Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,115)

Search Parameters:
Keywords = beam model validation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 4710 KB  
Article
Finite Element Modelling of Pultruded FRP Beam-to-Column Joints
by Jawed Qureshi and Karthick Murugan Mahendran
Fibers 2025, 13(11), 151; https://doi.org/10.3390/fib13110151 - 7 Nov 2025
Abstract
This research addresses the critical gap in accurately modelling pultruded fibre-reinforced polymer (FRP) beam-to-column joints, where previous studies largely ignored progressive damage mechanisms. A novel finite element framework is developed in ABAQUS, integrating Hashin’s failure criterion with fracture energy-based damage evolution to simulate [...] Read more.
This research addresses the critical gap in accurately modelling pultruded fibre-reinforced polymer (FRP) beam-to-column joints, where previous studies largely ignored progressive damage mechanisms. A novel finite element framework is developed in ABAQUS, integrating Hashin’s failure criterion with fracture energy-based damage evolution to simulate delamination and brittle failure in FRP cleats. The model is rigorously validated against full-scale experimental data, achieving close agreement in moment–rotation response, initial stiffness (within 5%), and ultimate moment capacity (variation < 10%). Quantitative results confirm that delamination at the fillet radius governs failure, while qualitative analysis reveals the sensitivity of stiffness to cleat geometry and bolt characteristics. A parametric study demonstrates that increasing cleat thickness and bolt diameter enhances stiffness up to 15%, whereas bolt–hole clearance introduces slip without significantly affecting strength. The validated FEM reduces reliance on costly physical testing and provides a robust tool for optimising FRP joint design, supporting the future development of design guidelines for pultruded FRP structures. Full article
Show Figures

Figure 1

21 pages, 4851 KB  
Article
Mechanical Behaviour of Leeward Lateral Roots During Tree Overturning
by Xingyu Zhang, Jonathan Knappett, Tian Zhang, Zhiwen Zheng, Teng Liang, Shitang Ke, Matteo Ciantia and Anthony Leung
Forests 2025, 16(11), 1692; https://doi.org/10.3390/f16111692 - 6 Nov 2025
Abstract
The overturning resistance of trees under lateral loads depends on the interaction between their root system and the surrounding soil, with leeward lateral roots being particularly important. This study presents a parametric investigation into the behaviour of leeward lateral roots during tree overturning [...] Read more.
The overturning resistance of trees under lateral loads depends on the interaction between their root system and the surrounding soil, with leeward lateral roots being particularly important. This study presents a parametric investigation into the behaviour of leeward lateral roots during tree overturning using the finite element method (FEM) based on a beam-on-nonlinear-Winkler-foundation (BNWF) approach. The model efficiently simulates large root–soil deformations using non-linear p-y connectors, the properties of which were calibrated against 2D plane-strain continuum FEM simulations and validated against analytical solutions for pipeline bearing capacity (an analogous problem). Simulations varied in root diameter, length, and material properties. A critical root length was identified, beyond which further increases in length do not enhance the root’s contribution to tree moment capacity, defining an optimal root length for peak resistance. The study further demonstrates that moment capacity is profoundly more sensitive to root diameter than to length. Initial rotational stiffness, which is highly relevant to non-destructive field-based winching tests, was also found to be primarily controlled by diameter and independent of length for most practical cases. A direct comparison between leeward and windward roots under specified rotation conditions confirmed the greater mechanical contribution of leeward roots to anchorage, which is consistent with field observations. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

13 pages, 4377 KB  
Article
A Reproducible 3D Classification of Orbital Morphology Derived from CBCT and FBCT Segmentation
by Natalia Bielecka-Kowalska, Bartosz Bielecki-Kowalski and Marcin Kozakiewicz
J. Clin. Med. 2025, 14(21), 7836; https://doi.org/10.3390/jcm14217836 - 4 Nov 2025
Viewed by 102
Abstract
Background: Accurate reconstruction of the orbit after trauma or oncological resection requires reliable anatomical references. In unilateral cases, the contralateral orbit can guide repair, but bilateral injuries or pathologies remove this option. To address this problem, we developed a new morphological classification [...] Read more.
Background: Accurate reconstruction of the orbit after trauma or oncological resection requires reliable anatomical references. In unilateral cases, the contralateral orbit can guide repair, but bilateral injuries or pathologies remove this option. To address this problem, we developed a new morphological classification of orbits based on three linear dimensions. Methods: A total of 499 orbits from patients of Caucasian descent (age 8–88 years) were analyzed using three-dimensional models generated from cone-beam and fan-beam CT scans. Orbital depth (D), height (H), and width (W) were measured, and proportional indices were calculated. K-means clustering (k = 3) identified recurring morphotypes, validated by linear discriminant analysis (LDA) and supported by ANOVA, Kruskal–Wallis, and correlation tests (age and sex). Results: Three morphotypes were identified: Tall & Broad (type A, 33.5%), Deep & Broad (type B, 30.2%), and Compact (type C, 36.2%). All dimensions differed significantly between groups (ANOVA, p < 1 × 10−16; η2 = 0.40–0.51). Male orbits were significantly deeper and wider than female ones (p < 0.001). LDA demonstrated excellent separation with 97.5% accuracy. A simplified decision algorithm achieved 82.1% classification accuracy. In situations where only orbital depth could be measured, an alternative cut-off-based method reached 61.5% accuracy, with type B and C better distinguished than type A. Conclusions: The proposed classification provides a reproducible framework for describing orbital morphology. It may serve as a reference in cases where local anatomy is disrupted or the contralateral orbit is unavailable. Even millimeter-scale differences in orbital dimensions may correspond to clinically relevant changes in orbital volume and globe position, underlining the potential usefulness of this system in surgical planning. Full article
Show Figures

Figure 1

22 pages, 6940 KB  
Article
Experimental Framework for the Setup and Validation of Individualized Bone Conduction Hearing Computational Models
by Johannes Niermann, Ivo Dobrev, Linus Taenzer, Christof Röösli, Bart Van Damme and Flurin Pfiffner
Biomimetics 2025, 10(11), 738; https://doi.org/10.3390/biomimetics10110738 - 4 Nov 2025
Viewed by 170
Abstract
In bone conduction (BC) hearing, sound is transmitted directly to the cochlea via skull vibrations, bypassing the outer and middle ear. This provides a therapeutic option for patients with conductive or mixed hearing loss and single-sided deafness. Although finite-element models have advanced understanding [...] Read more.
In bone conduction (BC) hearing, sound is transmitted directly to the cochlea via skull vibrations, bypassing the outer and middle ear. This provides a therapeutic option for patients with conductive or mixed hearing loss and single-sided deafness. Although finite-element models have advanced understanding of the mechanisms underlying BC, progress toward personalized treatment strategies remains limited by a lack of standardized, experimentally validated, subject-specific models. This study proposes a hierarchical validation framework to support the development and validation of individualized computational models of the human head under BC stimulation. The framework spans four anatomical levels: system, subsystems, structures, and tissues. This approach enables systematic acquisition of data from intact cadaver heads down to isolated material domains. To demonstrate the applications of the framework, an experimental study was conducted on a single cadaver head, targeting three levels: the intact head (system), extracted bone pieces (structures), and isolated cortical layers (tissues). Subsystems were not addressed. High-resolution photon-counting computed tomography (CT) and energy-integrating cone-beam CT were used to acquire anatomical data. One-dimensional laser Doppler vibrometry was used to capture vibrational responses of bone pieces and cortical layers under wet and dry conditions. Representative results were analyzed to assess the impact of preparation state on resonance behavior. Comparative analysis showed that photon-counting CT provided superior structural resolution compared with energy-integrating cone-beam CT, particularly at the full-head (system) level. Vibrational measurements at the structure and tissue levels from the same anatomical region revealed broadly consistent resonance vibration patterns, enabling comparison of resonance frequencies. The influence of hydration state and thickness reduction on vibrational behavior was highlighted. The proposed framework provides a scalable methodology for validation of subject-specific BC models with the potential for more accurate BC simulations based on the hypothesis of functional variability rooted in anatomical variability. Obvious use cases would include the development of improved hearing aid designs and personalized treatments. In parallel, a successful correlation of anatomical and functional variability can serve as inspiration for design principles of metamaterials. Full article
(This article belongs to the Special Issue Advances in Computational Methods for Biomechanics and Biomimetics)
Show Figures

Figure 1

33 pages, 6956 KB  
Article
Probabilistic Analysis of Creep and Shrinkage Effects on Prestressed Concrete Bridges Using Solid Element Models
by Jun Lu, Hongwei Zhang, Zhibin Jin and Xuezhi Deng
Buildings 2025, 15(21), 3973; https://doi.org/10.3390/buildings15213973 - 3 Nov 2025
Viewed by 278
Abstract
Concrete creep and shrinkage are critical factors affecting the long-term performance of extradosed bridges, leading to deflection, stress redistribution, and potential cracking. Predicting these effects is challenging due to uncertainties in empirical models and a lack of long-term data. While beam element models [...] Read more.
Concrete creep and shrinkage are critical factors affecting the long-term performance of extradosed bridges, leading to deflection, stress redistribution, and potential cracking. Predicting these effects is challenging due to uncertainties in empirical models and a lack of long-term data. While beam element models are common in design, they often fail to capture complex stress fields in disturbed regions (D-regions), potentially leading to non-conservative assessments of crack resistance. This study presents a computationally efficient probabilistic framework that integrates the First-Order Second-Moment (FOSM) method with a high-fidelity solid element model to analyze these time-dependent effects. Our analysis reveals that solid element models predict 14% higher long-term deflections and 64% greater sensitivity to creep and shrinkage parameters compared to beam models, which underestimate both the mean and variability of deformation. The FOSM-based framework proves highly efficient, with its prediction for the standard deviations of bridge deflection falling within 7.1% of those from the more computationally intensive Probability Density Evolution Method. Furthermore, we found that time-varying parameters have a minimal effect on principal stress directions, validating a scalar application of FOSM with less than 3% error. The analysis shows that uncertainties from creep and shrinkage models increase the 95% quantile of in-plane principal stresses by 0.58MPa, which is approximately 23% of the material’s tensile strength and increases the cracking risk. This research underscores the necessity of using high-fidelity models and probabilistic methods for the reliable design and long-term assessment of complex concrete bridges. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

22 pages, 6206 KB  
Article
A Hybrid Experimental and Computational Framework for Evaluating Wind Load Distribution and Wind-Induced Response of Multi-Span UHV Substation Gantries
by Feng Li, Yiting Wang, Lianghao Zou, Xiaohan Jiang, Xiaowang Pan, Hui Jin and Lei Fan
Sustainability 2025, 17(21), 9767; https://doi.org/10.3390/su17219767 - 2 Nov 2025
Viewed by 166
Abstract
The structural safety of multi-span ultra-high-voltage (UHV) substation gantries is a cornerstone for the reliability and resilience of sustainable energy grids. The wind-resistant design of the structures is complicated by their complex modal behaviors and highly non-uniform wind load distributions. This study proposes [...] Read more.
The structural safety of multi-span ultra-high-voltage (UHV) substation gantries is a cornerstone for the reliability and resilience of sustainable energy grids. The wind-resistant design of the structures is complicated by their complex modal behaviors and highly non-uniform wind load distributions. This study proposes a novel hybrid framework that integrates segmented high frequency force balance (HFFB) testing with a multi-modal stochastic vibration analysis, enabling the precise assessment of wind load distribution and dynamic response. Five representative segment models are tested to quantify both mean and dynamic wind loads, a strategy rigorously validated against whole-model HFFB tests. Key findings reveal significant aerodynamic disparities among structural segments. The long-span beam, Segment 5, exhibits markedly higher and direction-dependent responses. Its mean base shear coefficient reaches 4.34 at β = 75°, which is more than twice the values of 1.74 to 2.27 for typical tower segments. Furthermore, its RMS wind force coefficient peaks at 0.65 at β = 60°, a value 2.5 to 4 times higher than those of the tower segments, all of which remained below 0.26. Furthermore, a computational model incorporating structural modes, spatial coherence, and cross-modal contributions is developed to predict wind-induced responses, validated through aeroelastic model tests. The proposed framework accurately resolves spatial wind load distribution and dynamic wind-induced response, providing a reliable and efficient tool for the wind-resistant design of multi-span UHV lattice gantries. Full article
Show Figures

Figure 1

19 pages, 13100 KB  
Article
Design and Modeling of a 2-DOF Micro-Positioning Stage for Vibration-Assisted Polishing
by Panpan Chen and Yangmin Li
Micromachines 2025, 16(11), 1250; https://doi.org/10.3390/mi16111250 - 31 Oct 2025
Viewed by 191
Abstract
To solve the issues of insufficient working stroke, low accuracy, and limited response time of stages for vibration-assisted polishing, a two-degree-of-freedom (2-DOF) micro-positioning stage is proposed in this paper. To compensate for the limited stroke of piezoelectric actuator, a bridge–lever amplification mechanism was [...] Read more.
To solve the issues of insufficient working stroke, low accuracy, and limited response time of stages for vibration-assisted polishing, a two-degree-of-freedom (2-DOF) micro-positioning stage is proposed in this paper. To compensate for the limited stroke of piezoelectric actuator, a bridge–lever amplification mechanism was designed to magnify output displacement. Based on Castigliano’s second theorem and elastic beam theory, static modeling of amplification mechanisms, guiding beams, and transmitting rods was presented. Then, the analytical models of the stage were derived. To validate the accuracy of the analytical model, finite element simulations were performed, demonstrating that the error between theoretical and simulation results is 4.6%. Notably, the stage exhibits kinematic decoupling characteristics and excellent dynamic performances. The research results can provide effective insights for developing a large-stroke piezo-actuated micro-positioning stage with good dynamic performance for vibration-assisted polishing. Full article
Show Figures

Figure 1

16 pages, 4014 KB  
Article
Numerical Study of Fire-Induced Steel Frame Collapse: Validation of Experiments Using Static and Dynamic Methods
by Rabinder Kumar, Naveed Alam and Ali Nadjai
Fire 2025, 8(11), 420; https://doi.org/10.3390/fire8110420 - 29 Oct 2025
Viewed by 475
Abstract
This paper presents a validated computational workflow for simulating the fire-induced collapse of steel moment-resisting frames, comparing static general and dynamic explicit analysis procedures. Whereas most existing studies employ dynamic explicit analysis for collapse validation, this work evaluates the capability of the static [...] Read more.
This paper presents a validated computational workflow for simulating the fire-induced collapse of steel moment-resisting frames, comparing static general and dynamic explicit analysis procedures. Whereas most existing studies employ dynamic explicit analysis for collapse validation, this work evaluates the capability of the static general approach as a viable alternative. Finite element models developed with beam and shell elements capture both global instability and local failure modes. The results show that the static general procedure effectively reproduces quasi-static post-buckling behaviour and predicts the critical failure temperature within 2–3% of experimental results, similar to the dynamic explicit method. For the dynamic explicit procedure, sensitivity analyses are conducted to optimise time scaling, mesh refining, and ensure realistic physical response while maintaining computational efficiency. The study demonstrates that, along with dynamic explicit analysis, static general procedure also offers a practical and reliable alternative for simulating fire-induced structural collapse, reducing computational time by up to eighteen times for beam models and around six times for shell models, while maintaining reliable accuracy. Full article
Show Figures

Figure 1

21 pages, 4484 KB  
Article
Numerical Study on the Dynamic Response of an Offshore Converter Platform with Integrated Equipment During Float-Over Installation
by Zhenqiang Jiang, Weiwei Wu, Tianchai Wang, Zhenzhou Sun, Bo Zhang, Guohai Dong and Chunwei Bi
Energies 2025, 18(21), 5656; https://doi.org/10.3390/en18215656 - 28 Oct 2025
Viewed by 174
Abstract
With the transformation of the global energy structure, offshore wind power is developing on a large scale, and the efficient and safe installation of offshore converter platforms has become a key technological bottleneck. Based on the elastic force–gravity similarity principle, a 1:65 model [...] Read more.
With the transformation of the global energy structure, offshore wind power is developing on a large scale, and the efficient and safe installation of offshore converter platforms has become a key technological bottleneck. Based on the elastic force–gravity similarity principle, a 1:65 model scale was adopted. A physical model of the offshore converter station platform was constructed, and the accuracy of the numerical simulation was validated by comparison with the physical model tests. This study investigates the dynamic response of the offshore converter platform and converter valve equipment during the float-over installation and mating process. The structural dynamic responses at key positions were analyzed. The results indicate that, due to the slender and flexible structure of the converter valve equipment, the Z-direction acceleration at the top is about 20% higher than that at the bottom. Moreover, the stress and strain at the bottom connection with the deck are higher than those at the top. The Y-direction acceleration at the edge foundation beam of the platform module is 47% higher than that at the mid-span position. The vibration frequency of the foundation beam on the first floor with the converter valve arranged is increased by 15%. When the jacket piles are subjected to impact, the mid-span response is 25% higher than that at the edges, showing characteristics of “strong at mid-span and weak at the edges”. Full article
Show Figures

Figure 1

21 pages, 5085 KB  
Article
Finite Element Model Updating of a Steel Cantilever Beam: Experimental Validation and Digital Twin Integration
by Mohammad Amin Oyarhossein, Gabriel Sugiyama, Fernanda Rodrigues and Hugo Rodrigues
Buildings 2025, 15(21), 3890; https://doi.org/10.3390/buildings15213890 - 28 Oct 2025
Viewed by 288
Abstract
Accurate identification of modal properties in a steel cantilever beam is crucial for enhancing numerical models and supporting structural health monitoring, particularly when numerical and experimental data are combined. This study investigates the modal system identification of a steel cantilever beam using finite [...] Read more.
Accurate identification of modal properties in a steel cantilever beam is crucial for enhancing numerical models and supporting structural health monitoring, particularly when numerical and experimental data are combined. This study investigates the modal system identification of a steel cantilever beam using finite element method (FEM) simulations, which are validated by experimental testing. The beam was bolted to a reinforced concrete block and subjected to dynamic testing, where natural frequencies and mode shapes were extracted through Frequency Domain Decomposition (FDD). The experimental outcomes were compared with FEM predictions from SAP2000, and discrepancies were analysed using the Modal Assurance Criterion (MAC). A model updating procedure was applied, refining boundary conditions and considering sensor mass effects, which improved model accuracy. The updated FEM achieved closer agreement with frequency deviations reduced to less than 4% and MAC values above 0.9 for the first three modes. Beyond validation, the research links the updated FEM results with a Building Information Modelling (BIM) framework to enable the development of a digital twin of the beam. A workflow was designed to connect vibration monitoring data with BIM, providing visualisation of structural performance through colour-coded alerts. The findings confirm the effectiveness of FEM updating in generating reliable modal representations and demonstrate the potential of BIM-based digital twins for advancing structural condition assessment, maintenance planning and decision-making in civil engineering practice. Full article
(This article belongs to the Collection Innovation in Structural Analysis and Dynamics for Constructions)
Show Figures

Figure 1

37 pages, 6849 KB  
Article
Hybrid Atmospheric Modeling of Refractive Index Gradients in Long-Range TLS-Based Deformation Monitoring
by Mansoor Sabzali and Lloyd Pilgrim
Remote Sens. 2025, 17(21), 3513; https://doi.org/10.3390/rs17213513 - 22 Oct 2025
Viewed by 280
Abstract
Terrestrial laser scanners (TLS) are widely used for deformation monitoring due to their ability to rapidly generate 3D point clouds. However, high-precision deliverables are increasingly required in TLS-based remote sensing applications to distinguish between measurement accuracies and actual geometric displacements. This study addresses [...] Read more.
Terrestrial laser scanners (TLS) are widely used for deformation monitoring due to their ability to rapidly generate 3D point clouds. However, high-precision deliverables are increasingly required in TLS-based remote sensing applications to distinguish between measurement accuracies and actual geometric displacements. This study addresses the impact of atmospheric refraction, a primary source of systematic error in long-range terrestrial laser scanning, which causes laser beams to deviate from their theoretical path and intersect different object points on the target surface. A comprehensive study of two physical refractive index models (Ciddor and Closed Formula) is presented here, along with further developments on 3D spatial gradients of the refractive index. Field experiments were conducted using two long-range terrestrial laser scanners (Leica ScanStation P50 (Leica Geosystems, Heerbrugg, Switzerland) and Maptek I-Site 8820 (Maptek, Adelaide, Australia)) with reference back to a control network at two monitoring sites: a mine site for long-range measurements and a dam site for vertical angle measurements. The results demonstrate that, while conventional physical atmospheric models provide moderate improvement in accuracy, typically at the centimeter- or millimeter-level, the proposed advanced physical model—incorporating refractive index gradients—and the hybrid physical model—combining validated field results from the advanced model with a neural network algorithm—consistently achieve reliable millimeter-level accuracy in 3D point coordinates, by explicitly accounting for refractive index variations along the laser path. The robustness of these findings was further confirmed across different scanners and scanning environments. Full article
Show Figures

Figure 1

22 pages, 2486 KB  
Review
Radiomics in Action: Multimodal Synergies for Imaging Biomarkers
by Everton Flaiban, Kaan Orhan, Bianca Costa Gonçalves, Sérgio Lúcio Pereira de Castro Lopes and Andre Luiz Ferreira Costa
Bioengineering 2025, 12(11), 1139; https://doi.org/10.3390/bioengineering12111139 - 22 Oct 2025
Viewed by 734
Abstract
Radiomics has recently begun as a transformative approach in medical imaging, shifting radiology from qualitative description to quantitative analysis. By extracting high-throughput features from CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET/CT (Positron Emission Tomography/Computed Tomography), and CBCT (Cone Beam Computed Tomography), radiomics [...] Read more.
Radiomics has recently begun as a transformative approach in medical imaging, shifting radiology from qualitative description to quantitative analysis. By extracting high-throughput features from CT (Computed Tomography), MRI (Magnetic Resonance Imaging), PET/CT (Positron Emission Tomography/Computed Tomography), and CBCT (Cone Beam Computed Tomography), radiomics enables the characterization of tissue heterogeneity and the development of imaging biomarkers with diagnostic, prognostic, and predictive values. This narrative review explores the historical evolution of radiomics and its methodological foundations, including acquisition, segmentation, feature extraction and modeling, and platforms supporting these workflows. Clinical applications are highlighted in oncology, cardiology, neurology, and musculoskeletal and dentomaxillofacial imaging. Despite being promising, radiomics faces challenges related to standardization, reproducibility, PACS/RIS (Picture Archiving and Communication System/Radiology Information System) integration and interpretability. Professional initiatives, such as the Image Biomarker Standardization Initiative (IBSI) and guidelines from radiological societies, are addressing these barriers by promoting harmonization and clinical translation. The ultimate vision is a radiomics-augmented radiology report in which validated biomarkers and predictive signatures complement conventional findings, thus enhancing objectivity, reproducibility, and advancing precision medicine. Full article
(This article belongs to the Special Issue Medical Imaging Analysis: Current and Future Trends)
Show Figures

Graphical abstract

16 pages, 3381 KB  
Article
Strut-and-Tie Modeling of Intraply Hybrid Composite-Strengthened Deep RC Beams
by Ferit Cakir and Muhammed Alperen Ozdemir
Buildings 2025, 15(21), 3810; https://doi.org/10.3390/buildings15213810 - 22 Oct 2025
Viewed by 270
Abstract
This study presents a strut-and-tie modeling (STM) framework for reinforced concrete (RC) deep beams strengthened with intraply hybrid composites (IRCs), integrating comprehensive experimental data from beams with three different span lengths (1.0 m, 1.5 m, and 2.0 m). Although the use of fiber-reinforced [...] Read more.
This study presents a strut-and-tie modeling (STM) framework for reinforced concrete (RC) deep beams strengthened with intraply hybrid composites (IRCs), integrating comprehensive experimental data from beams with three different span lengths (1.0 m, 1.5 m, and 2.0 m). Although the use of fiber-reinforced polymers (FRPs) for shear strengthening of RC members is well established, limited attention has been given to the development of STM formulations specifically adapted for hybrid composite systems. In this research, three distinct IRC configurations—Aramid–Carbon (AC), Glass–Aramid (GA), and Carbon–Glass (CG)—were applied as U-shaped jackets to RC beams without internal transverse reinforcement and tested under four-point bending. All experimental data were derived from the authors’ previous studies, ensuring methodological consistency and providing a robust empirical basis for model calibration. The proposed modified STM incorporates both the axial stiffness and effective strain capacity of IRCs into the tension tie formulation, while also accounting for the enhanced diagonal strut performance arising from composite confinement effects. Parametric evaluations were conducted to investigate the influence of the span-to-depth ratio (a/d), composite configuration, and failure mode on the internal force distribution and STM topology. Comparisons between the STM-predicted shear capacities and experimental results revealed excellent correlation, particularly for deep beams (a/d = 1.0), where IRCs substantially contributed to the shear transfer mechanism through active tensile engagement and confinement. To the best of the authors’ knowledge, this is the first study to formulate and validate a comprehensive STM specifically designed for RC deep beams strengthened with IRCs. The proposed approach provides a unified analytical framework for predicting shear strength and optimizing the design of composite-strengthened RC structures. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

30 pages, 7877 KB  
Article
Shear Performance Degradation of Fiber-Reinforced Recycled Aggregate Concrete Beams Under Salt Freeze–Thaw Cycles
by Shefeng Guo, Jin Wu, Jingmiao Zhao, Zhehong Zeng, Xiangyu Wang, Yiyuan Wang, Haoxiang Luan, Yulin Wang and Dongxia Hu
Materials 2025, 18(20), 4817; https://doi.org/10.3390/ma18204817 - 21 Oct 2025
Viewed by 401
Abstract
In saline soil and alpine regions of northwest China, fiber-reinforced recycled aggregate concrete (FR-RAC) beams are subjected to coupled degradation from a chloride–sulfate composite salt attack and freeze–thaw cycling. Existing studies predominantly focus on natural aggregate concrete in freshwater environments or single-salt solutions, [...] Read more.
In saline soil and alpine regions of northwest China, fiber-reinforced recycled aggregate concrete (FR-RAC) beams are subjected to coupled degradation from a chloride–sulfate composite salt attack and freeze–thaw cycling. Existing studies predominantly focus on natural aggregate concrete in freshwater environments or single-salt solutions, with limited documentation on the shear performance of FR-RAC beams after freeze–thaw exposure in chloride–sulfate composite salt solutions. To investigate the durability degradation patterns of FR-RAC beams in Xinjiang’s saline soil regions, two exposure environments (pure water and 5% NaCl + 2.0% Na2SO4 composite salt solution) were established. Shear performance tests were conducted on nine groups of FR-RAC beams after 0–175 freeze–thaw cycles, with measurements focusing on failure modes, cracking loads, and ultimate shear capacities. The results revealed that under composite salt freeze–thaw conditions: after 100 cycles, the cracking load and shear capacity of tested beams decreased by 39.8% and 22.2%, respectively, compared to unfrozen specimens representing reductions 29.6% and 82.0% greater than those in freshwater environments; at 175 cycles, cumulative damage intensified, with total reductions reaching 56.8% (cracking load) and 36.1% (shear capacity). A shear capacity degradation prediction model for FR-RAC beams under composite salt freeze–thaw coupling was developed, accounting for concrete strength attenuation and interfacial bond degradation. Model validation demonstrated excellent agreement between predicted and experimental values, confirming its robust applicability. Full article
Show Figures

Figure 1

22 pages, 6991 KB  
Article
Numerical Study on the Flexural Performance of Fully Bolted Joint for Panelized Steel Modular Structure
by Hao Wang, Xuetong Li, Conghe Tian, Jintao Cui, Xuyue Wang, Chuan Zhao and Yanlai Li
Buildings 2025, 15(20), 3807; https://doi.org/10.3390/buildings15203807 - 21 Oct 2025
Viewed by 312
Abstract
To investigate the initial rotational stiffness and ultimate moment of fully bolted connections in panelized steel modular structures, a finite element analysis was carried out on 20 joint models. High-fidelity models were developed using ABAQUS, and their accuracy was confirmed through comparison with [...] Read more.
To investigate the initial rotational stiffness and ultimate moment of fully bolted connections in panelized steel modular structures, a finite element analysis was carried out on 20 joint models. High-fidelity models were developed using ABAQUS, and their accuracy was confirmed through comparison with experimental tests. A parametric study was performed to systematically evaluate the effects of the column wall thickness in the core zone, internal diaphragm configurations, angle steel thickness, and stiffener layouts on the joint stiffness and ultimate strength, leading to practical optimization suggestions. Additionally, a mechanical model and a corresponding formula for predicting the initial rotational stiffness of the joints were proposed based on the component method in Eurocode EC3. The model was validated against the finite element results, showing good reliability. Three failure modes were identified as follows: buckling deformation of the beam flange, buckling deformation of the column flange, and deformation of the joint panel zone. In joints with a weak core zone, both the use of internal diaphragms and increased column wall thickness effectively improved the initial rotational stiffness and ultimate bearing capacity. For joints with weak angle steel connections, adding stiffeners or increasing the limb thickness significantly enhanced both the stiffness and capacity. The diameter of bolts in the endplate-to-column flange connection was found to have a considerable effect on the initial rotational stiffness, but minimal impact on the ultimate strength. This study offers a theoretical foundation for the engineering application of panelized steel modular structural joints. Full article
Show Figures

Figure 1

Back to TopTop