Effect of Type of Aging on Quality and Sensory Perception of Picanha (Biceps femoris) from Female Angus Calves
Abstract
1. Introduction
2. Materials and Methods
2.1. Picanha Samples
2.2. Chemical Reagents
2.3. pH
2.4. Instrumental Colour
2.5. Myoglobin and Chemical Forms
2.6. Dry Matter and Water Losses
2.7. Oxidative Status
2.8. Fatty Acid Profile
2.9. Texture Analysis
2.10. Microbiological Analysis
2.11. Sensory Evaluation
2.12. Statistical Analysis
3. Results and Discussion
3.1. Effects of the Type of Aging on pH, Colour, Water Losses and Oxidative Status
3.2. Effect of the Type of Aging on Fatty Acid Profile
3.3. Effects of the Type of Aging on Textural Properties
3.4. Effect of the Type of Aging on the Microbiological Profile
3.5. Effect of the Type of Aging on Sensory Assessment
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, J.; Ellies-Oury, M.-P.; Pannier, L.; Gruffat, D.; Durand, D.; Noel, F.; Sepchat, B.; Legrand, I.; Prache, S.; Hocquette, J.-F. Carcass Characteristics and Beef Quality of Young Grass-Fed Angus x Salers Bovines. Foods 2022, 11, 2493. [Google Scholar] [CrossRef] [PubMed]
- Coleman, L.W.; Hickson, R.E.; Schreurs, N.M.; Martin, N.P.; Kenyon, P.R.; Lopez-Villalobos, N.; Morris, S.T. Carcass Characteristics and Meat Quality of Hereford Sired Steers Born to Beef-Cross-Dairy and Angus Breeding Cows. Meat Sci. 2016, 121, 403–408. [Google Scholar] [CrossRef]
- Gómez, I.; Sarriés, M.V.; Ibañez, F.C.; Beriain, M.J. Quality Characteristics of a Low-Fat Beef Patty Enriched by Polyunsaturated Fatty Acids and Vitamin D3. J. Food. Sci. 2018, 83, 454–463. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://Angusespana.Es/ (accessed on 3 February 2025).
- Angus, La Raza Bovina Sin Cuernos Que Es Tendencia En La Dehesa. 2019. Available online: https://sevilla.abc.es/agronoma/noticias/ganaderia/bovina/angus-raza-tendencia-dehesa/ (accessed on 3 February 2025).
- Dashdorj, D.; Tripathi, V.K.; Cho, S.; Kim, Y.; Hwang, I. Dry Aging of Beef; Review. J. Anim. Sci. Technol. 2016, 58, 20. [Google Scholar] [CrossRef]
- Kim, S.; Ham, S.; Moon, H.; Chua, B.L.; Han, H. Experience, Brand Prestige, Perceived Value (Functional, Hedonic, Social, and Financial), and Loyalty among GROCERANT Customers. Int. J. Hosp. Manag. 2019, 77, 169–177. [Google Scholar] [CrossRef]
- Ha, M.; McGilchrist, P.; Polkinghorne, R.; Huynh, L.; Galletly, J.; Kobayashi, K.; Nishimura, T.; Bonney, S.; Kelman, K.R.; Warner, R.D. Effects of Different Ageing Methods on Colour, Yield, Oxidation and Sensory Qualities of Australian Beef Loins Consumed in Australia and Japan. Food Res. Int. 2019, 125, 108528. [Google Scholar] [CrossRef]
- Di Paolo, M.; Ambrosio, R.L.; Lambiase, C.; Vuoso, V.; Salzano, A.; Bifulco, G.; Barone, C.M.A.; Marrone, R. Effects of the Aging Period and Method on the Physicochemical, Microbiological and Rheological Characteristics of Two Cuts of Charolais Beef. Foods 2023, 12, 531. [Google Scholar] [CrossRef]
- Berger, J.; Kim, Y.H.B.; Legako, J.F.; Martini, S.; Lee, J.; Ebner, P.; Zuelly, S.M.S. Dry-Aging Improves Meat Quality Attributes of Grass-Fed Beef Loins. Meat Sci. 2018, 145, 285–291. [Google Scholar] [CrossRef]
- Kim, Y.H.B.; Kemp, R.; Samuelsson, L.M. Effects of Dry-Aging on Meat Quality Attributes and Metabolite Profiles of Beef Loins. Meat Sci. 2016, 111, 168–176. [Google Scholar] [CrossRef]
- MAPA. Available online: https://Ruminants.Ceva.pro/Es/Vacuno-de-Carne (accessed on 3 February 2025).
- AMSA, American Meat Science Association. AMSA Guidelines: Instrumental Meat Color Measurement; Section VIII-V8; American Meat Science Association: Kearney, MO, USA, 2011. [Google Scholar]
- Wyszcecki, G.; Stiles, W. Color Science, Concepts and Methods, Quantitative Data and Formula, 2nd ed.; John Wiley: New York, NY, USA, 1982. [Google Scholar]
- Pujol, A.; Ospina-E, J.C.; Alvarez, H.; Muñoz, D.A. Myoglobin Content and Oxidative Status to Understand Meat Products’ Color: Phenomenological Based Model. J. Food Eng. 2023, 348, 111439. [Google Scholar] [CrossRef]
- Tang, J.; Faustman, C.; Hoagland, T.A. Krzywicki Revisited: Equations for Spectrophotometric Determination of Myoglobin Redox Forms in Aqueous Meat Extracts. J. Food Sci. 2004, 69, C717–C720. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis of AOAC International, 17th ed.; Association of Official Analytical Chemists (AOAC): Arlington, VA, USA, 2003. [Google Scholar]
- Tejerina, D.; León, L.; García-Torres, S.; Sánchez, M.; Ortiz, A. Quality Traits of Montanera Iberian Dry-Cured Lomito as Affected by Pre-Cure Freezing Practice. Foods 2021, 10, 1511. [Google Scholar] [CrossRef]
- Salih, A.M.; Smith, D.M.; Price, J.F.; Dawson, L.E. Modified Extraction 2-Thiobarbituric Acid Method for Measuring Lipid Oxidation in Poultry. Poult. Sci. 1987, 66, 1483–1489. [Google Scholar] [CrossRef]
- Oliver, C.N.; Ahn, B.W.; Moerman, E.J.; Goldstein, S.; Satadtman, E.R. Aged-Related Changes in Oxidized Proteins. J. Biol. Chem. 1987, 262, 5488–5491. [Google Scholar] [CrossRef]
- Folch, J.; Lees, M.; Sloane-Stanley, G. A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues. J. Biol. Chem. 1957, 193, 265–275. [Google Scholar]
- Contador, R.; Ortiz, A.; Ramírez, M.d.R.; García-Torres, S.; López-Parra, M.M.; Tejerina, D. Physico-Chemical and Sensory Qualities of Iberian Sliced Dry-Cured Loins from Various Commercial Categories and the Effects of the Type of Packaging and Refrigeration Time. Lebensm.-Wiss. Technol. 2021, 141, 110876. [Google Scholar] [CrossRef]
- Lepetit, J.; Culioli, J. Mechanical Properties of Meat. Meat Sci. 1994, 36, 203–237. [Google Scholar] [CrossRef]
- Bourne, M.C. Texture Profile Analysis. Food Technol. 1978, 32, 62–66. [Google Scholar]
- Li, X.; Babol, J.; Bredie, W.L.P.; Nielsen, B.; Tománková, J.; Lundström, K. A Comparative Study of Beef Quality after Ageing Longissimus Muscle Using a Dry Ageing Bag, Traditional Dry Ageing or Vacuum Package Ageing. Meat Sci. 2014, 97, 433–442. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, D.; Yang, H.; Liu, X.; Cheng, J.; Wang, X.; Zou, J.; Lin, Y. Effects of High Hydrostatic Pressure Assisted Enzymatic Tenderization on Goose Meat Texture and Myofibril Protein. Lebensm.-Wiss. Technol. 2023, 184, 114845. [Google Scholar] [CrossRef]
- Fernández-López, J.; Sayas-Barberá, E.; Muñoz, T.; Sendra, E.; Navarro, C.; Pérez-Alvarez, J.A. Effect of Packaging Conditions on Shelf-Life of Ostrich Steaks. Meat Sci. 2008, 78, 143–152. [Google Scholar] [CrossRef] [PubMed]
- Naveena, B.M.; Muthukumar, M.; Kulkarni, V.V.; Praveen Kumar, Y.; Usha Rani, K.; Kiran, M. Effect of Aging on the Physicochemical, Textural, Microbial and Proteome Changes in Emu (Dromaius novaehollandiae) Meat Under Different Packaging Conditions. J. Food Process. Preserv. 2015, 39, 2497–2506. [Google Scholar] [CrossRef]
- Renerre, M.; Labas, R. Biochemical Factors Influencing Metmyoglobin Formation in Beef Muscles. Meat Sci. 1987, 19, 151–165. [Google Scholar] [CrossRef]
- Dikeman, M.E.; Obuz, E.; Gök, V.; Akkaya, L.; Stroda, S. Effects of Dry, Vacuum, and Special Bag Aging; USDA Quality Grade; and End-Point Temperature on Yields and Eating Quality of Beef Longissimus Lumborum Steaks. Meat Sci. 2013, 94, 228–233. [Google Scholar] [CrossRef] [PubMed]
- della Malva, A.; Maggiolino, A.; De Palo, P.; Albenzio, M.; Lorenzo, J.M.; Sevi, A.; Marino, R. Proteomic Analysis to Understand the Relationship between the Sarcoplasmic Protein Patterns and Meat Organoleptic Characteristics in Different Horse Muscles during Aging. Meat Sci. 2022, 184, 108686. [Google Scholar] [CrossRef]
- Grotta, L.; Castellani, F.; Palazzo, F.; Naceur Haouet, M.; Martino, G. Treatment Optimisation and Sample Preparation for the Evaluation of Lipid Oxidation in Various Meats Through TBARs Assays before Analysis. Food Anal. Methods 2017, 10, 1870–1880. [Google Scholar] [CrossRef]
- Johnson, D.R.; Decker, E.A. The Role of Oxygen in Lipid Oxidation Reactions: A Review. Annu. Rev. Food Sci. Technol. 2015, 6, 171–190. [Google Scholar] [CrossRef]
- Ba, H.V.; Park, K.; Dashmaa, D.; Hwang, I. Effect of Muscle Type and Vacuum Chiller Ageing Period on the Chemical Compositions, Meat Quality, Sensory Attributes and Volatile Compounds of Korean Native Cattle Beef. Anim. Sci. J. 2014, 85, 164–173. [Google Scholar] [CrossRef]
- Ventanas, S.; Estevez, M.; Tejeda, J.F.; Ruiz, J. Protein and Lipid Oxidation in Longissimus Dorsi and Dry Cured Loin from Iberian Pigs as Affected by Crossbreeding and Diet. Meat Sci. 2006, 72, 647–655. [Google Scholar] [CrossRef] [PubMed]
- Estévez, M. Protein Carbonyls in Meat Systems: A Review. Meat Sci. 2011, 89, 259–279. [Google Scholar] [CrossRef]
- Gandemer, G. Lipids in Muscle and Adipose Tissues, Changes during Processing and Sensory Properties of Meat Products. Meat Sci. 2002, 62, 309–321. [Google Scholar] [CrossRef]
- Straadt, I.K.; Rasmussen, M.; Andersen, H.J.; Bertram, H.C. Aging-Induced Changes in Microstructure and Water Distribution in Fresh and Cooked Pork in Relation to Water-Holding Capacity and Cooking Loss—A Combined Confocal Laser Scanning Microscopy (CLSM) and Low-Field Nuclear Magnetic Resonance Relaxation Study. Meat Sci. 2007, 75, 687–695. [Google Scholar] [CrossRef]
- Tejerina, D.; García-Torres, S.; Cava, R. Water-Holding Capacity and Instrumental Texture Properties of m. Longissimus dorsi and m. Serratus ventralis from Iberian Pigs as Affected by the Production System. Livest. Sci. 2012, 148, 46–51. [Google Scholar] [CrossRef]
- Honikel, K.O. Reference Methods for the Assessment of Physical Characteristics of Meat. Meat Sci. 1998, 49, 447–457. [Google Scholar] [CrossRef]
- Marrone, R.; Salzano, A.; Di Francia, A.; Vollano, L.; Di Matteo, R.; Balestrieri, A.; Anastasio, A.; Maria, C.; Barone, A. Effects of Feeding and Maturation System on Qualitative Characteristics of Buffalo Meat (Bubalus bubalis). Animals 2020, 10, 899. [Google Scholar] [CrossRef]
- Terjung, N.; Witte, F.; Heinz, V. The Dry Aged Beef Paradox: Why Dry Aging Is Sometimes Not Better than Wet Aging. Meat Sci. 2021, 172, 108355. [Google Scholar] [CrossRef]
- Silva, L.H.P.; Assis, D.E.F.; Estrada, M.M.; Assis, G.J.F.; Zamudio, G.D.R.; Carneiro, G.B.; Valadares Filho, S.C.; Paulino, M.F.; Chizzotti, M.L. Carcass and Meat Quality Traits of Nellore Young Bulls and Steers throughout Fattening. Livest. Sci. 2019, 229, 28–36. [Google Scholar] [CrossRef]
- Van Damme, I.; Varalakshmi, S.; De Zutter, L.; Vossen, E.; De Smet, S. Decrease of Salmonella and Escherichia coli O157:H7 Counts during Dry-Aging of Beef but Potential Growth of Listeria Monocytogenes under Certain Dry-Aging Conditions. Food Microbiol. 2022, 104, 104000. [Google Scholar] [CrossRef] [PubMed]
- Ruiz De Huidobro, F.; Miguel, E.; Blázquez, B.; Onega, E. A Comparison between Two Methods (Warner-Bratzler and Texture Profile Analysis) for Testing Either Raw Meat or Cooked Meat. Meat Sci. 2005, 69, 527–536. [Google Scholar] [CrossRef] [PubMed]
- Campbell, R.E.; Hunt, M.C.; Levis, P.; Chambers, E. Dry-Aging Effects on Palatability of Beef Longissimus Muscle. J. Food Sci. 2001, 66, 196–199. [Google Scholar] [CrossRef]
- Smith, R.D.; Nicholson, K.L.; Nicholson, J.D.W.; Harris, K.B.; Miller, R.K.; Griffin, D.B.; Savell, J.W. Dry versus Wet Aging of Beef: Retail Cutting Yields and Consumer Palatability Evaluations of Steaks from US Choice and US Select Short Loins. Meat Sci. 2008, 79, 631–639. [Google Scholar] [CrossRef]
Dry-Aged | Wet-Aged | p Value | |
---|---|---|---|
pH | 5.60 ± 0.02 | 5.44 ± 0.07 | 0.000 |
Instrumental colour | |||
CIE-L* | 40.20 ± 0.60 | 41.80 ± 0.72 | 0.125 |
CIE-a* | 25.40 ± 0.24 | 24.50 ± 0.72 | 0.293 |
CIE-b* | 13.20 ± 0.28 | 12.60 ± 0.55 | 0.376 |
Chroma | 28.60 ± 0.33 | 28.30 ± 0.80 | 0.761 |
Hue | 27.50 ± 0.32 | 28.00 ± 0.64 | 0.469 |
Chemical colour | |||
Mb (mg/g) | 7.20 ± 0.24 | 7.88 ± 0.16 | 0.039 |
Deoxy (%) | 12.83 ± 0.35 | 7.04 ± 0.57 | 0.000 |
Oxy (%) | 50.19 ± 1.60 | 63.85 ± 1.87 | 0.000 |
MetMb (%) | 35.27 ± 0.83 | 23.97 ± 0.92 | 0.000 |
Dry matter and Water losses | |||
DM (g/100 g) | 26.01 ± 0.22 | 26.15 ± 0.73 | 0.857 |
WHC (g of water released/100 g) | 17.58 ± 0.42 | 31.09 ± 0.42 | 0.000 |
Cooking loss (g of water released/100 g) | 33.49 ± 0.84 | 38.21 ± 0.66 | 0.001 |
Oxidative status | |||
µg MDA/g | 0.42 ± 0.03 | 0.36 ± 0.03 | 0.145 |
Nanomol carbonyls/mg protein | 2.38 ± 0.09 | 2.36 ± 0.06 | 0.875 |
Dry-Aged | Wet-Aged | p Value | |
---|---|---|---|
g/100 g FAMEs | |||
C12:0 | 0.06 ± 0.01 | 0.07 ± 0.01 | 0.383 |
C14:0 | 2.36 ± 0.20 | 2.88 ± 0.18 | 0.079 |
C16:0 | 26.02 ± 0.71 | 27.20 ± 0.45 | 0.194 |
C16:1 | 4.04 ± 0.19 | 5.07 ± 0.39 | 0.038 |
C17:0 | 1.00 ± 0.02 | 0.84 ± 0.03 | 0.003 |
C17:1 | 0.61 ± 0.02 | 0.68 ± 0.03 | 0.113 |
C18:0 | 15.28 ± 0.28 | 13.20 ± 0.42 | 0.002 |
C18:1 n-9 | 42.43 ± 0.65 | 42.68 ± 1.36 | 0.872 |
C18:2 n-6 | 4.88 ± 0.21 | 5.80 ± 0.33 | 0.043 |
C18:3 n-3 | 0.14 ± 0.01 | 0.08 ± 0.01 | 0.001 |
C20:0 | 1.16 ± 0.12 | 0.40 ± 0.05 | 0.000 |
C20:1 n-9 | 0.73 ± 0.04 | 0.46 ± 0.04 | 0.001 |
PUFA | 5.02 ± 0.21 | 5.89 ± 0.33 | 0.052 |
MUFA | 47.82 ± 0.60 | 48.90 ± 1.54 | 0.529 |
SFA | 45.87 ± 0.51 | 44.59 ± 0.66 | 0.153 |
Dry-Aged | Wet-Aged | p Value | |
---|---|---|---|
Compression Test (20% compression) | |||
Hardness (N2) | 5.62 ± 0.35 | 1.50 ± 0.22 | 0.000 |
Springiness (cm) | 0.76 ± 0.02 | 0.68 ± 0.02 | 0.018 |
Cohesiveness | 0.63 ± 0.03 | 0.57 ± 0.01 | 0.131 |
Gumminess (N cm s2) | 2.59 ± 0.13 | 0.91 ± 0.14 | 0.000 |
Chewiness (N cm s2) | 2.04 ± 0.09 | 0.58 ± 0.07 | 0.000 |
Resilience | 0.46 ± 0.03 | 0.42 ± 0.01 | 0.191 |
Warner–Braztler shear force test | |||
Shear force (N) | 44.76 ± 0.29 | 52.5 ± 1.94 | 0.003 |
Dry-Aged | Wet-Aged | p Value | |
---|---|---|---|
Mesophilic aerobic bacteria | 6.84 ± 0.11 | 6.04 ± 0.05 | 0.000 |
Cl. perfringens | <1 | <1 | - |
Cl. sulfitoreductors | <1 | <1 | - |
Enterobacteria | 5.43 ± 0.05 | 5.23 ± 0.07 | 0.059 |
Halotolerant bacteria | 2.29 ± 0.10 | 1.80 ± 0.28 | 0.133 |
L. Monocytogenes | Absence | Absence | - |
Salmonella | Absence | Absence | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz, A.; Freire, M.; León, L.; Mesías, F.J.; Tejerina, D. Effect of Type of Aging on Quality and Sensory Perception of Picanha (Biceps femoris) from Female Angus Calves. Foods 2025, 14, 2219. https://doi.org/10.3390/foods14132219
Ortiz A, Freire M, León L, Mesías FJ, Tejerina D. Effect of Type of Aging on Quality and Sensory Perception of Picanha (Biceps femoris) from Female Angus Calves. Foods. 2025; 14(13):2219. https://doi.org/10.3390/foods14132219
Chicago/Turabian StyleOrtiz, Alberto, María Freire, Lucía León, Francisco Javier Mesías, and David Tejerina. 2025. "Effect of Type of Aging on Quality and Sensory Perception of Picanha (Biceps femoris) from Female Angus Calves" Foods 14, no. 13: 2219. https://doi.org/10.3390/foods14132219
APA StyleOrtiz, A., Freire, M., León, L., Mesías, F. J., & Tejerina, D. (2025). Effect of Type of Aging on Quality and Sensory Perception of Picanha (Biceps femoris) from Female Angus Calves. Foods, 14(13), 2219. https://doi.org/10.3390/foods14132219