Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (304)

Search Parameters:
Keywords = batch chemical system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
38 pages, 2633 KB  
Review
Preservation of Fruit Quality at Postharvest Through Plant-Based Extracts and Elicitors
by Dixin Chen, Li Liu, Zhongkai Gao, Jianshe Zhao, Yingjun Yang and Zhiguo Shen
Horticulturae 2025, 11(10), 1186; https://doi.org/10.3390/horticulturae11101186 - 2 Oct 2025
Viewed by 564
Abstract
Plant-based extracts and elicitors (signaling molecules that activate the fruit’s innate defense responses) have emerged as promising and sustainable alternatives to synthetic chemicals for preserving postharvest fruit quality and extending shelf life. This review provides a comprehensive analysis, uniquely complemented by a bibliometric [...] Read more.
Plant-based extracts and elicitors (signaling molecules that activate the fruit’s innate defense responses) have emerged as promising and sustainable alternatives to synthetic chemicals for preserving postharvest fruit quality and extending shelf life. This review provides a comprehensive analysis, uniquely complemented by a bibliometric assessment of the research landscape from 2005 to 2025, to identify key trends and effective solutions. This review systematically examined the efficacy of various natural compounds including essential oils (complex volatile compounds with potent antimicrobial activity such as lemongrass and thyme), phenolic-rich botanical extracts like neem and aloe vera, and plant-derived elicitors such as methyl jasmonate and salicylic acid. Their preservative mechanisms are multifaceted, involving direct antimicrobial activity by disrupting microbial membranes, potent antioxidant effects that scavenge free radicals, and the induction of a fruit’s innate defense systems, enhancing the activity of enzymes like superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD). Applications of edible coatings of chitosan or aloe vera gel, nano-emulsions, and pre- or postharvest treatments effectively reduce decay by Botrytis cinerea and Penicillium spp.), delay ripening by suppressing ethylene production, minimize water loss, and alleviate chilling injury. Despite their potential, challenges such as sensory changes, batch-to-batch variability, regulatory hurdles, and scaling production costs limit widespread commercialization. Future prospects hinge on innovative technologies like nano-encapsulation to improve stability and mask flavors, hurdle technology combining treatments synergistically, and optimizing elicitor application protocols. This review demonstrates the potential of continued research and advanced formulation to create plant-based preservatives, that can become integral components of an eco-friendly postharvest management strategy, effectively reducing losses and meeting consumer demands for safe, high-quality fruit. Full article
(This article belongs to the Section Postharvest Biology, Quality, Safety, and Technology)
Show Figures

Graphical abstract

18 pages, 1805 KB  
Article
Adsorption of Ammonium by Coal and Coal Fly Ash Derived from Hawthorn Tree from Aquatic Systems
by Jonathan Suazo-Hernández, Nicol Burgos, María de Los Ángeles Sepúlveda-Parada, Jorge Castro-Rojas, Patricia Poblete-Grant, Carmen Castro-Castillo, Rawan Mlih, Cristian Urdiales, Tomás Schoffer, Collin G. Joseph and Antonieta Ruiz
Processes 2025, 13(10), 3118; https://doi.org/10.3390/pr13103118 - 29 Sep 2025
Viewed by 340
Abstract
Excessive release of ammonium (NH4+) into aquatic ecosystems can promote eutrophication. In this study, the natural adsorbents, coal (C) prepared from Hawthorn (Acacia caven) and coal fly ash obtained from C, were used to remove NH4+ [...] Read more.
Excessive release of ammonium (NH4+) into aquatic ecosystems can promote eutrophication. In this study, the natural adsorbents, coal (C) prepared from Hawthorn (Acacia caven) and coal fly ash obtained from C, were used to remove NH4+ from aqueous systems through batch adsorption–desorption studies. Both adsorbents were physically and chemically characterized, while Fourier-transform infrared spectroscopy and zeta potential were used to understand the surface functional groups and surface charge characteristics. CFA showed a higher pH, BET specific surface area, electrical conductivity and higher % values for CaO and MgO than C. Kinetic studies of NH4+ adsorption at pH = 4.5 for both materials fitted the pseudo-second-order model giving the r2 of 0.970–0.983 and the χ2 of 0.008–0.005 and at pH = 6.5 only for C with the r2 of 0.986 and the χ2 of 0.013. Meanwhile, the adsorption isotherm data at pH = 4.5 for both materials and 6.5 for CFA complied with the Freundlich model (r2 > 0.965 and χ2 < 0.012), suggesting that NH4+ adsorption onto both adsorbents at those pH values occurred through the formation of a multilayer adsorption on heterogeneous surfaces. This indicates that the dominant adsorption of both adsorbents was physisorption with no site-specific interaction. Based on these results, CFA is proposed as a promising and economical material for the removal of NH4+ from aqueous systems. Full article
(This article belongs to the Special Issue Natural Low-Cost Adsorbents in Water Purification Processes)
Show Figures

Figure 1

21 pages, 5613 KB  
Article
Training Strategy Optimization of a Tea Canopy Dataset for Variety Identification During the Harvest Period
by Zhi Zhang, Yongzong Lu and Pengfei Liu
Agriculture 2025, 15(19), 2027; https://doi.org/10.3390/agriculture15192027 - 27 Sep 2025
Viewed by 195
Abstract
Accurate identification of tea plant varieties during the harvest period is a critical prerequisite for developing intelligent multi-variety tea harvesting systems. Different tea varieties exhibit distinct chemical compositions and require specialized processing methods, making varietal purity a key factor in ensuring product quality. [...] Read more.
Accurate identification of tea plant varieties during the harvest period is a critical prerequisite for developing intelligent multi-variety tea harvesting systems. Different tea varieties exhibit distinct chemical compositions and require specialized processing methods, making varietal purity a key factor in ensuring product quality. However, achieving reliable classification under real-world field conditions is challenging due to variable illumination, complex backgrounds, and subtle phenotypic differences among varieties. To address these challenges, this study constructed a diverse canopy image dataset and systematically evaluated 14 convolutional neural network models through transfer learning. The best-performing model was chosen as a baseline, and a comprehensive optimization of the training strategy was conducted. Experimental analysis demonstrated that the combination of Adamax optimizer, input size of 608 × 608, training and validation sets split ratio of 80:20, learning rate of 0.0001, batch size of 8, and 20 epochs produced the most stable and accurate results. The final optimized model achieved an accuracy of 99.32%, representing a 2.20% improvement over the baseline. This study demonstrates the feasibility of highly accurate tea variety identification from canopy imagery but also provides a transferable deep learning framework and optimized training pipeline for intelligent tea harvesting applications. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

22 pages, 5983 KB  
Article
Bioactive Component Screening and Mechanistic Study of the Anti-Diabetic Activity of Lophatherum gracile Brongn Extract
by Rong Wang, Xuefeng Liu, Kuan Yang, Shaojing Liu, Lili Yu, Yunmei Chen, Nana Wang, Yaqi Hu and Bei Qin
Curr. Issues Mol. Biol. 2025, 47(9), 779; https://doi.org/10.3390/cimb47090779 - 19 Sep 2025
Viewed by 392
Abstract
Type 2 diabetes mellitus (T2DM), a metabolic disorder defined by glucose and lipid metabolism dysregulation, has become a major global health issue. Hence, effective measures to prevent T2DM are urgently required. Lophatherum gracile Brongn (LGB) has been used in managing diabetes-related systemic diseases. [...] Read more.
Type 2 diabetes mellitus (T2DM), a metabolic disorder defined by glucose and lipid metabolism dysregulation, has become a major global health issue. Hence, effective measures to prevent T2DM are urgently required. Lophatherum gracile Brongn (LGB) has been used in managing diabetes-related systemic diseases. However, the hypoglycemic bioactive components in LGB and the mechanisms underlying their hypoglycemic activity remain elusive. The current study sought to characterize the bioactive components of LGB and elucidate its mechanism of action against T2DM. Six common characteristic peaks were identified from six batches of LGB, with 39 characteristic chemical components preliminarily identified. Through component–activity correlation analysis, three functional components—namely isoorientin, orientin, and isovitexin—were selected as key candidates. In T2DM mice, LGB effectively improved glucose and lipid metabolic dysfunction. Untargeted metabolomics analysis revealed that LGB modulated pathways related to lipid and carbon metabolism. 16S rRNA gene sequencing and targeted metabolomics analysis revealed that LGB decreased the ratio of Firmicutes to Bacteroidetes and increased the abundance of bacterial groups such as Lactobacillales and Bacteroides. Additionally, LGB elevated the levels of SCFAs, specifically acetic and butyric acid. Moreover, LGB alleviated intestinal inflammation and upregulated the expression of tight junction proteins by inhibiting the LPS/TLR4/NF-κB signaling pathway. This study demonstrated that LGB treated T2DM, with isoorientin, orientin, and isovitexin identified as the main contributing components. The hypoglycemic mechanism is linked to the “gut microbiota−SCFAs−inflammatory response” signaling axis. Full article
(This article belongs to the Section Bioorganic Chemistry and Medicinal Chemistry)
Show Figures

Graphical abstract

21 pages, 5523 KB  
Article
L-Cysteine Enhanced Degradation of Chlorobenzene in Water Using Nano Zero-Valent Iron/Persulfate System
by Fengcheng Jiang, Guangyi Zhu, He Huang, Xixi Feng, Zhi Feng, Qiao Han, Fayang Guo, Tianjun Chang and Mingshi Wang
Catalysts 2025, 15(9), 911; https://doi.org/10.3390/catal15090911 - 19 Sep 2025
Viewed by 483
Abstract
Nano zero-valent iron (nZVI) particles have received much attention in environmental science and technology due to their unique electronic and chemical properties. While sulfate radical-based advanced oxidation processes (SR-AOPs) activated by nZVI show promise for mono-chlorobenzene (MCB) degradation, their efficiency is severely limited [...] Read more.
Nano zero-valent iron (nZVI) particles have received much attention in environmental science and technology due to their unique electronic and chemical properties. While sulfate radical-based advanced oxidation processes (SR-AOPs) activated by nZVI show promise for mono-chlorobenzene (MCB) degradation, their efficiency is severely limited by surface oxidation of nZVI and Fe3+ accumulation. This study aims to enhance the nZVI/persulfate (PS) system using L-cysteine (Cys) to achieve effective MCB removal. The work involved synthesizing nZVI via borohydride reduction, followed by comprehensive characterization and batch experiments of the Cys/nZVI/PS degradation system of MCB were carried out to evaluate the key influencing factors and analyze the reaction mechanism of Cys-enhanced MCB degradation. Under optimal conditions (0.1 g/L nZVI, 3 mM PS, 0.1 mM Cys, pH 3), 92.6% of MCB was degraded within 90 min—an 18.7% improvement compared to the Cys-free system. Acidic pH promoted Fe2+ release and significantly enhanced degradation, while HCO3 strongly inhibited the process. Mechanistic studies revealed that sulfate radicals (SO4•−) played a dominant role, and Cys served as an electron shuttle that facilitated the Fe3+/Fe2+ cycle and enhanced Fe0 conversion, thereby sustaining PS activation. This study demonstrates that Cys effectively mitigates the limitations of nZVI/PS systems and provides valuable insights for implementing efficient SR-AOPs in treating chlorinated organic contaminants. Full article
Show Figures

Figure 1

18 pages, 3597 KB  
Article
Continuous Flow-Mode Synthesis of Aromatic Amines in a 3D-Printed Fixed Bed Reactor Loaded with Amino Sugar-Stabilized Re Apparent Nanoparticles
by Patrick Niyirora, Joanna Wolska, Mateusz M. Marzec, Krystian Sokolowski, Anna Leśniewicz, Piotr Jamróz, Anna Dzimitrowicz, Andrzej Bernasik and Piotr Cyganowski
Molecules 2025, 30(18), 3782; https://doi.org/10.3390/molecules30183782 - 17 Sep 2025
Viewed by 427
Abstract
In industrial processes, catalysts—materials that speed up chemical reactions without being consumed—are essential. The goal of this research was to create two new rhenium-based nanocomposite catalysts that can effectively and sustainably reduce nitroaromatic compounds to aromatic amines in continuous-flow systems. Nitroaromatic hydrocarbons (NACs), [...] Read more.
In industrial processes, catalysts—materials that speed up chemical reactions without being consumed—are essential. The goal of this research was to create two new rhenium-based nanocomposite catalysts that can effectively and sustainably reduce nitroaromatic compounds to aromatic amines in continuous-flow systems. Nitroaromatic hydrocarbons (NACs), widely used in manufacturing pharmaceuticals, insecticides, and herbicides, often contaminate soil and water, posing significant environmental and health risks. However, their reduction to aromatic amines enables potential industrial reuse. In this study, we synthesized two nanocomposite catalysts based on a copolymer functionalized with N-methyl-D-glucamine, embedded with rhenium (Re)-based apparent nanoparticles, and used them to reduce the NACs in continuous-flow mode to their aromatic amines using newly designed and stereolithographic (SLA) 3D-printed reactors. Advanced characterization techniques were employed to evaluate their structure, morphology, and catalytical performance. Catalyst 1, prepared from a self-modified Purolite D4869 resin and characterized by higher Re loading, exhibited superior conversion rates in batch mode (k1 up to 1.406 s−1). In contrast, Catalyst 2, based on a commercial NMDG-functionalized Dowex resin with a mesoporous structure, demonstrated remarkable stability and catalytic capacity under continuous flow (up to 1.383 mmolNAC mLcat−1). Overall, Catalyst 1 was found to be better suited for rapid batch reactions, whereas Catalyst 2 was found to be more appropriate for long-term flow applications, offering a sustainable route for the efficient conversion of nitroaromatic compounds into valuable aromatic amines. The reactors enabled the efficient conversion of NACs into aromatic amines while enhancing process sustainability and efficiency. Full article
Show Figures

Graphical abstract

19 pages, 3553 KB  
Article
Electrochemical Coagulant Generation via Aluminum-Based Electrocoagulation for Sustainable Greywater Treatment and Reuse: Optimization Through Response Surface Methodology and Kinetic Modelling
by Benan Yazıcı Karabulut
Molecules 2025, 30(18), 3779; https://doi.org/10.3390/molecules30183779 - 17 Sep 2025
Viewed by 458
Abstract
This study investigates the operational performance and optimization of a real greywater treatment system utilizing aluminum (Al)-based electrocoagulation (EC). The EC process was systematically evaluated and optimized through Response Surface Methodology (RSM) using the Box–Behnken Design (BBD), focusing on three critical parameters: pH, [...] Read more.
This study investigates the operational performance and optimization of a real greywater treatment system utilizing aluminum (Al)-based electrocoagulation (EC). The EC process was systematically evaluated and optimized through Response Surface Methodology (RSM) using the Box–Behnken Design (BBD), focusing on three critical parameters: pH, current density, and electrolysis time. Greywater samples collected from domestic sources were characterized by key physicochemical parameters including pH, COD, TSS, turbidity-ty, and electrical conductivity. The electrochemical treatment was conducted using a batch reactor equipped with Al electrodes in a monopolar configuration. Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS), X-ray Diffraction (XRD), and Fourier-Transform Infrared Spectroscopy (FTIR) were employed to characterize both the electrodes and the generated sludge. Results revealed a maximum COD removal efficiency of 86.34% under optimized conditions, with current density being the most influential factor, followed by its significant interaction with pH. The developed quadratic model exhibited high predictive accuracy (R2 = 0.96) and revealed significant nonlinear and interaction effects among the parameters. Sludge characterization confirmed the presence of amorphous aluminum hydroxide and oxyhydroxide phases, indicating effective coagulant generation and pollutant capture. The treated greywater met physicochemical criteria for non-potable reuse, such as agricultural irrigation, supporting resource recovery objectives. These findings demonstrate that EC is a low-waste, chemically efficient, and scalable process for decentralized wastewater treatment, aligning with the goals of sustainable chemical engineering. Full article
Show Figures

Graphical abstract

20 pages, 3151 KB  
Article
Removal of Ciprofloxacin from Pharmaceutical Wastewater Using Untreated and Treated Eggshells as Biosorbents
by Maryam Bin Hammad, Sameer Al-Asheh and Mohamed Abouleish
Water 2025, 17(17), 2656; https://doi.org/10.3390/w17172656 - 8 Sep 2025
Viewed by 681
Abstract
Pharmaceutical wastewater contains high levels of organic matter, salts, and toxic compounds that are resistant to conventional treatment methods. Even after secondary treatment, traces of dissolved organics and suspended solids often remain, contributing to environmental concerns such as increased microbial resistance and harm [...] Read more.
Pharmaceutical wastewater contains high levels of organic matter, salts, and toxic compounds that are resistant to conventional treatment methods. Even after secondary treatment, traces of dissolved organics and suspended solids often remain, contributing to environmental concerns such as increased microbial resistance and harm to aquatic life. This study introduces a sustainable “waste-to-treat-waste” approach that utilizes discarded white chicken eggshells as a low-cost biosorbent for removing ciprofloxacin, a common antibiotic. Unlike previous eggshell-based adsorption studies that primarily targeted dyes or heavy metals, this work demonstrates the first comprehensive evaluation of both untreated and chemically/thermally modified eggshells for antibiotic removal from real pharmaceutical wastewater. Batch adsorption experiments under optimized conditions showed removal efficiencies of 85% for raw eggshells, 91% after HCl activation, and 96% after thermal conversion to CaO. Batch adsorption experiments under optimized conditions (pH 7, 25 °C, 625 µm particle size, 3 g/100 mL dose, 90 min contact time) showed maximum adsorption capacities of 23.75 mg/g for untreated ES, 4.08 mg/g after HCl activation, and 1.82 mg/g after thermal conversion to CaO, with removal efficiencies of 85%, 91%, and 96%, respectively. The simplicity of preparation, use of an abundant waste material, and high removal efficiency highlight the potential for scalable cost-effective applications in industrial wastewater treatment systems. Full article
Show Figures

Figure 1

44 pages, 4978 KB  
Review
Performance of Continuous Electrocoagulation Processes (CEPs) as an Efficient Approach for the Treatment of Industrial Organic Pollutants: A Comprehensive Review
by Zakaria Al-Qodah, Maha Mohammad AL-Rajabi, Hiba H. Al Amayreh, Eman Assirey, Khalid Bani-Melhem and Mohammad Al-Shannag
Water 2025, 17(15), 2351; https://doi.org/10.3390/w17152351 - 7 Aug 2025
Cited by 2 | Viewed by 1209
Abstract
Electrocoagulation (EC) processes have emerged as an efficient solution for different inorganic and organic effluents. The main characteristics of this versatile process are its ease of operation and low sludge production. The literature indicates that EC can be successfully used as a single [...] Read more.
Electrocoagulation (EC) processes have emerged as an efficient solution for different inorganic and organic effluents. The main characteristics of this versatile process are its ease of operation and low sludge production. The literature indicates that EC can be successfully used as a single process or a step within a combined treatment system. If used in a combined system, this process could be employed as a pre-, a post-, or middle treatment step. Additionally, the EC process has been used in both continuous and batch modes. In most studies, EC has achieved significant improvements in the treated water quality and relatively low total energy consumption. This review presents a comprehensive evaluation and analysis of standalone and combined continuous EC processes. The influence of key operational parameters on continuous EC performance is thoroughly discussed. Furthermore, recent advancements in reactor design, modeling, and process optimization are addressed. The benefits of integrating other treatment processes with the EC process, such as advanced oxidation, membranes, chemical coagulation, and adsorption, are also evaluated. The performance of most standalone and combined EC processes used for organic pollutant treatment and published in the last 25 years is critically analyzed. This review is expected to give researchers many insights to improve their treatment scenario with recent and efficient environmental experiences, sustainability, and circular economy. The clearly presented information is expected to guide researchers in selecting efficient, cost-effective, and time-saving treatment alternatives. The findings ensure the considerable potential of continuous EC treatment processes for organic pollutants. However, more research is warranted to enhance process design, operational efficiency, scale-up, and economic viability. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

15 pages, 2632 KB  
Article
Treatment of Dairy Wastewater Retentate After Microfiltration: Evaluation of the Performance of the System Based on Activated Sludge and Activated Carbon
by Maciej Życki, Wioletta Barszcz and Monika Łożyńska
Membranes 2025, 15(8), 237; https://doi.org/10.3390/membranes15080237 - 6 Aug 2025
Viewed by 943
Abstract
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential [...] Read more.
The dairy industry generates significant amounts of wastewater, including microfiltration (MF) retentate, a byproduct thickened with organic and inorganic pollutants. This study focuses on the treatment of two times concentrated MF retentate using a hybrid system based on biological treatment in a sequential batch reactor (SBR) and adsorption on activated carbon. The first stage involved cross-flow microfiltration using a 0.2 µm PVDF membrane at 0.5 bar, resulting in reductions of 99% in turbidity and 79% in chemical oxygen demand (COD), as well as a partial reduction in conductivity. The second stage involved 24-h biological treatment in a sequential batch reactor (SBR) with activated sludge (activated sludge index: 80 cm3/g, MLSS 2500 mg/dm3), resulting in further reductions in COD (62%) and TOC (30%), as well as the removal of 46% of total phosphorus (TP) and 35% of total nitrogen (TN). In the third stage, the decantate underwent adsorption in a column containing powdered activated carbon (PAC; 1 g; S_(BET) = 969 m2 g−1), reducing the concentrations of key indicators to the following levels: COD 84%, TOC 70%, TN 77%, TP 87% and suspended solids 97%. Total pollutant retention ranged from 24.6% to 97.0%. These results confirm that the MF–SBR–PAC system is an effective, compact solution that significantly reduces the load of organic and biogenic pollutants in MF retentates, paving the way for their reuse or safe discharge into the environment. Full article
Show Figures

Figure 1

40 pages, 4663 KB  
Article
Hetero-Disubstituted Sugarcane Bagasse as an Efficient Bioadsorbent for Cationic Dyes
by Megg Madonyk Cota Elias Carvalho, Liliane Catone Soares, Oscar Fernando Herrera Adarme, Gabriel Max Dias Ferreira, Ranylson Marcello Leal Savedra, Melissa Fabíola Siqueira, Eduardo Ribeiro de Azevedo and Leandro Vinícius Alves Gurgel
Molecules 2025, 30(15), 3163; https://doi.org/10.3390/molecules30153163 - 29 Jul 2025
Viewed by 635
Abstract
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption [...] Read more.
A hetero-disubstituted sugarcane bagasse (HDSB) was prepared by simultaneous one-pot chemical modification of sugarcane bagasse with succinic and phthalic anhydrides. HDSB was used in batch mode for the removal of the cationic dyes auramine-O (AO) and safranin-T (ST) from spiked aqueous solutions. Adsorption of the dyes in mono- and bicomponent systems was investigated as a function of HDSB dosage, pH, contact time, and initial dye concentration. Maximum adsorption capacities for AO and ST on HDSB, at pH 7.0, were 1.37 mmol g−1 (367.7 mg g−1) and 0.93 mmol g−1 (293.3 mg g−1), respectively. In the bicomponent system, ST was preferentially adsorbed on HDSB, revealing an antagonistic effect of ST on AO adsorption. Changes in the enthalpy of the adsorption as a function of HDSB surface coverage were determined by isothermal titration calorimetry, with ΔadsH° values for AO and ST equal to −22.1 ± 0.3 kJ mol−1 and −23.44 ± 0.01 kJ mol−1, respectively. Under standard conditions, the adsorption of the dyes on HDSB was exergonic and enthalpically driven. Desorption removed ~50% of the adsorbed dyes, and subsequent re-adsorption showed that HDSB could be reused, with non-desorbed dye molecules acting as new binding sites. The interaction between AO and ST with HDSB was elucidated by molecular dynamics simulations with atomistic modeling. Full article
Show Figures

Graphical abstract

24 pages, 5866 KB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 623
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

80 pages, 962 KB  
Review
Advancements in Hydrogels: A Comprehensive Review of Natural and Synthetic Innovations for Biomedical Applications
by Adina-Elena Segneanu, Ludovic Everard Bejenaru, Cornelia Bejenaru, Antonia Blendea, George Dan Mogoşanu, Andrei Biţă and Eugen Radu Boia
Polymers 2025, 17(15), 2026; https://doi.org/10.3390/polym17152026 - 24 Jul 2025
Cited by 7 | Viewed by 4946
Abstract
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, [...] Read more.
In the rapidly evolving field of biomedical engineering, hydrogels have emerged as highly versatile biomaterials that bridge biology and technology through their high water content, exceptional biocompatibility, and tunable mechanical properties. This review provides an integrated overview of both natural and synthetic hydrogels, examining their structural properties, fabrication methods, and broad biomedical applications, including drug delivery systems, tissue engineering, wound healing, and regenerative medicine. Natural hydrogels derived from sources such as alginate, gelatin, and chitosan are highlighted for their biodegradability and biocompatibility, though often limited by poor mechanical strength and batch variability. Conversely, synthetic hydrogels offer precise control over physical and chemical characteristics via advanced polymer chemistry, enabling customization for specific biomedical functions, yet may present challenges related to bioactivity and degradability. The review also explores intelligent hydrogel systems with stimuli-responsive and bioactive functionalities, emphasizing their role in next-generation healthcare solutions. In modern medicine, temperature-, pH-, enzyme-, light-, electric field-, magnetic field-, and glucose-responsive hydrogels are among the most promising “smart materials”. Their ability to respond to biological signals makes them uniquely suited for next-generation therapeutics, from responsive drug systems to adaptive tissue scaffolds. Key challenges such as scalability, clinical translation, and regulatory approval are discussed, underscoring the need for interdisciplinary collaboration and continued innovation. Overall, this review fosters a comprehensive understanding of hydrogel technologies and their transformative potential in enhancing patient care through advanced, adaptable, and responsive biomaterial systems. Full article
13 pages, 3158 KB  
Article
Process Safety Assessment of the Entire Nitration Process of Benzotriazole Ketone
by Yingxia Sheng, Qianjin Xiao, Hui Hu, Tianya Zhang and Guofeng Guan
Processes 2025, 13(7), 2201; https://doi.org/10.3390/pr13072201 - 9 Jul 2025
Viewed by 769
Abstract
To ensure the inherent safety of fine chemical nitration processes, the nitration reaction of benzotriazole ketone was selected as the research object. The thermal decomposition and reaction characteristics of the nitration system were studied using a combination of differential scanning calorimetry (DSC), reaction [...] Read more.
To ensure the inherent safety of fine chemical nitration processes, the nitration reaction of benzotriazole ketone was selected as the research object. The thermal decomposition and reaction characteristics of the nitration system were studied using a combination of differential scanning calorimetry (DSC), reaction calorimetry (RC1), and accelerating rate calorimetry (ARC). The results showed that the nitration product released 455.77 kJ/kg of heat upon decomposition, significantly higher than the 306.86 kJ/kg of the original material, indicating increased thermal risk. Through process hazard analysis based on GB/T 42300-2022, key parameters such as the temperature at which the time to maximum rate is 24 h under adiabatic conditions (TD24), maximum temperature of the synthesis reaction (MTSR), and maximum temperature for technical reason (MTT) were determined, and the reaction was classified as hazard level 5, suggesting a high risk of runaway and secondary explosion. Process intensification strategies were then proposed and verified by dynamic calorimetry: the adiabatic temperature increase (ΔTad) was reduced from 86.70 °C in the semi-batch reactor to 19.95 °C in the optimized continuous process, effectively improving thermal safety. These findings provide a reliable reference for the quantitative risk evaluation and safe design of nitration processes in fine chemical manufacturing. Full article
Show Figures

Figure 1

19 pages, 4961 KB  
Article
Modification of Chabazite Using Hexadecyltrime-Thylammonium Bromide (HDTMA-Br) for Chromium(VI) Removal from Water Solutions
by Agata L. Skwarczynska-Wojsa, Paulina Sobolewska, Marcin Chutkowski and Jolanta Warchol
Materials 2025, 18(12), 2897; https://doi.org/10.3390/ma18122897 - 18 Jun 2025
Viewed by 588
Abstract
Chabazite, a tectosilicate mineral, belongs to the zeolite group and has been widely used for the adsorptive removal of a number of cationic contaminants from the aqueous phase. However, a negatively charged chabazite surface can be altered by chemical modification in order to [...] Read more.
Chabazite, a tectosilicate mineral, belongs to the zeolite group and has been widely used for the adsorptive removal of a number of cationic contaminants from the aqueous phase. However, a negatively charged chabazite surface can be altered by chemical modification in order to change its adsorption abilities towards anions. This study reports the potential for the removal of hexavalent chromium ions from aqueous solutions by modified chabazite. In this regard, natural chabazite was modified by the immobilization of HDTMA-Br to achieve double-layer coverage on its surface, defined as the double external cation exchange capacity. Next, a batch adsorption system was applied to study the adsorption of inorganic Cr(VI) anions from aqueous solutions. The process equilibrium was described by 11 theoretical isotherm equations, while 6 adsorption kinetics were represented by four models. Among those tested, the most appropriate model for the description of the studied process kinetics was the pseudo-second order irreversible model. The obtained results suggest that Cr(VI) adsorption takes place according to a complex mechanism comprising both Langmuir-type sorption with the maximum adsorption capacity of modified chabazite, approx. 9.3–9.9 mg g−1, and the trapping of Cr(VI) inside the capillaries of the amorphous sorbent, making it a viable option for water treatment applications. Full article
(This article belongs to the Special Issue Environmentally Friendly Adsorption Materials (2nd Edition))
Show Figures

Figure 1

Back to TopTop