Removal of Ciprofloxacin from Pharmaceutical Wastewater Using Untreated and Treated Eggshells as Biosorbents
Abstract
1. Introduction
2. Materials and Methods
2.1. Preparation of Eggshells
2.2. Ciprofloxacin Solution
2.3. Batch Adsorption Tests
2.4. Effect of Operational Parameters
2.4.1. Effect of Contact Time
2.4.2. Effect of Adsorbent Dose
2.4.3. Effect of Particle Size
2.4.4. Effect of Temperature
2.4.5. Effect of pH
2.5. Treated and Untreated Eggshells
2.6. Adsorption Isotherms
2.7. Sample Characterization
2.8. Scanning Electron Microscopy (SEM)
2.9. X-Ray Diffraction (XRD)
2.10. Fourier Transform Infrared Spectroscopy (FTIR)
2.11. Energy-Dispersive X-Ray Spectroscopy (EDX)
3. Results and Discussion
3.1. Effect of Contact Time
3.2. Effect of Sorbent Dose
3.3. Effect of Eggshell Particle Size
3.4. Effect of Temperature
3.5. Effect of pH
3.6. Treated and Untreated Eggshells
3.7. Adsorption Isotherms
3.8. Sample Characterization
3.8.1. XRD Analysis
3.8.2. EDX Analysis
3.9. SEM Analysis
3.10. FTIR Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Tripathy, P.; Prakash, O.; Sharma, A.; Panchal, D.; Pal, S. Antibiotics in wastewater: Perspective of Biological Treatment Processes. In Degradation of Antibiotics and Antibiotic-Resistant Bacteria from Various Sources; Academic Press: Cambridge, MA, USA, 2023; pp. 159–177. [Google Scholar] [CrossRef]
- Jamshaid, H.; Ullah, I. Occurrences: Pharmaceutical wastewater in environment. In Pharmaceutical Wastewater Treatment Technologies: Concepts and Implementation Strategies; IWA Publishing: London, UK, 2021; pp. 69–93. [Google Scholar] [CrossRef]
- Chakraborty, P. Introduction: Occurrences, sources, and methods of pharmaceutical wastewater treatment. In The Treatment of Pharmaceutical Wastewater; Elsevier: Amsterdam, The Netherlands, 2023; pp. 1–17. [Google Scholar] [CrossRef]
- Okoh, A.; Gusha, S.S.; Sibanda, T. Inadequately treated wastewater as a source of human enteric viruses in the environment. In Wastewater and Public Health; Apple Academic Press: Palm Bay, FL, USA, 2015; pp. 27–50. [Google Scholar] [CrossRef]
- Tsai, W.T.; Yang, J.M.; Lai, C.W.; Cheng, Y.H.; Lin, C.C.; Yeh, C.W. Characterization and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 2006, 97, 488–493. [Google Scholar] [CrossRef]
- Zonato Rde Estevam, B.R.; Perez, I.D.; Aparecida dos Santos Ribeiro, V.; Boina, R.F. Eggshell as an adsorbent for removing dyes and metallic ions in aqueous solutions. Clean. Chem. Eng. 2022, 2, 100023. [Google Scholar] [CrossRef]
- Langbehn, R.K.; Michels, C.; Soares, H.M. Antibiotics in wastewater: From its occurrence to the biological removal by environmentally conscious technologies. Environ. Pollut. 2021, 275, 116603. [Google Scholar] [CrossRef]
- Masood, A.S.; Ali, M.S.; Manzar, M.S.; Khan, N.A.; Khan, A.H. Current situation of pharmaceutical wastewater around the globe. In The Treatment of Pharmaceutical Wastewater; Elsevier: Amsterdam, The Netherlands, 2023; pp. 19–52. [Google Scholar]
- Ullah, I.; Rehman, A.; Hussain, A.; Fakhar-ud-Din, F.U.D. Introduction–background and brief history of pharmaceutical wastewater. In Pharmaceutical Wastewater Treatment Technologies; IWA Publishing: London, UK, 2021. [Google Scholar]
- Lanrewaju, A.A.; Enitan-Folami, A.M.; Sabiu, S.; Edokpayi, J.N.; Swalaha, F.M. Global public health implications of human exposure to viral contaminated water. Front. Microbiol. 2022, 13, 981896. [Google Scholar] [CrossRef]
- SATIR, İ.T.; Kadir, E.R.O.L. Calcined eggshell for removal of Victoria blue R dye from wastewater medium by adsorption. J. Turk. Chem. Soc. Sect. Chem. 2021, 8, 47–56. [Google Scholar] [CrossRef]
- Yusuff, A.S. Preparation and characterization of composite anthill-chicken eggshell adsorbent: Optimization study on heavy metals adsorption using response surface methodology. J. Environ. Sci. Technol. 2017, 10, 120–130. [Google Scholar] [CrossRef]
- Abatan, O.G.; Alaba, P.A.; Oni, B.A.; Akpojevwe, K.; Efeovbokhan, V.; Abnisa, F. Performance of eggshells powder as an adsorbent for adsorption of hexavalent chromium and cadmium from wastewater. SN Appl. Sci. 2020, 2, 1996. [Google Scholar] [CrossRef]
- Özcan, S.; Çelebi, H.; Özcan, Z. Removal of heavy metals from simulated water by using eggshell powder. Desalination Water Treat. 2018, 127, 75–82. [Google Scholar] [CrossRef]
- Hassan, E.S.R.; Rostom, M.; Farghaly, F.E.; Khalek, M.A. Bio-sorption for tannery effluent treatment using eggshell wastes; kinetics, isotherm and thermodynamic study. Egypt. J. Pet. 2020, 29, 273–278. [Google Scholar] [CrossRef]
- Ahmad, M.; Usman, A.R.; Lee, S.S.; Kim, S.C.; Joo, J.H.; Yang, J.E.; Ok, Y.S. Eggshell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions. J. Ind. Eng. Chem. 2012, 18, 198–204. [Google Scholar] [CrossRef]
- Sankaran, R.; Show, P.L.; Ooi, C.W.; Ling, T.C.; Shu-Jen, C.; Chen, S.Y.; Chang, Y.K. Feasibility assessment of removal of heavy metals and soluble microbial products from aqueous solutions using eggshell wastes. Clean Technol. Environ. Policy 2020, 22, 773–786. [Google Scholar] [CrossRef]
- Kumar, M.; Bandyopadhyay, A. Kinetics and equilibrium modeling of ciprofloxacin removal using natural adsorbents. J. Environ. Manag. 2021, 288, 112401. [Google Scholar] [CrossRef]
- Han, X.; Wang, X.; Zhao, W.; Sun, T. Mechanistic study of ciprofloxacin adsorption onto CaCO3 surfaces. Colloids Surf. A Physicochem. Eng. Asp. 2020, 586, 124287. [Google Scholar] [CrossRef]
- Gautam, R.K.; Yadav, M.; Rawat, V. Adsorptive removal of antibiotics from aqueous medium using biosorbents: A review. Environ. Res. 2022, 204, 111991. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Kumar, R.; Bandyopadhyay, M. Mass transfer and kinetic modeling of antibiotic adsorption onto natural adsorbents. Sep. Purif. Technol. 2021, 266, 118604. [Google Scholar]
- Zheng, Z.; He, X.; Peng, H.; Wen, I.; Lv, S. Efficient adsorption of ciprofloxacin using Ga2S3/S-modified biochar via the high-temperature sulfurization. Biores. Tech. 2021, 334, 125238. [Google Scholar] [CrossRef]
- Mutavdžić Pavlović, D.; Ćurković, L.; Macan, J.; Žižek, K. Eggshell as a New Biosorbent for the Removal of Pharmaceuticals from Aqueous Solutions. CLEAN Soil Air Water 2017, 45, 1700082. [Google Scholar] [CrossRef]
- Bai, H.; Zhang, Q.; Zhou, X.; Chen, J.; Chen, Z.; Liu, Z.; Yan, J.; Wang, J. Removal of Fluoroquinolone Antibiotics by Adsorption of Dopamine-Modified Biochar Aerogel. Korean J. Chem. Eng. 2023, 40, 215–222. [Google Scholar] [CrossRef]
- Li, J.; Yu, G.; Pan, L.; Li, C.; You, F.; Wang, Y. Ciprofloxacin Adsorption by Biochar Derived from Co-Pyrolysis of Sewage Sludge and Bamboo Waste: Equilibrium, Mechanism, and Risk Assessment. Environ. Sci. Pollut. Res. 2020, 27, 22806–22817. [Google Scholar] [CrossRef]
- Kang, Z.; Jia, X.; Zhang, Y.; Kang, X.; Ge, M.; Liu, D.; Wang, C.; He, Z. A Review on Application of Biochar in the Removal of Pharmaceutical Pollutants through Adsorption and Persulfate-Based AOPs. Sustainability 2022, 14, 10128. [Google Scholar] [CrossRef]
- Yao, Y.; Xu, H.; Wang, X.; Li, Y.; Wang, C.; Li, Q. Thermodynamic analysis of ciprofloxacin adsorption onto bio-wastes. J. Mol. Liq. 2021, 338, 116529. [Google Scholar] [CrossRef]
- Ahmed, H.R.; Kayani, K.F.; Ealias, A.M.; Aziz, K.H.H. A Comprehensive Review of Forty Adsorption Isotherm Models: An In-Depth Analysis of Ten Statistical Error Measures. Water Air Soil Pollut. 2025, 236, 346. [Google Scholar] [CrossRef]
- Silva, C.P.; Jaria, G.; Otero, M.; Esteves, V.I.; Calisto, V. Waste-based alternative adsorbents for the remediation of pharmaceutical contaminated waters: Has a step forward already been taken? Bioresour. Technol. 2017, 250, 888–901. [Google Scholar] [CrossRef] [PubMed]
- Song, W.; Zhao, J.; Xie, X.; Liu, W.; Liu, S.; Liu, H.; Wang, C. Novel BiOBr by compositing low-cost biochar for efficient ciprofloxacin removal: The synergy of adsorption and photocatalysis on the degradation kinetics and mechanism insight. RSC Adv. 2021, 11, 15369–15379. [Google Scholar] [CrossRef]
- Rajoriya, S.; Sharma, S.; Kumar, A.; Singh, R.; Singh, S.; Singh, V. Adsorption of methyl red dye from aqueous solution onto eggshell waste material: Kinetics, isotherms and thermodynamic studies. Curr. Res. Green Sustain. Chem. 2021, 4, 100180. [Google Scholar] [CrossRef]
- Egbedina, A.O.; Adebowale, K.O.; Olu-Owolabi, B.I.; Unuabonah, E.I.; Adesina, M.O. Green synthesis of ZnO coated hybrid biochar for the synchronous removal of ciprofloxacin and tetracycline in wastewater. RSC Adv. 2021, 11, 18483–18493. [Google Scholar] [CrossRef]
- Eniola, J.O.; Kumar, R.; Barakat, M.A. Adsorptive removal of antibiotics from water over natural and modified adsorbents. Environ. Sci. Pollut. Res. 2019, 26, 34775–34788. [Google Scholar] [CrossRef]
- Mohan, D.; Pittman, C.U. Arsenic removal from water/wastewater using adsorbents—A critical review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef]
- Kong, L.; Li, X.; Zhao, Y.; Wang, Y.; Zhang, H. Adsorption mechanisms of antibiotics on modified agricultural wastes: Influence of pH and ionic strength. J. Environ. Sci. 2018, 63, 132–140. [Google Scholar]
- Al-Ghouti, M.A.; Da’ana, D.A. Guidelines for the use and interpretation of adsorption isotherm models: A review. J. Hazard. Mater. 2020, 393, 122383. [Google Scholar] [CrossRef]
- Özer, Ç.; İmamoğlu, M. Removal of ciprofloxacin from aqueous solutions by pumpkin peel biochar prepared using phosphoric acid. Biomass Convers. Biorefin. 2024, 14, 6521–6531. [Google Scholar] [CrossRef]
- Ghani, A.A.; Shahzad, A.; Moztahida, M.; Tahir, K.; Jeon, H.; Kim, B.; Lee, D.S. Adsorption and electrochemical regeneration of intercalated Ti3C2Tx MXene for the removal of ciprofloxacin from wastewater. Chem. Eng. J. 2021, 421, 127780. [Google Scholar] [CrossRef]
- Islam, M.R.; Wang, Q.; Sharmin, S.; Wang, W. Exploring the efficacy of eggshell and its pyrolyzed products for ciprofloxacin removal with machine learning insights. Chem. Pap. 2024, 78, 8433–8447. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Removal of antibiotics from water using bio-based adsorbents: A review. Chem. Eng. J. 2017, 315, 477–493. [Google Scholar]
- Alhasan, H.S.; Alahmadi, N.; Yasin, S.A.; Khalaf, M.Y.; Ali, G.A.M. Low-Cost and Eco-Friendly Hydroxyapatite Nanoparticles Derived from Eggshell Waste for Cephalexin Removal. Separations 2022, 9, 10. [Google Scholar] [CrossRef]
- Nguyen, T.A.; Tran, T.H.; Nguyen, T.H.; Le, T.T.; Nguyen, T.D.; Le, T.T.; Nguyen, T.M.; Nguyen, T.H. Desorption of fluoroquinolones from bio-waste adsorbents in acidic and neutral media. Chemosphere 2018, 208, 844–853. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, Z.; Li, X.; Wang, Y.; Zhang, Y.; Liu, Y.; Zhang, X.; Wang, X.; Zhang, J.; Zhang, Q.; et al. Recovery of antibiotics from spent adsorbents using alkaline eluents. J. Environ. Sci. 2020, 89, 112–120. [Google Scholar] [CrossRef]
- Ghaedi, M.; Shaterian, H.R.; Molaei, M.; Daneshfar, A.; Asfaram, A.; Khani, H.; Vafaei, F.; Ghaedi, A.M.; Arami, M.; Sadegh, H.; et al. Desorption behavior of antibiotics from biochar using mixed organic eluents. J. Hazard. Mater. 2019, 374, 391–401. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Sillanpää, M. Regeneration of bio-based adsorbents using salt elution. Chem. Eng. J. 2017, 328, 237–253. [Google Scholar]
- Zhang, C.; Zhang, Y.; Li, X.; Wang, Y.; Liu, Y.; Zhang, Z.; Zhang, X.; Zhang, J.; Zhang, Q.; Zhang, X.; et al. Adsorptive removal of pharmaceuticals using thermally modified calcium-based materials. Environ. Sci. Technol. 2020, 54, 6938–6947. [Google Scholar]
- Afzal, M.Z.; Yue, R.; Sun, X.; Song, C.; Wang, S. Enhanced removal of ciprofloxacin using humic acid modified hydrogel beads. Sci. Total Environ. 2020, 707, 135232. [Google Scholar] [CrossRef]
- Foo, K.Y.; Hameed, B.H. Insights into the modeling of adsorption isotherm systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Tan, I.A.W.; Lee, K.T.; Mohamed, A.R.; Bhatia, S.; Sulaiman, O.; Mohamad, A.B. Removal of pharmaceutical contaminants using calcined lime from waste shells. RSC Adv. 2015, 5, 104546–104555. [Google Scholar]
- Mashangwa, T.D.; Tekere, M.; Sibanda, T. Determination of the efficacy of eggshell as a low-cost adsorbent for the treatment of metal laden effluents. Int. J. Environ. Res. 2017, 11, 175–188. [Google Scholar] [CrossRef]
- Ofudje, E.A.; Sodiya, E.F.; Ibadin, F.H.; Ogundiran, A.A.; Alayande, S.O.; Osideko, O.A. Mechanism of Cu2+ and reactive yellow 145 dye adsorption onto eggshell waste as low-cost adsorbent. Chem. Ecol. 2021, 37, 268–289. [Google Scholar] [CrossRef]
- Ghorbali, R.; Sellaoui, L.; Ghalla, H.; Bonilla-Petriciolet, A.; Trejo-Valencia, R.; Sánchez-Barroso, A.; Deng, S.; Ben Lamine, A. In-depth study of adsorption mechanisms and interactions in the removal of pharmaceutical contaminants via activated carbon. Environ. Sci. Pollut. Res. 2024, 31, 39208–39216. [Google Scholar] [CrossRef]
Particle Size | % Removal |
---|---|
1 mm | 70% |
700 µm | 79% |
625 µm | 84% |
425 µm | 74% |
325 µm | 72% |
Adsorbent Type | % Removal |
---|---|
U-ES | 83% |
HCl-Treated Eggshells | 91% |
Thermally Activated Lime (CaO) | 96% |
Factor | U-ES | HCl-Treated Eggshells | Thermally Activated Lime (CaO) |
---|---|---|---|
% Removal (CIP) | 83% | 91% | 96% |
Preparation Steps | Drying, grinding, sieving | Soaking in HCl (48 h), rinsing, drying | Calcination at 600 °C (2 h), grinding |
Chemicals Required | None | 1 M HCl | None (except for energy input) |
Energy Consumption | Low | Moderate (drying) | High (heating to 600 °C) |
Cost of Materials | Very low | Low (HCl is inexpensive) | Moderate–high (due to energy) |
Environmental Safety | Excellent (natural waste) | Safe with proper neutralization | Safe post-cooling, caustic before use |
Reusability/Regeneration | Moderate | Moderate | High |
Adsorption Mechanism | Physical (surface binding) | Electrostatic and H-bonding | Chemisorption, precipitation |
Ease of Scale-Up | Very easy | Easy | Technically demanding |
Adsorbent | Langmuir Model | Freundlich Model | ||||
---|---|---|---|---|---|---|
qmax | KL | R2 | KF | 1/n | R2 | |
U-ES | 23.75 | 0.0228 | 0.9918 | 0.6937 | 0.7826 | 0.9988 |
Acid-treated | 4.083 | 0.1072 | 0.8926 | 0.6599 | 0.4681 | 0.9563 |
Thermally treated | 1.820 | 0.4049 | 0.6222 | 0.8988 | 0.1895 | 0.7566 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bin Hammad, M.; Al-Asheh, S.; Abouleish, M. Removal of Ciprofloxacin from Pharmaceutical Wastewater Using Untreated and Treated Eggshells as Biosorbents. Water 2025, 17, 2656. https://doi.org/10.3390/w17172656
Bin Hammad M, Al-Asheh S, Abouleish M. Removal of Ciprofloxacin from Pharmaceutical Wastewater Using Untreated and Treated Eggshells as Biosorbents. Water. 2025; 17(17):2656. https://doi.org/10.3390/w17172656
Chicago/Turabian StyleBin Hammad, Maryam, Sameer Al-Asheh, and Mohamed Abouleish. 2025. "Removal of Ciprofloxacin from Pharmaceutical Wastewater Using Untreated and Treated Eggshells as Biosorbents" Water 17, no. 17: 2656. https://doi.org/10.3390/w17172656
APA StyleBin Hammad, M., Al-Asheh, S., & Abouleish, M. (2025). Removal of Ciprofloxacin from Pharmaceutical Wastewater Using Untreated and Treated Eggshells as Biosorbents. Water, 17(17), 2656. https://doi.org/10.3390/w17172656