Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (264)

Search Parameters:
Keywords = battery and hydrogen energy storage systems

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2735 KiB  
Article
Techno-Economic Assessment of Electrification and Hydrogen Pathways for Optimal Solar Integration in the Glass Industry
by Lorenzo Miserocchi and Alessandro Franco
Solar 2025, 5(3), 35; https://doi.org/10.3390/solar5030035 - 1 Aug 2025
Viewed by 95
Abstract
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel [...] Read more.
Direct electrification and hydrogen utilization represent two key pathways for decarbonizing the glass industry, with their effectiveness subject to adequate furnace design and renewable energy availability. This study presents a techno-economic assessment for optimal solar energy integration in a representative 300 t/d oxyfuel container glass furnace with a specific energy consumption of 4.35 GJ/t. A mixed-integer linear programming formulation is developed to evaluate specific melting costs, carbon emissions, and renewable energy self-consumption and self-production rates across three scenarios: direct solar coupling, battery storage, and a hydrogen-based infrastructure. Battery storage achieves the greatest reductions in specific melting costs and emissions, whereas hydrogen integration minimizes electricity export to the grid. By incorporating capital investment considerations, the study quantifies the cost premiums and capacity requirements under varying decarbonization targets. A combination of 30 MW of solar plant and 9 MW of electric boosting enables the realization of around 30% carbon reduction while increasing total costs by 25%. Deeper decarbonization targets require more advanced systems, with batteries emerging as a cost-effective solution. These findings offer critical insights into the economic and environmental trade-offs, as well as the technical constraints associated with renewable energy adoption in the glass industry, providing a foundation for strategic energy and decarbonization planning. Full article
Show Figures

Figure 1

25 pages, 2281 KiB  
Article
Life Cycle Cost Modeling and Multi-Dimensional Decision-Making of Multi-Energy Storage System in Different Source-Grid-Load Scenarios
by Huijuan Huo, Peidong Li, Cheng Xin, Yudong Wang, Yuan Zhou, Weiwei Li, Yanchao Lu, Tianqiong Chen and Jiangjiang Wang
Processes 2025, 13(8), 2400; https://doi.org/10.3390/pr13082400 - 28 Jul 2025
Viewed by 347
Abstract
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance [...] Read more.
The large-scale integration of volatile and intermittent renewables necessitates greater flexibility in the power system. Improving this flexibility is key to achieving a high proportion of renewable energy consumption. In this context, the scientific selection of energy storage technology is of great significance for the construction of new power systems. From the perspective of life cycle cost analysis, this paper conducts an economic evaluation of four mainstream energy storage technologies: lithium iron phosphate battery, pumped storage, compressed air energy storage, and hydrogen energy storage, and quantifies and compares the life cycle cost of multiple energy storage technologies. On this basis, a three-dimensional multi-energy storage comprehensive evaluation indicator system covering economy, technology, and environment is constructed. The improved grade one method and entropy weight method are used to determine the comprehensive performance, and the fuzzy comprehensive evaluation method is used to carry out multi-attribute decision-making on the multi-energy storage technology in the source, network, and load scenarios. The results show that pumped storage and compressed air energy storage have significant economic advantages in long-term and large-scale application scenarios. With its fast response ability and excellent economic and technical characteristics, the lithium iron phosphate battery has the smallest score change rate (15.2%) in various scenarios, showing high adaptability. However, hydrogen energy storage technology still lacks economic and technological maturity, and breakthrough progress is still needed for its wide application in various application scenarios in the future. Full article
Show Figures

Figure 1

26 pages, 3954 KiB  
Article
Bi-Level Planning of Grid-Forming Energy Storage–Hydrogen Storage System Considering Inertia Response and Frequency Parameter Optimization
by Dongqi Huang, Pengwei Sun, Wenfeng Yao, Chang Liu, Hefeng Zhai and Yehao Gao
Energies 2025, 18(15), 3915; https://doi.org/10.3390/en18153915 - 23 Jul 2025
Viewed by 276
Abstract
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in [...] Read more.
Energy storage plays an essential role in stabilizing fluctuations in renewable energy sources such as wind and solar, enabling surplus electricity retention, and delivering dynamic frequency regulation. However, relying solely on a single form of storage often proves insufficient due to constraints in performance, capacity, and cost-effectiveness. To tackle frequency regulation challenges in remote desert-based renewable energy hubs—where traditional power infrastructure is unavailable—this study introduces a planning framework for an electro-hydrogen energy storage system with grid-forming capabilities, designed to supply both inertia and frequency response. At the system design stage, a direct current (DC) transmission network is modeled, integrating battery and hydrogen storage technologies. Using this configuration, the capacity settings for both grid-forming batteries and hydrogen units are optimized. This study then explores how hydrogen systems—comprising electrolyzers, storage tanks, and fuel cells—and grid-forming batteries contribute to inertial support. Virtual inertia models are established for each technology, enabling precise estimation of the total synthetic inertia provided. At the operational level, this study addresses stability concerns stemming from renewable generation variability by introducing three security indices. A joint optimization is performed for virtual inertia constants, which define the virtual inertia provided by energy storage systems to assist in frequency regulation, and primary frequency response parameters within the proposed storage scheme are optimized in this model. This enhances the frequency modulation potential of both systems and confirms the robustness of the proposed approach. Lastly, a real-world case study involving a 13 GW renewable energy base in Northwest China, connected via a ±10 GW HVDC export corridor, demonstrates the practical effectiveness of the optimization strategy and system configuration. Full article
(This article belongs to the Special Issue Advanced Battery Management Strategies)
Show Figures

Figure 1

21 pages, 10456 KiB  
Article
Experimental Validation of a Modular Skid for Hydrogen Production in a Hybrid Microgrid
by Gustavo Teodoro Bustamante, Jamil Haddad, Bruno Pinto Braga Guimaraes, Ronny Francis Ribeiro Junior, Frederico de Oliveira Assuncao, Erik Leandro Bonaldi, Luiz Eduardo Borges-da-Silva, Fabio Monteiro Steiner, Jaime Jose de Oliveira Junior and Claudio Inacio de Almeida Costa
Energies 2025, 18(15), 3910; https://doi.org/10.3390/en18153910 - 22 Jul 2025
Viewed by 272
Abstract
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered [...] Read more.
This article presents the development, integration, and experimental validation of a modular microgrid for sustainable hydrogen production, addressing global electricity demand and environmental challenges. The system was designed for initial validation in a thermoelectric power plant environment, with scalability to other applications. Centered on a six-compartment skid, it integrates photovoltaic generation, battery storage, and a liquefied petroleum gas generator to emulate typical cogeneration conditions, together with a high-purity proton exchange membrane electrolyzer. A supervisory control module ensures real-time monitoring and energy flow management, following international safety standards. The study also explores the incorporation of blockchain technology to certify the renewable origin of hydrogen, enhancing traceability and transparency in the green hydrogen market. The experimental results confirm the system’s technical feasibility, demonstrating stable hydrogen production, efficient energy management, and islanded-mode operation with preserved grid stability. These findings highlight the strategic role of hydrogen as an energy vector in the transition to a cleaner energy matrix and support the proposed architecture as a replicable model for industrial facilities seeking to combine hydrogen production with advanced microgrid technologies. Future work will address large-scale validation and performance optimization, including advanced energy management algorithms to ensure economic viability and sustainability in diverse industrial contexts. Full article
Show Figures

Figure 1

30 pages, 1981 KiB  
Article
Stochastic Control for Sustainable Hydrogen Generation in Standalone PV–Battery–PEM Electrolyzer Systems
by Mohamed Aatabe, Wissam Jenkal, Mohamed I. Mosaad and Shimaa A. Hussien
Energies 2025, 18(15), 3899; https://doi.org/10.3390/en18153899 - 22 Jul 2025
Viewed by 386
Abstract
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green [...] Read more.
Standalone photovoltaic (PV) systems offer a viable path to decentralized energy access but face limitations during periods of low solar irradiance. While batteries provide short-term storage, their capacity constraints often restrict the use of surplus energy, highlighting the need for long-duration solutions. Green hydrogen, generated via proton exchange membrane (PEM) electrolyzers, offers a scalable alternative. This study proposes a stochastic energy management framework that leverages a Markov decision process (MDP) to coordinate PV generation, battery storage, and hydrogen production under variable irradiance and uncertain load demand. The strategy dynamically allocates power flows, ensuring system stability and efficient energy utilization. Real-time weather data from Goiás, Brazil, is used to simulate system behavior under realistic conditions. Compared to the conventional perturb and observe (P&O) technique, the proposed method significantly improves system performance, achieving a 99.9% average efficiency (vs. 98.64%) and a drastically lower average tracking error of 0.3125 (vs. 9.8836). This enhanced tracking accuracy ensures faster convergence to the maximum power point, even during abrupt load changes, thereby increasing the effective use of solar energy. As a direct consequence, green hydrogen production is maximized while energy curtailment is minimized. The results confirm the robustness of the MDP-based control, demonstrating improved responsiveness, reduced downtime, and enhanced hydrogen yield, thus supporting sustainable energy conversion in off-grid environments. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

34 pages, 924 KiB  
Systematic Review
Smart Microgrid Management and Optimization: A Systematic Review Towards the Proposal of Smart Management Models
by Paul Arévalo, Dario Benavides, Danny Ochoa-Correa, Alberto Ríos, David Torres and Carlos W. Villanueva-Machado
Algorithms 2025, 18(7), 429; https://doi.org/10.3390/a18070429 - 11 Jul 2025
Cited by 1 | Viewed by 576
Abstract
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, [...] Read more.
The increasing integration of renewable energy sources (RES) in power systems presents challenges related to variability, stability, and efficiency, particularly in smart microgrids. This systematic review, following the PRISMA 2020 methodology, analyzed 66 studies focused on advanced energy storage systems, intelligent control strategies, and optimization techniques. Hybrid storage solutions combining battery systems, hydrogen technologies, and pumped hydro storage were identified as effective approaches to mitigate RES intermittency and balance short- and long-term energy demands. The transition from centralized to distributed control architectures, supported by predictive analytics, digital twins, and AI-based forecasting, has improved operational planning and system monitoring. However, challenges remain regarding interoperability, data privacy, cybersecurity, and the limited availability of high-quality data for AI model training. Economic analyses show that while initial investments are high, long-term operational savings and improved resilience justify the adoption of advanced microgrid solutions when supported by appropriate policies and financial mechanisms. Future research should address the standardization of communication protocols, development of explainable AI models, and creation of sustainable business models to enhance resilience, efficiency, and scalability. These efforts are necessary to accelerate the deployment of decentralized, low-carbon energy systems capable of meeting future energy demands under increasingly complex operational conditions. Full article
(This article belongs to the Special Issue Algorithms for Smart Cities (2nd Edition))
Show Figures

Figure 1

25 pages, 5958 KiB  
Article
Comparative Designs for Standalone Critical Loads Between PV/Battery and PV/Hydrogen Systems
by Ahmed Lotfy, Wagdy Refaat Anis, Fatma Newagy and Sameh Mostafa Mohamed
Hydrogen 2025, 6(3), 46; https://doi.org/10.3390/hydrogen6030046 - 5 Jul 2025
Viewed by 350
Abstract
This study presents the design and techno-economic comparison of two standalone photovoltaic (PV) systems, each supplying a 1 kW critical load with 100% reliability under Cairo’s climatic conditions. These systems are modeled for both the constant and the night load scenarios, accounting for [...] Read more.
This study presents the design and techno-economic comparison of two standalone photovoltaic (PV) systems, each supplying a 1 kW critical load with 100% reliability under Cairo’s climatic conditions. These systems are modeled for both the constant and the night load scenarios, accounting for the worst-case weather conditions involving 3.5 consecutive cloudy days. The primary comparison focuses on traditional lead-acid battery storage versus green hydrogen storage via electrolysis, compression, and fuel cell reconversion. Both the configurations are simulated using a Python-based tool that calculates hourly energy balance, component sizing, and economic performance over a 21-year project lifetime. The results show that the PV/H2 system significantly outperforms the PV/lead-acid battery system in both the cost and the reliability. For the constant load, the Levelized Cost of Electricity (LCOE) drops from 0.52 USD/kWh to 0.23 USD/kWh (a 56% reduction), and the payback period is shortened from 16 to 7 years. For the night load, the LCOE improves from 0.67 to 0.36 USD/kWh (a 46% reduction). A supplementary cost analysis using lithium-ion batteries was also conducted. While Li-ion improves the economics compared to lead-acid (LCOE of 0.41 USD/kWh for the constant load and 0.49 USD/kWh for the night load), this represents a 21% and a 27% reduction, respectively. However, the green hydrogen system remains the most cost-effective and scalable storage solution for achieving 100% reliability in critical off-grid applications. These findings highlight the potential of green hydrogen as a sustainable and economically viable energy storage pathway, capable of reducing energy costs while ensuring long-term resilience. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

18 pages, 1972 KiB  
Article
Learning from Arctic Microgrids: Cost and Resiliency Projections for Renewable Energy Expansion with Hydrogen and Battery Storage
by Paul Cheng McKinley, Michelle Wilber and Erin Whitney
Sustainability 2025, 17(13), 5996; https://doi.org/10.3390/su17135996 - 30 Jun 2025
Viewed by 479
Abstract
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal [...] Read more.
Electricity in rural Alaska is provided by more than 200 standalone microgrid systems powered predominantly by diesel generators. Incorporating renewable energy generation and storage to these systems can reduce their reliance on costly imported fuel and improve sustainability; however, uncertainty remains about optimal grid architectures to minimize cost, including how and when to incorporate long-duration energy storage. This study implements a novel, multi-pronged approach to assess the techno-economic feasibility of future energy pathways in the community of Kotzebue, which has already successfully deployed solar photovoltaics, wind turbines, and battery storage systems. Using real community load, resource, and generation data, we develop a series of comparison models using the HOMER Pro software tool to evaluate microgrid architectures to meet over 90% of the annual community electricity demand with renewable generation, considering both battery and hydrogen energy storage. We find that near-term planned capacity expansions in the community could enable over 50% renewable generation and reduce the total cost of energy. Additional build-outs to reach 75% renewable generation are shown to be competitive with current costs, but further capacity expansion is not currently economical. We additionally include a cost sensitivity analysis and a storage capacity sizing assessment that suggest hydrogen storage may be economically viable if battery costs increase, but large-scale seasonal storage via hydrogen is currently unlikely to be cost-effective nor practical for the region considered. While these findings are based on data and community priorities in Kotzebue, we expect this approach to be relevant to many communities in the Arctic and Sub-Arctic regions working to improve energy reliability, sustainability, and security. Full article
Show Figures

Figure 1

30 pages, 4875 KiB  
Article
Stochastic Demand-Side Management for Residential Off-Grid PV Systems Considering Battery, Fuel Cell, and PEM Electrolyzer Degradation
by Mohamed A. Hendy, Mohamed A. Nayel and Mohamed Abdelrahem
Energies 2025, 18(13), 3395; https://doi.org/10.3390/en18133395 - 27 Jun 2025
Viewed by 377
Abstract
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and [...] Read more.
The proposed study incorporates a stochastic demand side management (SDSM) strategy for a self-sufficient residential system powered from a PV source with a hybrid battery–hydrogen storage system to minimize the total degradation costs associated with key components, including Li-io batteries, fuel cells, and PEM electrolyzers. The uncertainty in demand forecasting is addressed through a scenario-based generation to enhance the robustness and accuracy of the proposed method. Then, stochastic optimization was employed to determine the optimal operating schedules for deferable appliances and optimal water heater (WH) settings. The optimization problem was solved using a genetic algorithm (GA), which efficiently explores the solution space to determine the optimal operating schedules and reduce degradation costs. The proposed SDSM technique is validated through MATLAB 2020 simulations, demonstrating its effectiveness in reducing component degradation costs, minimizing load shedding, and reducing excess energy generation while maintaining user comfort. The simulation results indicate that the proposed method achieved total degradation cost reductions of 16.66% and 42.6% for typical summer and winter days, respectively, in addition to a reduction of the levelized cost of energy (LCOE) by about 22.5% compared to the average performance of 10,000 random operation scenarios. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

21 pages, 2442 KiB  
Article
Net-Zero Backup Solutions for Green Ammonia Hubs Based on Hydrogen Power Generation
by Markus Strömich-Jenewein, Abdessamad Saidi, Andrea Pivatello and Stefano Mazzoni
Energies 2025, 18(13), 3364; https://doi.org/10.3390/en18133364 - 26 Jun 2025
Viewed by 356
Abstract
This paper explores cleaner and techno-economically viable solutions to provide electricity, heat, and cooling using green hydrogen (H2) and green ammonia (NH3) across the entire decarbonized value chain. We propose integrating a 100% hydrogen-fueled internal combustion engine (e.g., Jenbacher [...] Read more.
This paper explores cleaner and techno-economically viable solutions to provide electricity, heat, and cooling using green hydrogen (H2) and green ammonia (NH3) across the entire decarbonized value chain. We propose integrating a 100% hydrogen-fueled internal combustion engine (e.g., Jenbacher JMS 420) as a stationary backup solution and comparing its performance with other backup technologies. While electrochemical storage systems, or battery energy storage systems (BESSs), offer fast and reliable short-term energy buffering, they lack flexibility in relocation and typically involve higher costs for extended backup durations. Through five case studies, we highlight that renewable-based energy supply requires additional capacity to bridge longer periods of undersupply. Our results indicate that, for cost reasons, battery–electric solutions alone are not economically feasible for long-term backup. Instead, a more effective system combines both battery and hydrogen storage, where batteries address daily fluctuations and hydrogen engines handle seasonal surpluses. Despite lower overall efficiency, gas engines offer favorable investment and operating costs in backup applications with low annual operating hours. Furthermore, the inherent fuel flexibility of combustion engines eventually will allow green ammonia-based backup systems, particularly as advancements in small-scale thermal cracking become commercially available. Future studies will address CO2 credit recognition, carbon taxes, and regulatory constraints in developing more effective dispatch and master-planning solutions. Full article
(This article belongs to the Special Issue Advanced Studies on Clean Hydrogen Energy Systems of the Future)
Show Figures

Figure 1

18 pages, 3734 KiB  
Review
Alloying Design Strategies for High-Performance Zn Anodes in Aqueous Zinc-Ion Batteries
by Bowen Qi, Man Huang, Ming Song, Weijia Zhou and Hua Tan
Materials 2025, 18(13), 2997; https://doi.org/10.3390/ma18132997 - 24 Jun 2025
Viewed by 548
Abstract
Aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates for large-scale energy storage due to their inherent safety, low cost, and environmental sustainability. However, in practical applications, AZIBs are constrained by the adverse reactions originating from the zinc anodes, including dendrite formation, hydrogen [...] Read more.
Aqueous zinc-ion batteries (AZIBs) have emerged as promising candidates for large-scale energy storage due to their inherent safety, low cost, and environmental sustainability. However, in practical applications, AZIBs are constrained by the adverse reactions originating from the zinc anodes, including dendrite formation, hydrogen evolution reaction, corrosion, and passivation, which hinder their large-scale commercialization. Nowadays, alloying strategies have been recognized as efficient approaches to address these limitations and have gained significant attention. By introducing heterogeneous elements into Zn matrices, alloying strategies can suppress dendrite formation and side reactions, modulate the interfacial kinetic process, and enhance electrochemical stability. This review systematically discusses the advantages of alloying for Zn anodes, categorizes key design strategies, such as surface modifications, composite structures, functional alloying, gradient, and layered alloy designs, and meanwhile highlights their performance improvements. Furthermore, we suggest future directions for advanced alloy development, scalable fabrication design, and integrated system optimization. Alloy engineering represents a critical pathway toward high-performance, durable Zn anodes for next-generation AZIBs and other metal-ion batteries. Full article
Show Figures

Figure 1

23 pages, 705 KiB  
Article
Life Cycle Assessment Based on Whole Industry Chain Assessment of FCEVs
by Renzhi Lyu, Zhenpo Wang and Zhaosheng Zhang
Sustainability 2025, 17(12), 5431; https://doi.org/10.3390/su17125431 - 12 Jun 2025
Viewed by 632
Abstract
Fuel cell electric vehicles (FCEVs) offer a promising solution for energy saving and emission reduction in transportation. However, several challenges must be addressed for their application. This study conducts a full life cycle assessment (LCA) of FCEVs, dividing it into the fuel cycle [...] Read more.
Fuel cell electric vehicles (FCEVs) offer a promising solution for energy saving and emission reduction in transportation. However, several challenges must be addressed for their application. This study conducts a full life cycle assessment (LCA) of FCEVs, dividing it into the fuel cycle and vehicle cycle to separately assess energy consumption (EC) and emissions. The fuel cycle examined 18 hydrogen production–storage–transport pathways, while the vehicle cycle evaluates energy use and emissions associated with vehicle component production, assembly, disposal, battery production, and fluid consumption. Based on the GREET database, total energy consumption and emissions over a lifetime were calculated. Five environmental impact indicators were used for evaluation, and a comprehensive environmental assessment (CEA) indicator was established for different scenarios. Results indicate that nuclear thermochemical water splitting is the best hydrogen production method, and pipeline transportation is the most efficient for hydrogen transport. Additionally, water electrolysis for hydrogen production is only practical when paired with renewable energy. The study also identified that the Hydrogen production method, “Body”, “Proton Exchange Membrane Fuel Cells (PEMFCs) System”, “Chassis”, “Hydrogen Storage System” and lifetime significantly impact energy consumption and emissions. These stages or products represent high-impact leverage points for enhancing the lifecycle sustainability evaluation of FCEVs. Full article
Show Figures

Figure 1

26 pages, 1851 KiB  
Article
Techno-Socio-Economic Framework for Energy Storage System Selection in Jordan
by Khaled Alawasa, Adib Allahham, Ala’aldeen Al-Halhouli, Mohammed Al-Mahmodi, Musab Hamdan, Yara Khawaja, Hani Muhsen, Saqer Alja’afreh, Abdullah Al-Odienat, Ali Al-Dmour, Ahmad Aljaafreh, Ahmad Al-Abadleh, Murad Alomari, Abdallah Alnahas, Omar Alkasasbeh and Omar Alrosan
Energies 2025, 18(12), 3099; https://doi.org/10.3390/en18123099 - 12 Jun 2025
Viewed by 584
Abstract
Renewable energy sources (RESs) are increasingly being recognized as sustainable and accessible alternatives for the energy future. However, their intermittent nature poses significant challenges to system reliability and stability, necessitating the integration of energy storage systems (ESSs) to ensure sustainability and dependability. This [...] Read more.
Renewable energy sources (RESs) are increasingly being recognized as sustainable and accessible alternatives for the energy future. However, their intermittent nature poses significant challenges to system reliability and stability, necessitating the integration of energy storage systems (ESSs) to ensure sustainability and dependability. This study examines various ESS alternatives, evaluating their suitability for different applications using a multi-criteria decision-making (MCDM) approach. The methodology accommodates diverse criteria types, including qualitative and quantitative factors, represented as linguistic terms, interval values, and crisp numerical data. A techno-socio-economic framework for ESS selection is proposed and applied to Jordan’s unique energy landscape. This framework integrates technical performance, economic feasibility, and social considerations to identify suitable ESS solutions aligned with the country’s renewable energy goals. The study ranks twelve energy storage systems (ESSs) based on key performance criteria. Pumped hydro storage (PHS), thermal energy storage (TES), supercapacitors (SCs), and lithium-ion batteries (Li-ion BESS) lead the ranking. These systems showed the best performance in terms of scalability, efficiency, and integration with grid-scale applications in Jordan. Key applications analyzed include renewable energy integration, grid stability, load shifting, peak load regulation, frequency regulation, and seasonal energy storage. Results indicate that Li-ion batteries are most suitable for renewable energy integration, while flywheels excel in grid stability and frequency regulation. PHS was found to be the preferred solution for load shifting, peak load regulation, and seasonal storage, with hydrogen storage emerging as a promising option for long-duration needs. These findings provide critical insights to guide policy and infrastructure planning, offering a robust model for comprehensive ESS assessment in energy transition planning for countries facing similar challenges. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

11 pages, 2225 KiB  
Article
Electrochemical Performance of Diamond-like Carbon (DLC)-Coated Zn Anodes for Application to Aqueous Zinc-Ion Batteries
by Jinyoung Lee, Eunseo Lee and Sungwook Mhin
Batteries 2025, 11(6), 228; https://doi.org/10.3390/batteries11060228 - 12 Jun 2025
Viewed by 504
Abstract
The increasing demand for safe, cost-effective, and sustainable energy storage solutions has spotlighted aqueous zinc-ion batteries (AZIBs) as promising alternatives to lithium-ion systems. However, the practical deployment of AZIBs remains hindered by dendritic growth, hydrogen evolution, and surface corrosion at the zinc metal [...] Read more.
The increasing demand for safe, cost-effective, and sustainable energy storage solutions has spotlighted aqueous zinc-ion batteries (AZIBs) as promising alternatives to lithium-ion systems. However, the practical deployment of AZIBs remains hindered by dendritic growth, hydrogen evolution, and surface corrosion at the zinc metal anode, which severely compromise electrochemical stability. In this study, we propose an interfacial engineering strategy involving ultrathin diamond-like carbon (DLC) coatings applied to Zn anodes. The DLC films serve as conformal, ion-permeable barriers that mitigate parasitic side reactions and facilitate uniform Zn plating/stripping behavior. Materials characterizations of the DLC layer on the Zn anodes revealed the tunability of sp2/sp3 hybridization and surface morphology depending on DLC thickness. Electrochemical impedance spectroscopy demonstrated a significant reduction in interfacial resistance, particularly in the optimally coated sample (DLC2, ~20 nm), which achieved a favorable balance between mechanical integrity and ionic transport. Symmetric-cell tests confirmed enhanced cycling stability over 160 h, while full-cell configurations with an ammonium vanadate nanofiber-based cathode exhibited superior capacity retention over 900 cycles at 2 A g−1. The DLC2-coated Zn anodes demonstrated the most effective performance, attributable to its moderate surface roughness, reduced disorder, and minimized charge-transfer resistance. These results provide insight into the importance of fine-tuning the DLC thickness and carbon bonding structure for suppressing dendrite formation and enhancing electrochemical stability. Full article
Show Figures

Graphical abstract

32 pages, 1938 KiB  
Review
Advancements in Power Converter Technologies for Integrated Energy Storage Systems: Optimizing Renewable Energy Storage and Grid Integration
by Edisson Villa-Ávila, Danny Ochoa-Correa and Paul Arévalo
Processes 2025, 13(6), 1819; https://doi.org/10.3390/pr13061819 - 8 Jun 2025
Cited by 3 | Viewed by 986
Abstract
The increasing deployment of renewable energy sources is reshaping power systems and presenting new challenges for the integration of distributed generation and energy storage. Power converters have become essential to manage energy flows, coordinate storage systems, and maintain grid stability. This study presents [...] Read more.
The increasing deployment of renewable energy sources is reshaping power systems and presenting new challenges for the integration of distributed generation and energy storage. Power converters have become essential to manage energy flows, coordinate storage systems, and maintain grid stability. This study presents a literature review following the PRISMA 2020 methodology, covering 71 peer-reviewed articles published between 2014 and 2024. The analysis organizes current research into five main areas: converter topologies, storage integration, grid interaction, advanced control strategies, and renewable energy applications. Recent developments include progress in multilevel and bidirectional converter designs, the use of wide-bandgap semiconductors (SiC, GaN), and the application of advanced control techniques such as model predictive control, fuzzy logic, and reinforcement learning. However, several challenges remain unresolved, including the lack of standardized validation protocols, limited implementation of modular and scalable converter solutions, and insufficient integration of hybrid storage technologies such as hydrogen and second-life batteries. Future efforts should focus on developing interoperable control platforms, extending field validation studies, and incorporating digital twins and AI-based supervisory systems to improve the reliability, efficiency, and scalability of converter-based energy storage solutions under high renewable energy scenarios. Full article
Show Figures

Figure 1

Back to TopTop