Extensively Reared Beef Cattle in Greece. Animals, 15(11), 1601. https://doi.org/10.3390/ani15111601