Modification of Chabazite Using Hexadecyltrime-Thylammonium Bromide (HDTMA-Br) for Chromium(VI) Removal from Water Solutions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Chabazite Characteristics
2.2. Chabazite Pre-Treatment and Modification
2.2.1. Chabazite Activation
2.2.2. CEC and ECEC Determination for Raw Chabazite
2.2.3. Chabazite HDTMA-Br Modification
2.3. Experimental Methods—Cr(VI) Sorption on CH-HDTMA-Br
2.3.1. Equilibrium Studies
2.3.2. Kinetics Studies
2.4. Morphological Study
3. Results and Discussion
3.1. Equilibria Modelling Part
Isotherm Abbreviations | Equation | Equation Number | K (L mg−1) | qe mod (mg g−1) | Heterogeneity Parameter | F | ME | σ | SSE | R2 | Adj R2 |
---|---|---|---|---|---|---|---|---|---|---|---|
L | (12) | 0.002917 | 34.87 | - | 13.06 | 0.36 | 2.59 | 208.90 | 0.9258 | 0.9234 | |
F | (13) | 1.244 | - | n = 2.266 | 68.75 | 0.21 | 1.13 | 39.68 | 0.9859 | 0.9855 | |
T | (14) | 0.07627 | 27,950.0 | n = 0.077 | 51.15 | 0.22 | 1.30 | 51.15 | 0.9818 | 0.9806 | |
R-Pet | (15) | 779.9 | 0.065 | n = 0.557 | 66.04 | 0.21 | 1.15 | 39.97 | 0.9858 | 0.9849 | |
D-R | (16) | 3.24 × 10−8 | 129.50 | n = 0.035 | 26.35 | 0.21 | 1.82 | 100.17 | 0.9644 | 0.9621 | |
R-Pr | (17) | 126.4 | 0.142 | n = 0.556 | 66.14 | 0.21 | 1.15 | 39.75 | 0.9859 | 0.9849 | |
F-S | (18) | 17,600.0 | 14,900.0 | n1 = 1.0 n2 = 0.5 | 46.31 | 0.24 | 1.37 | 55.10 | 0.9804 | 0.9784 | |
L-F | (19) | 1.23 × 10−7 | 1.11 × 103 | n = 0.41 | 56.76 | 0.19 | 1.24 | 46.51 | 0.9835 | 0.9824 | |
M-J | (20) | 2330 | 0.104 | m = 0.778 n = 0.328 | 59.70 | 0.22 | 1.21 | 42.75 | 0.9848 | 0.9832 | |
Bi-L | (21) | K1 = 1.77 × 10−5 K2 = 0.062 | qm1 = 957.5 qm2 = 9.896 | - | 276.6 | 0.16 | 0.56 | 9.22 | 0.9967 | 0.9964 | |
V-S | (22) | 0.0179 | 9.399 | n = 0.077 | 320.0 | 0.15 | 0.52 | 8.25 | 0.9971 | 0.9969 |
3.2. Kinetics Modelling Part
4. Summary
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wise, J.P., Jr.; Young, J.L.; Cai, J.; Cai, L. Current understanding of hexavalent chromium [Cr(VI)] neurotoxicity and new perspectives. Environ. Int. 2022, 158, 106877. [Google Scholar] [CrossRef] [PubMed]
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Document 32020L2184. Available online: https://eur-lex.europa.eu/eli/dir/2020/2184/oj (accessed on 26 September 2024).
- Moffat, I.; Martinova, N.; Seidel, C.; Thompson, C.M. Hexavalent chromium in drinking water. J. Am. Water Work. Assoc. 2018, 110, E22–E35. [Google Scholar] [CrossRef]
- Sharma, P.; Singh, S.P.; Parakh, S.K.; Tong, Y.W. Health hazards of hexavalent chromium (Cr (VI)) and its microbial reduction. Bioengineered 2022, 13, 4923–4938. [Google Scholar] [CrossRef]
- Sharma, S.; Petrusevski, B.; Amy, G.L. Chromium removal from water: A review. J. Water Supply Res. Technol.-Aqua 2008, 57, 541–553. [Google Scholar] [CrossRef]
- Hafiane, A.; Lemordant, D.; Dhahbi, M. Removal of hexavalent chromium by nanofiltration. Desalination 2000, 130, 305–312. [Google Scholar] [CrossRef]
- Taleb-Ahmed, M.; Taha, S.; Maachi, R.; Dorange, G. The influence of physico-chemistry on the retention of chromium ions during nanofiltration. Desalination 2002, 145, 103–108. [Google Scholar] [CrossRef]
- Fathima, N.N.; Aravindhan, R.; Rao, J.R.; Nair, B.U. Solid waste removes toxic liquid waste: Adsorption of chromium (VI) by iron complexed protein waste. Environ. Sci. Technol. 2005, 39, 2804–2810. [Google Scholar] [CrossRef]
- Wang, X.; Pehkonen, S.O.; Ray, A.K. Removal of aqueous Cr(VI) by a combination of photocatalytic reduction and coprecipitation. Ind. Eng. Chem. Res. 2004, 43, 1665–1672. [Google Scholar] [CrossRef]
- Chromium in Drinking-Water. Background Document for Development of WHO Guidelines for Drinking-Water Quality WHO/SDE/WSH/03.04/04 WHO/HEP/ECH/WSH/2020.3. Available online: https://iris.who.int/bitstream/handle/10665/338062/WHO-HEP-ECH-WSH-2020.3-eng.pdf (accessed on 26 September 2024).
- Chen, Y.; Gu, G. Short-term batch studies on biological removal of chromium from synthetic wastewater using activated sludge biomass. Bioresour. Technol. 2005, 96, 1722–1729. [Google Scholar] [CrossRef]
- Pyrzynska, K. Nanomaterials for Removal and Speciation of Chromium. Materials 2025, 18, 1485. [Google Scholar] [CrossRef]
- Rakanović, M.; Vukojević, A.; Savanović, M.M.; Armaković, S.; Pelemiš, S.; Živić, F.; Armaković, S.J. Zeolites as Adsorbents and Photocatalysts for Removal of Dyes from the Aqueous Environment. Molecules 2022, 27, 6582. [Google Scholar] [CrossRef] [PubMed]
- Hu, G.; Yang, J.; Duan, X.; Farnood, R.; Yang, C.; Yang, J.; Liu, W.; Liu, Q. Recent developments and challenges in zeolite-based composite photocatalysts for environmental applications. Chem. Eng. J. 2021, 417, 129209. [Google Scholar] [CrossRef]
- Shang, J.; Li, G.; Singh, R.; Xiao, P. Potassium Chabazite: A Potential Nanocontainer for Gas Encapsulation. J. Phys. Chem. C 2010, 114, 22025–22031. [Google Scholar] [CrossRef]
- Ciciszwili, G.W.; Andronikaszwili, T.G.; Kirow, G.N.; Filizowa, L.D. Zeolity Naturalne; WNT: Warszawa, Poland, 1990. [Google Scholar]
- Available online: https://europe.iza-structure.org/IZA-SC/framework.php?ID=65 (accessed on 26 September 2024).
- Barrer, M.; Kerr, I.S. Intracrystalline channels in levynite and some related zeolites. 100 years of physical chemistry: A collection of Landmark Papers. Trans. Faraday Soc. 1959, 55, 1915–1923. [Google Scholar] [CrossRef]
- Yusof, A.M.; Malek, N.A.N.N. Removal of Cr(VI) and As(V) from aqueous solutions by HDTMA-modified zeolite Y. J. Hazard. Mater. 2009, 162, 1019–1024. [Google Scholar] [CrossRef] [PubMed]
- Haggerty, G.M. Sorption of Inorganic Oxyanions by Organo-Zeolite. Ph.D. Thesis, New Mexico Institute of Mining and Technology, Socorro, Mexico, 1993. Chapter 2. Sorption of Chromate and Other Inorganic Anions by Organo-Zeolite. pp. 4–31. [Google Scholar]
- Haggerty, G.M.; Bowman, R.S. Sorption of chromate and other inorganic anions by organo-zeolite. Environ. Sci. Technol. 1994, 28, 452–458. [Google Scholar] [CrossRef]
- Tran, H.N.; Viet, P.V.; Chao, H.P. Surfactant modified zeolite as amphiphilic and dual-electronic adsorbent for removal of cationic and oxyanionic metal ions and organic compounds. Ecotoxicol. Environ. Saf. 2018, 147, 55–63. [Google Scholar] [CrossRef]
- Jiménez-Castañeda, M.E.; Medina, D.I. Use of surfactant-modified zeolites and clays for the removal of heavy metals from water. Water 2017, 9, 235. [Google Scholar] [CrossRef]
- Bowman, R.S.; Sullivan, E.J.; Li, G. Uptake of cations, anions and nonpolar organic molecules by surfactant-modified clinoptilolite-rich tuff. In Natural Zeolites for the Third Millennium; Colella, C., Mumpton, F.A., Eds.; Napoli: De Frede Editore: Naples, Italy, 2000; pp. 341–347. ISBN 9788889976388. [Google Scholar]
- Ayawei, N.; Ebelegi, A.N.; Wankasi, D. Modelling and interpretation of adsorption isotherms. J. Chem. 2017, 1, 3039817. [Google Scholar] [CrossRef]
- El-Khaiary, M.I. Least–squares regression of adsorption equilibrium data: Comparing the options. J. Hazard. Mater. 2008, 158, 73–87. [Google Scholar] [CrossRef]
- Marquardt, D.W. An algorithm for last-squares estimation of nonlinear parameter. J. Soc. Ind. Appl. Math. 1963, 11, 431–441. [Google Scholar] [CrossRef]
- Warchoł, J.K.; Sobolewska, P.; Tylus, W.; Petrus, R. Fixed-Bed Modification of Zeolitic Tuffs and Their Application for Cr(VI) Removal. Materials 2021, 14, 7061. [Google Scholar] [CrossRef] [PubMed]
- Elaiopoulos, K.; Perraki, T.; Grigoropoulou, E. Monitoring the effect of hydrothermal treatments on the structure of a natural zeolite through a combined XRD, FTIR, XRF, SEM and N2-porosimetry analysis. Microporous Mesoporous Mater. 2010, 134, 29–43. [Google Scholar] [CrossRef]
- ISO 9297:1989; Water Quality—Determination of Chloride—Silver Nitrate Titration with Chromate Indicator (Mohr’s Method). ISO: Geneva, Switzerland, 1989.
- Bardon, C. Recommendations pour la déterrmination experimentale de la capacité d’échange de cations des milieu argileux. Rev. De 1’Institut Français Du Pétrole 1983, 38, 621–626. [Google Scholar]
- Przelaskowska, A.; Klaja, J. Pomiary pojemności wymiany kationowej (CEC) w badaniach skał osadowych. Naft.-Gaz 2014, 70, 432–438. [Google Scholar]
- Ciesielski, H.; Sterckeman, T. Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomi 1997, 17, 1–7. [Google Scholar] [CrossRef]
- Szala, B.; Bajda, T.; Matusik, J.; Zięba, K.; Kijak, B. BTX sorption on Na-P1 organo-zeolite as a process controlled by the amount of adsorbed HDTMA. Microporous Mesoporous Mater. 2015, 202, 115–123. [Google Scholar] [CrossRef]
- ISO 11885:2007; Water Quality—Determination of Selected Elements by Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES). International Organization for Standardization: Geneva, Switzerland, 2007.
- Israelachvili, J. Intermolecular and Surface Forces, 3rd ed.; Academic Press: New York, NY, USA, 2011; Volume 516. [Google Scholar]
- Choplin, A. Surface organometallic chemistry on zeolites: A tool for modifying the sorption properties of zeolites. J. Mol. Catal. 1994, 86, 501–512. [Google Scholar] [CrossRef]
- Bowman, R.S.; Li, Z.; Roy, S.J.; Burt, T.; Johnson, T.L.; Johnson, R.L. Pilot Test of a Surfactant-Modified Zeolite Permeable Barrier for Groundwater Remediation. Chapter 8. Physicochemical Groundwater Remediation; Smith, J.A., Burn, S., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002; pp. 161–185. [Google Scholar]
- Rožić, M.; Ivanec, D.; Sekovanic, L.; Miljanic, S.; Curkovic, L.; Hrenovic, J. Sorption phenomena of modification of clinoptilolite tuffs by surfactant cations. J. Colloid Interface Sci. 2009, 331, 295–301. [Google Scholar] [CrossRef]
- Li, Z.; Willms, C.; Roy, S.; Bowman, R.S. Desorption of hexadecyltrimethylammonium from charged mineral surfaces. Environ. Geosci. 2003, 10, 37–45. [Google Scholar] [CrossRef]
- Bajda, T.; Kłapyta, Z. Sorption of chromate by clinoptilolite modified with alkylammonium surfactants. Mineral. Pol. 2006, 37, 93–98. [Google Scholar] [CrossRef]
- Zeng, Y.; Woo, H.; Lee, G.; Park, J. Removal of chromate from water using surfactant modified Pohang clinoptilolite and Haruna chabazite. Desalination 2010, 257, 102–109. [Google Scholar] [CrossRef]
- Hongping, H.; Ray, F.L.; Jianxi, Z. Infrared study of HDTMA+ intercalated montmorillonite. Spectrochim. Acta A 2004, 60, 2853–2859. [Google Scholar] [CrossRef] [PubMed]
- Mozgawa, W.; Król, M.; Bajda, T. IR spectra in the studies of anion sorption on natural sorbents. J. Mol. Struct. 2011, 993, 109–114. [Google Scholar] [CrossRef]
- Xu, W.; Johnston, C.T.; Parker, P.; Agnew, S.F. Infrared study of water sorption on Na-, Li-, Ca-, and Mg-exchanged (SWy- 1 and SAz- 1) montmorillonite. Clays Clay Miner. 2000, 48, 120–131. [Google Scholar] [CrossRef]
- Joseph, V.I.; Tosheva, L.; Miller, G.; Doyle, A.M. FAU-Type Zeolite Synthesis from Clays and Its Use for the Simultaneous Adsorption of Five Divalent Metals from Aqueous Solutions. Materials 2021, 14, 3738. [Google Scholar] [CrossRef]
- Chen, X. Modeling of experimental adsorption isotherm data. Information 2015, 6, 14–22. [Google Scholar] [CrossRef]
- Ho, Y.S.; Porter, J.F.; McKay, G. Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems. Water Air Soil Pollut. 2002, 141, 1–33. [Google Scholar] [CrossRef]
- Khoury, R.; Harder, D.W. Numerical Methods and Modelling for Engineering; Springer international Publishing A: Berlin/Heidelberg, Germany, 2015; ISBN 9783319211756. [Google Scholar]
- Graham, D. The characterization of physical adsorption systems: I. The equilibrium function and standard free energy of adsorption. J. Phys. Chem. 1953, 57, 665–669. [Google Scholar] [CrossRef]
- Bellot, J.C.; Condoret, J.S. Modelling of Liquid Chromatography Equilibria. Process Biochem. 1993, 28, 365–376. [Google Scholar] [CrossRef]
- Dose, E.V.; Jacobson, S.; Guiochon, G. Determination of Isotherms from Chromatographic Peak Shapes. Anal. Chem. 1991, 63, 833–839. [Google Scholar] [CrossRef]
- Vieth, W.R.; Sladek, K.J. A model for diffusion in a glassy polymer. J. Colloid Sci. 1965, 20, 1014–1033. [Google Scholar] [CrossRef]
- Ramadoss, R.; Subramaniam, D. Adsorption of Chromium Using Blue Green Algae-Modeling and Application of Various Isotherms. Int. J. Chem. Technol. 2018, 10, 1–22. [Google Scholar] [CrossRef]
- Largegren, S. About the theory of so-called adsorption of soluble substances. K. Sven. Vetenskapsakademiens Handl. 1898, 24, 1–39. [Google Scholar]
- Levenspiel, O. Chemical Reaction Engineering, 3rd ed.; Wiley & Sons: New York, NY, USA, 1999; ISBN 047125424. [Google Scholar]
Surface Area (m2 g−1) | Pore Volume (mL g−1) | ||
---|---|---|---|
ABET | Amic * | Aext * | VT |
340.22 | 276.23 | 63.99 | 0.30 |
Exchange Capacity | CEC (mmol g−1) | ECEC (mmol g−1) | ||
---|---|---|---|---|
Method AAS | Method I VIS | Method II TOC | Method III CHN | |
1.6570 | 0.2625 | 0.2617 | 0.2621 |
C0 | (mg L−1) | 0.9 | 10.9 | 4.9 | 15.9 | 22.8 | 34.5 | 61.6 | 80.1 | 90.6 | 104.0 | 113.1 |
Ce | (mg L−1) | 0.0 | 0.0 | 0.0 | 0.0 | 0.6 | 4.3 | 12.9 | 21.6 | 25.0 | 31.8 | 39.1 |
qe | (mg g−1) | 0.1 | 1.1 | 0.5 | 1.6 | 2.2 | 3.0 | 4.9 | 5.9 | 6.6 | 7.2 | 7.4 |
C0 | (mg L−1) | 143.8 | 170.4 | 195.9 | 200.0 | 225.8 | 281.2 | 340.1 | 401.5 | 450.1 | 500.0 | 564.0 |
Ce | (mg L−1) | 57.4 | 77.0 | 98.7 | 100.0 | 120.8 | 166.1 | 213.8 | 265.8 | 307.4 | 348.7 | 402.5 |
qe | (mg g−1) | 8.7 | 9.3 | 9.8 | 10.0 | 10.5 | 11.6 | 12.6 | 13.6 | 14.3 | 15.1 | 16.2 |
C0 | (mg L−1) | 685.6 | 750.0 | 851.2 | 892.0 | 1019.1 | 1131.4 | 1251.6 | 1359.7 | 1415.5 | 1468.2 | 1700.0 |
Ce | (mg L−1) | 507.1 | 559.9 | 645.7 | 683.0 | 790.3 | 889.0 | 987.4 | 1080.9 | 1129.5 | 1175.7 | 1373.4 |
qe | (mg g−1) | 17.9 | 19.0 | 20.5 | 21.3 | 22.9 | 24.3 | 26.4 | 27.9 | 28.7 | 29.4 | 32.7 |
Zeolite | C [mg/100 g] | H [mg/100 g] | N [mg/100 g] | Suma CHN | qeHDTMA [mg/g] |
---|---|---|---|---|---|
CH-Na | 47.0 | 190.0 | 484.0 | 721.0 | - |
CH-HDTMA-Br | 754.5 | 11,016.0 | 1857.0 | 13,627.5 | 165.31 |
Series Number | I | II | III | IV | V | VI | |
---|---|---|---|---|---|---|---|
t (min) | C0 (mg L−1) | 104.00 | 154.13 | 194.00 | 217.49 | 281.24 | 309.75 |
1 | qt (mg g−1) | 3.95 | 5.69 | 5.49 | 5.99 | 6.67 | 7.33 |
Ct (mg L−1) | 64.50 | 97.21 | 139.10 | 157.60 | 214.54 | 236.44 | |
3 | qt (mg g−1) | 4.00 | 5.74 | 5.60 | 6.10 | 6.90 | 7.56 |
Ct (mg L−1) | 64.00 | 96.71 | 138.00 | 156.50 | 212.24 | 234.14 | |
5 | qt (mg g−1) | 4.11 | 5.85 | 5.71 | 6.21 | 7.23 | 7.89 |
Ct (mg L−1) | 62.90 | 95.61 | 136.90 | 155.40 | 208.94 | 230.84 | |
10 | qt (mg g−1) | 4.26 | 6.00 | 6.14 | 6.64 | 7.75 | 8.41 |
Ct (mg L−1) | 61.40 | 94.11 | 132.60 | 151.10 | 203.74 | 225.64 | |
20 | qt (mg g−1) | 4.61 | 6.35 | 6.71 | 7.21 | 8.47 | 9.13 |
Ct (mg L−1) | 57.90 | 90.61 | 126.90 | 145.40 | 196.54 | 218.44 | |
30 | qt (mg g−1)) | 4.98 | 6.72 | 7.21 | 7.71 | 8.95 | 9.61 |
Ct (mg L−1) | 54.18 | 86.89 | 121.86 | 140.36 | 191.74 | 213.64 | |
60 | qt (mg g−1) | 5.96 | 7.70 | 8.70 | 9.20 | 9.97 | 10.63 |
Ct (mg L−1) | 44.43 | 77.14 | 107.00 | 125.50 | 181.54 | 203.44 | |
90 | qt (mg g−1) | 6.54 | 8.28 | 9.38 | 9.88 | 10.66 | 11.32 |
Ct (mg L−1) | 38.65 | 71.36 | 100.22 | 118.72 | 174.64 | 196.54 | |
120 | qt (mg g−1) | 6.82 | 8.57 | 9.57 | 10.07 | 10.95 | 11.61 |
Ct (mg L−1) | 35.76 | 68.47 | 98.30 | 116.80 | 171.74 | 193.64 | |
180 | qt (mg g−1) | 7.19 | 8.93 | 9.72 | 10.21 | 11.46 | 12.12 |
Ct (mg L−1) | 32.15 | 64.86 | 96.85 | 115.35 | 166.64 | 188.54 | |
240 | qt (mg g−1) | 7.22 | 8.96 | 9.79 | 10.29 | 11.52 | 12.18 |
Ct (mg L−1) | 31.81 | 64.52 | 96.13 | 114.63 | 166.02 | 187.92 | |
303 | qt (mg g−1) | 7.22 | 8.96 | 9.86 | 10.36 | 11.52 | 12.18 |
Ct (mg L−1) | 31.81 | 64.52 | 95.41 | 113.91 | 166.02 | 187.92 | |
600 | qt (mg g−1) | 7.22 | 8.96 | 9.86 | 10.36 | 11.52 | 12.18 |
Ct (mg L−1) | 31.80 | 64.51 | 95.41 | 113.91 | 166.01 | 187.91 | |
1440 | qt (mg g−1) | 7.22 | 8.96 | 9.86 | 10.36 | 11.52 | 12.19 |
Ct (mg L−1) | 31.79 | 64.50 | 95.40 | 113.90 | 166.00 | 187.90 |
Kinetic Model Equations | No. | C0 (mg L−1) | qe (mg g−1) | Model Parameters | F - | R2 - | Adj R2 - |
---|---|---|---|---|---|---|---|
Pseudo-first-order reversible | (24) | 104.00 | 7.221 | = 1.9192 × 10−1 = 12.593 (mg g−1) | 1.894 | 0.767 | 0.728 |
154.13 | 8.963 | 2.343 | 0.698 | 0.648 | |||
194.00 | 9.860 | 2.610 | 0.741 | 0.698 | |||
217.49 | 10.359 | 2.682 | 0.719 | 0.672 | |||
281.24 | 11.524 | 2.913 | 0.674 | 0.620 | |||
309.75 | 12.185 | 2.802 | 0.650 | 0.592 | |||
Pseudo-second-order reversible where: z22rq = | (25) | 104.00 | 7.221 | = 5.49 × 10−3 = 21.015 (g mg−1min−1) | 1.743 | 0.767 | 0.728 |
154.13 | 8.963 | 2.287 | 0.702 | 0.653 | |||
194.00 | 9.860 | 2.560 | 0.743 | 0.700 | |||
217.49 | 10.359 | 2.671 | 0.720 | 0.673 | |||
281.24 | 11.524 | 2.974 | 0.672 | 0.617 | |||
309.75 | 12.185 | 2.868 | 0.646 | 0.587 | |||
Pseudo-first-order irreversible | (26) | 104.00 | 7.221 | = 2.286 × 10−1 (min−1) | 2.317 | 0.718 | 0.696 |
154.13 | 8.963 | 2.465 | 0.669 | 0.643 | |||
194.00 | 9.860 | 2.857 | 0.729 | 0.708 | |||
217.49 | 10.359 | 2.894 | 0.715 | 0.693 | |||
281.24 | 11.524 | 3.161 | 0.690 | 0.666 | |||
309.75 | 12.185 | 3.136 | 0.678 | 0.653 | |||
Pseudo-second-order irreversible | (27) | 104.00 | 7.221 | = 3.743 × 10−2 (g mg−1min−1) | 4.917 | 0.796 | 0.780 |
154.13 | 8.963 | 4.597 | 0.757 | 0.738 | |||
194.00 | 9.860 | 6.044 | 0.851 | 0.840 | |||
217.49 | 10.359 | 6.096 | 0.841 | 0.828 | |||
281.24 | 11.524 | 6.972 | 0.827 | 0.814 | |||
309.75 | 12.185 | 7.042 | 0.820 | 0.807 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skwarczynska-Wojsa, A.L.; Sobolewska, P.; Chutkowski, M.; Warchol, J. Modification of Chabazite Using Hexadecyltrime-Thylammonium Bromide (HDTMA-Br) for Chromium(VI) Removal from Water Solutions. Materials 2025, 18, 2897. https://doi.org/10.3390/ma18122897
Skwarczynska-Wojsa AL, Sobolewska P, Chutkowski M, Warchol J. Modification of Chabazite Using Hexadecyltrime-Thylammonium Bromide (HDTMA-Br) for Chromium(VI) Removal from Water Solutions. Materials. 2025; 18(12):2897. https://doi.org/10.3390/ma18122897
Chicago/Turabian StyleSkwarczynska-Wojsa, Agata L., Paulina Sobolewska, Marcin Chutkowski, and Jolanta Warchol. 2025. "Modification of Chabazite Using Hexadecyltrime-Thylammonium Bromide (HDTMA-Br) for Chromium(VI) Removal from Water Solutions" Materials 18, no. 12: 2897. https://doi.org/10.3390/ma18122897
APA StyleSkwarczynska-Wojsa, A. L., Sobolewska, P., Chutkowski, M., & Warchol, J. (2025). Modification of Chabazite Using Hexadecyltrime-Thylammonium Bromide (HDTMA-Br) for Chromium(VI) Removal from Water Solutions. Materials, 18(12), 2897. https://doi.org/10.3390/ma18122897