Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (354)

Search Parameters:
Keywords = base station antenna

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 2352 KiB  
Article
Three-Dimensional Physics-Based Channel Modeling for Fluid Antenna System-Assisted Air–Ground Communications by Reconfigurable Intelligent Surfaces
by Yuran Jiang and Xiao Chen
Electronics 2025, 14(15), 2990; https://doi.org/10.3390/electronics14152990 - 27 Jul 2025
Viewed by 208
Abstract
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base [...] Read more.
Reconfigurable intelligent surfaces (RISs), recognized as one of the most promising key technologies for sixth-generation (6G) mobile communications, are characterized by their minimal energy expenditure, cost-effectiveness, and straightforward implementation. In this study, we develop a novel communication channel model that integrates RIS-enabled base stations with unmanned ground vehicles. To enhance the system’s adaptability, we implement a fluid antenna system (FAS) at the unmanned ground vehicle (UGV) terminal. This innovative model demonstrates exceptional versatility across various wireless communication scenarios through the strategic adjustment of active ports. The inherent dynamic reconfigurability of the FAS provides superior flexibility and adaptability in air-to-ground communication environments. In the paper, we derive and study key performance characteristics like the autocorrelation function (ACF), validating the model’s effectiveness. The results demonstrate that the RIS-FAS collaborative scheme significantly enhances channel reliability while effectively addressing critical challenges in 6G networks, including signal blockage and spatial constraints in mobile terminals. Full article
Show Figures

Figure 1

16 pages, 419 KiB  
Article
Energy-Efficient Resource Allocation for Near-Field MIMO Communication Networks
by Tong Lin, Jianyue Zhu, Junfan Zhu, Yaqin Xie, Yao Xu and Xiao Chen
Sensors 2025, 25(14), 4293; https://doi.org/10.3390/s25144293 - 10 Jul 2025
Viewed by 321
Abstract
With the rapid development of sixth-generation (6G) wireless networks and large-scale multiple-input multiple-output (MIMO) technology, the number of antennas deployed at base stations (BSs) has increased significantly, resulting in a high probability that users are in the near-field region. Note that it is [...] Read more.
With the rapid development of sixth-generation (6G) wireless networks and large-scale multiple-input multiple-output (MIMO) technology, the number of antennas deployed at base stations (BSs) has increased significantly, resulting in a high probability that users are in the near-field region. Note that it is difficult for the traditional far-field plane-wave model to meet the demand for high-precision beamforming in the near-field region. In this paper, we jointly optimize the power and the number of antennas to achieve the maximum energy efficiency for the users located in the near-field region. Particularly, this paper considers the resolution constraint in the formulated optimization problem, which is designed to guarantee that interference between users can be neglected. A low-complexity optimization algorithm is proposed to realize the joint optimization of power and antenna number. Specifically, the near-field resolution constraint is first simplified to a polynomial inequality using the Fresnel approximation. Then the fractional objective of maximizing energy efficiency is transformed into a convex optimization subproblem via the Dinkelbach algorithm, and the power allocation is solved for a fixed number of antennas. Finally, the number of antennas is integrally optimized with monotonicity analysis. The simulation results show that the proposed method can significantly improve the system energy efficiency and reduce the antenna overhead under different resolution thresholds, user angles, and distance configurations, which provides a practical reference for the design of green and low-carbon near-field communication systems. Full article
Show Figures

Figure 1

23 pages, 5970 KiB  
Article
Miniaturized and Circularly Polarized Dual-Port Metasurface-Based Leaky-Wave MIMO Antenna for CubeSat Communications
by Tale Saeidi, Sahar Saleh and Saeid Karamzadeh
Electronics 2025, 14(14), 2764; https://doi.org/10.3390/electronics14142764 - 9 Jul 2025
Viewed by 386
Abstract
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface [...] Read more.
This paper presents a compact, high-performance metasurface-based leaky-wave MIMO antenna with dimensions of 40 × 30 mm2, achieving a gain of 12.5 dBi and a radiation efficiency of 85%. The antenna enables precise control of electromagnetic waves, featuring a flower-like metasurface (MTS) with coffee bean-shaped arrays on substrates of varying permittivity, separated by a cavity layer to enhance coupling. Its dual-port MIMO design boosts data throughput operating in three bands (3.75–5.25 GHz, 6.4–15.4 GHz, and 22.5–30 GHz), while the leaky-wave mechanism supports frequency- or phase-dependent beamsteering without mechanical parts. Ideal for CubeSat communications, its compact size meets CubeSat constraints, and its high gain and efficiency ensure reliable long-distance communication with low power consumption, which is crucial for low Earth orbit operations. Circular polarization (CP) maintains signal integrity despite orientation changes, and MIMO capability supports high data rates for applications such as Earth observations or inter-satellite links. The beamsteering feature allows for dynamic tracking of ground stations or satellites, enhancing mission flexibility and reducing interference. This lightweight, efficient antenna addresses modern CubeSat challenges, providing a robust solution for advanced space communication systems with significant potential to enhance satellite connectivity and data transmission in complex space environments. Full article
(This article belongs to the Special Issue Recent Advancements of Millimeter-Wave Antennas and Antenna Arrays)
Show Figures

Figure 1

18 pages, 6082 KiB  
Article
Metamaterial-Enhanced MIMO Antenna for Multi-Operator ORAN Indoor Base Stations in 5G Sub-6 GHz Band
by Asad Ali Khan, Zhenyong Wang, Dezhi Li, Atef Aburas, Ali Ahmed and Abdulraheem Aburas
Appl. Sci. 2025, 15(13), 7406; https://doi.org/10.3390/app15137406 - 1 Jul 2025
Viewed by 403
Abstract
This paper presents a novel, four-port, rectangular microstrip, inset-feed multiple-input and multiple-output (MIMO) antenna array, enhanced with metamaterials for improved gain and isolation, specifically designed for multi-operator 5G open radio access network (ORAN)-based indoor software-defined radio (SDR) applications. ORAN is an open-source interoperable [...] Read more.
This paper presents a novel, four-port, rectangular microstrip, inset-feed multiple-input and multiple-output (MIMO) antenna array, enhanced with metamaterials for improved gain and isolation, specifically designed for multi-operator 5G open radio access network (ORAN)-based indoor software-defined radio (SDR) applications. ORAN is an open-source interoperable framework for radio access networks (RANs), while SDR refers to a radio communication system where functions are implemented via software on a programmable platform. A 3 × 3 metamaterial (MTM) superstrate is placed above the MIMO antenna array to improve gain and reduce the mutual coupling of MIMO. The proposed MIMO antenna operates over a 300 MHz bandwidth (3.5–3.8 GHz), enabling shared infrastructure for multiple operators. The antenna’s dimensions are 75 × 75 × 18.2 mm3. The antenna possesses a reduced mutual coupling less than −30 dB and a 3.5 dB enhancement in gain with the help of a novel 3 × 3 MTM superstrate 15 mm above the radiating MIMO elements. A performance evaluation based on simulated results and lab measurements demonstrates the promising value of key MIMO metrics such as a low envelope correlation coefficient (ECC) < 0.002, diversity gain (DG) ~10 dB, total active reflection coefficient (TARC) < −10 dB, and channel capacity loss (CCL) < 0.2 bits/sec/Hz. Real-world testing of the proposed antenna for ORAN-based sub-6 GHz indoor wireless systems demonstrates a downlink throughput of approximately 200 Mbps, uplink throughput of 80 Mbps, and transmission delays below 80 ms. Additionally, a walk test in an indoor environment with a corresponding floor plan and reference signal received power (RSRP) measurements indicates that most of the coverage area achieves RSRP values exceeding −75 dBm, confirming its suitability for indoor applications. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

21 pages, 1204 KiB  
Article
Multi-Task Learning for Joint Indoor Localization and Blind Channel Estimation in OFDM Systems
by Maria Camila Molina, Iness Ahriz, Lounis Zerioul and Michel Terré
Sensors 2025, 25(13), 4095; https://doi.org/10.3390/s25134095 - 30 Jun 2025
Viewed by 393
Abstract
In contemporary wireless communication systems, achieving precise localization of communicating devices and accurate channel estimation is crucial for enhancing operational efficiency and reliability. This study introduces a novel approach that integrates the localization task and channel estimation into a single framework. We present [...] Read more.
In contemporary wireless communication systems, achieving precise localization of communicating devices and accurate channel estimation is crucial for enhancing operational efficiency and reliability. This study introduces a novel approach that integrates the localization task and channel estimation into a single framework. We present a multi-task neural network architecture capable of simultaneously estimating channels from multiple base stations in a blind manner while estimating user terminal coordinates in given indoor environments. This approach exploits the relationship between channel characteristics and spatial information, using the same channel state information (CSI) data to perform both tasks with a single model. We evaluate the proposed solution, assessing its effectiveness across differing antenna spacing configurations and indoor test environments using both WiFi and 5G orthogonal frequency-division multiplexing (OFDM) systems. The results show performance benefits, achieving comparable channel estimation results to other studies while simultaneously providing a localization estimate, resulting in reduced model overhead while leveraging spatial context. The presented system demonstrates potential to improve the efficiency of communication systems in real-world applications, aligning with the goals of emerging integrated sensing and communication (ISAC) systems. Results based on experimental data using the proposed solution show a 50th percentile localization error of 1.62 m for 3-tap channels and 0.89 m for 10-tap channels. Full article
Show Figures

Figure 1

21 pages, 2973 KiB  
Article
Machine Learning Approach for Ground-Level Estimation of Electromagnetic Radiation in the Near Field of 5G Base Stations
by Oluwole John Famoriji and Thokozani Shongwe
Appl. Sci. 2025, 15(13), 7302; https://doi.org/10.3390/app15137302 - 28 Jun 2025
Viewed by 268
Abstract
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G [...] Read more.
Electromagnetic radiation measurement and management emerge as crucial factors in the economical deployment of fifth-generation (5G) infrastructure, as the new 5G network emerges as a network of services. By installing many base stations in strategic locations that operate in the millimeter-wave range, 5G services are able to meet serious demands for bandwidth. To evaluate the ground-plane radiation level of electromagnetics close to 5G base stations, we propose a unique machine-learning-based approach. Because a machine learning algorithm is trained by utilizing data obtained from numerous 5G base stations, it exhibits the capability to estimate the strength of the electric field effectively at every point of arbitrary radiation, while the base station generates a network and serves various numbers of 5G terminals running in different modes of service. The model requires different numbers of inputs, including the antenna’s transmit power, antenna gain, terminal service modes, number of 5G terminals, distance between the 5G terminals and 5G base station, and environmental complexity. Based on experimental data, the estimation method is both feasible and effective; the machine learning model’s mean absolute percentage error is about 5.89%. The degree of correctness shows how dependable the developed technique is. In addition, the developed approach is less expensive when compared to measurements taken on-site. The results of the estimates can be used to save test costs and offer useful guidelines for choosing the best location, which will make 5G base station electromagnetic radiation management or radio wave coverage optimization easier. Full article
(This article belongs to the Special Issue Recent Advances in Antennas and Propagation)
Show Figures

Figure 1

36 pages, 1587 KiB  
Article
Analysis of MCP-Distributed Jammers and 3D Beam-Width Variations for UAV-Assisted C-V2X Millimeter-Wave Communications
by Mohammad Arif, Wooseong Kim, Adeel Iqbal and Sung Won Kim
Mathematics 2025, 13(10), 1665; https://doi.org/10.3390/math13101665 - 19 May 2025
Cited by 2 | Viewed by 378
Abstract
Jamming devices introduce unwanted signals into the network to disrupt primary communications. The effectiveness of these jamming signals mainly depends on the number and distribution of the jammers. The impact of clustered jamming has not been investigated previously for an unmanned aerial vehicle [...] Read more.
Jamming devices introduce unwanted signals into the network to disrupt primary communications. The effectiveness of these jamming signals mainly depends on the number and distribution of the jammers. The impact of clustered jamming has not been investigated previously for an unmanned aerial vehicle (UAV)-assisted cellular-vehicle-to-everything (C-V2X) communications by considering multiple roads in the given region. Also, exploiting three-dimensional (3D) beam-width variations for a millimeter waveband antenna in the presence of jamming for vehicular node (V-N) links has not been evaluated, which influences the UAV-assisted C-V2X system’s performance. The novelty of this paper resides in analyzing the impact of clustered jamming for UAV-assisted C-V2X networks and quantifying the effects of fluctuating antenna 3D beam width on the V-N performance by exploiting millimeter waves. To this end, we derive the analytical expressions for coverage of a typical V-N linked with a line-of-sight (LOS) UAV, non-LOS UAV, macro base station (MBS), and recipient V-N for UAV-assisted C-V2X networks by exploiting beam-width variations in the presence of jammers. The results show network performance in terms of coverage and spectral efficiencies by setting V-Ns equal to 3 km−2, MBSs equal to 3 km−2, and UAVs equal to 6 km−2. The findings indicate that the performance of millimeter waveband UAV-assisted C-V2X communications is decreased by introducing clustered jamming in the given region. Specifically, the coverage performance of the network decreases by 25.5% at −10 dB SIR threshold in the presence of clustered jammers. The performance further declines by increasing variations in the antenna 3D beam width. Therefore, network designers must focus on considering advanced counter-jamming techniques when jamming signals, along with the beam-width fluctuations, are anticipated in vehicular networks. Full article
(This article belongs to the Section D1: Probability and Statistics)
Show Figures

Figure 1

21 pages, 411 KiB  
Article
Full-Duplex Relaying Systems with Massive MIMO: Equal Gain Approach
by Meng Wang, Boying Zhao, Wenqing Li, Meng Jin and Si-Nian Jin
Symmetry 2025, 17(5), 770; https://doi.org/10.3390/sym17050770 - 15 May 2025
Viewed by 306
Abstract
In this paper, the uplink spectral efficiency performance of a massive MIMO system based on full-duplex relay communication is investigated in Rician fading channels. The relay station is equipped with a large number of antennas, while multiple source and destination nodes are located [...] Read more.
In this paper, the uplink spectral efficiency performance of a massive MIMO system based on full-duplex relay communication is investigated in Rician fading channels. The relay station is equipped with a large number of antennas, while multiple source and destination nodes are located at both ends of the transceiver. Each source and destination node is equipped with a single antenna. The relay station adopts Maximum Ratio Combining/Maximum Ratio Transmission (MRC/MRT) and Equal Gain Combining/Equal Gain Transmission (EGC/EGT) schemes to perform linear preprocessing on the received signals. Approximate expressions for uplink spectral efficiency under both MRC/MRT and EGC/EGT schemes are derived, and the effects of antenna number, signal-to-noise ratio (SNR), and loop interference on spectral efficiency are analyzed. In addition, the impact of full-duplex and half-duplex modes on system performance is compared, and a hybrid relay scheme is proposed to maximize the total spectral efficiency by dynamically switching between full-duplex and half-duplex modes based on varying levels of loop interference. Finally, a novel power allocation scheme is proposed to maximize energy efficiency under given total spectral efficiency and peak power constraints at both the relay and source nodes. The results show that the impact of loop interference can be eliminated by using a massive receive antenna array, leading to the disappearance of inter-pair interference and noise. Under these conditions, the spectral efficiency of the system can be improved up to 2N times, while the transmission power of the user and relay nodes can be reduced to 1/Nrx and 1/Ntx, respectively. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

20 pages, 662 KiB  
Article
Secure Wireless Communication for Correlated Legitimate User and Eavesdropper Channels via Movable-Antenna Enhanced Frequency Diverse Array
by Xuehan Wu, Huaizong Shao, Jingran Lin, Ye Pan and Weijie Xiong
Entropy 2025, 27(4), 401; https://doi.org/10.3390/e27040401 - 9 Apr 2025
Cited by 1 | Viewed by 446
Abstract
Physical-layer (PHY) security is widely used as an effective method for ensuring secure wireless communications. However, when the legitimate user (LU) and the eavesdropper (Eve) are in close proximity, the channel coupling can significantly degrade the secure performance of PHY. Frequency diverse array [...] Read more.
Physical-layer (PHY) security is widely used as an effective method for ensuring secure wireless communications. However, when the legitimate user (LU) and the eavesdropper (Eve) are in close proximity, the channel coupling can significantly degrade the secure performance of PHY. Frequency diverse array (FDA) technique addresses channel coupling issues by introducing frequency offsets among array elements. However, FDA’s ability to secure communication relies mainly on frequency domain characteristics, lacking the spatial degrees of freedom. The recently proposed movable antenna (MA) technology serves as an effective approach to overcome this limitation. It offers the flexibility to adjust antenna positions dynamically, thereby further decoupling the channels between LU and Eve. In this paper, we propose a novel MA-FDA approach, which offers a comprehensive solution for enhancing PHY security. We aim to maximize the achievable secrecy rate through the joint optimization of all antenna positions at the base station (BS), FDA frequency offsets, and beamformer, subject to the predefined regions for antenna positions, frequency offsets range, and energy constraints. To solve this non-convex optimization problem, which involves highly coupled variables, the alternating optimization (AO) method is employed to cyclically update the parameters, with the projected gradient ascent (PGA) method and block successive upper-bound minimization (BSUM) method being employed to tackle the challenging subproblems. Simulation results demonstrate that the MA-FDA approach can achieve a higher secrecy rate compared to the conventional phased array (PA) or fixed-position antenna (FPA) schemes. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

17 pages, 3964 KiB  
Article
A Methodology for Efficient Antenna Deployment in Distributed Massive Multiple-Input Multiple-Output Systems
by Jesús R. Pérez, Rafael P. Torres, Luis Valle, Lorenzo Rubio, Vicent M. Rodrigo-Peñarrocha and Juan Reig
Electronics 2025, 14(6), 1233; https://doi.org/10.3390/electronics14061233 - 20 Mar 2025
Viewed by 305
Abstract
This paper, taking as reference channel data previously obtained by using a rigorous and well-tested ray-tracing method for a concentrated massive multiple-input multiple-output (mMIMO) system, focuses on the optimization of the set of potential antennas required in a distributed mMIMO system to achieve [...] Read more.
This paper, taking as reference channel data previously obtained by using a rigorous and well-tested ray-tracing method for a concentrated massive multiple-input multiple-output (mMIMO) system, focuses on the optimization of the set of potential antennas required in a distributed mMIMO system to achieve the same channel spectral efficiency as the concentrated system. Concerning the optimizer, a binary particle swarm optimization algorithm was considered to decide whether to activate or deactivate any of the antennas within the original mesh, taking into account, in order to direct the search, the total spectral efficiency, the equality between the spectral efficiency of users, and the number of receiver antennas at the distributed base station. The analysis was carried out in a large indoor environment at the 5G n258 frequency band (26 GHz), concentrating on the up-link and considering a set of 20 uniformly distributed active users. The results obtained show that, in the distributed mMIMO system, an arrangement with fewer than half the number of receiver antennas of the initial mesh is required to achieve a similar performance to that of the concentrated one taken as a reference. Full article
(This article belongs to the Collection MIMO Antennas)
Show Figures

Figure 1

22 pages, 15026 KiB  
Article
Localization of Radio Sources Using High Altitude Platform Station (HAPS)
by Yuta Furuse and Gia Khanh Tran
Sensors 2025, 25(6), 1935; https://doi.org/10.3390/s25061935 - 20 Mar 2025
Viewed by 498
Abstract
In Japan, the DEURAS system has been deployed to detect and locate illegal radio sources that either exceed permissible transmission power limits or operate on unauthorized frequencies. This system utilizes receiving antennas installed on high-rise buildings and radio towers to capture radio signals [...] Read more.
In Japan, the DEURAS system has been deployed to detect and locate illegal radio sources that either exceed permissible transmission power limits or operate on unauthorized frequencies. This system utilizes receiving antennas installed on high-rise buildings and radio towers to capture radio signals and estimate the location of the transmission source. However, in densely built urban environments, the accuracy of location estimation is often compromised due to signal reflections and diffractions. Additionally, in large-scale disasters such as earthquakes, terrestrial infrastructure may be severely damaged, making it essential to develop a localization system that operates independently of ground-based stations. To overcome these limitations, this study proposes a localization system based on a high-altitude-platform station (HAPS), which operates at an altitude of approximately 20 km. The feasibility and effectiveness of the proposed system are evaluated through numerical simulations, considering various environmental conditions. The results demonstrate that HAPS-based localization significantly improves positioning accuracy, offering a robust and high-precision alternative for radio source detection, particularly in scenarios where traditional ground-based systems are unreliable or unavailable. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

16 pages, 18543 KiB  
Review
A Review on Thermal Management and Heat Dissipation Strategies for 5G and 6G Base Stations: Challenges and Solutions
by Talib Dbouk and Oumar Mourad
Energies 2025, 18(6), 1355; https://doi.org/10.3390/en18061355 - 10 Mar 2025
Cited by 2 | Viewed by 1995
Abstract
A literature review is presented on energy consumption and heat transfer in recent fifth-generation (5G) antennas in network base stations. The review emphasizes on the role of computational science in addressing emerging design challenges for the coming 6G technology, such as reducing energy [...] Read more.
A literature review is presented on energy consumption and heat transfer in recent fifth-generation (5G) antennas in network base stations. The review emphasizes on the role of computational science in addressing emerging design challenges for the coming 6G technology, such as reducing energy consumption and enhancing equipment thermal management in more compact designs. It examines the contributions of (i) advanced modeling and simulation sciences, including antenna modeling and design, the use of (ii) computational fluid dynamics (CFD) and heat transfer, and (iii) the application of artificial intelligence (AI) in these settings. The scientific interactions and collaborations between these scientific multidisciplinary approaches are vital in the effort to develop innovative 6G thermal equipment designs. This is essential if we are to overcome the current scientific barriers and challenges faced by this evolving technology, where the rapid transition from 5G to 6G will shape the expanding fields of deploying smaller satellites into lower orbits in outer space. Full article
(This article belongs to the Special Issue Heat Transfer Principles and Applications)
Show Figures

Figure 1

22 pages, 7551 KiB  
Article
Dual-Band Single-Layered Frequency Selective Surface Filter for LTE Band with Angular Stability
by Vartika Dahima, Ranjan Mishra and Ankush Kapoor
Telecom 2025, 6(1), 18; https://doi.org/10.3390/telecom6010018 - 7 Mar 2025
Viewed by 1542
Abstract
This study presents an innovative Dual-Band Frequency Selective Surface (FSS) designed for LTE applications, offering an effective solution for minimizing Passive Inter-Modulation (PIM) in contemporary wireless communication systems at the base station. The proposed passband FSS filter is designed to deliver optimal dual-band [...] Read more.
This study presents an innovative Dual-Band Frequency Selective Surface (FSS) designed for LTE applications, offering an effective solution for minimizing Passive Inter-Modulation (PIM) in contemporary wireless communication systems at the base station. The proposed passband FSS filter is designed to deliver optimal dual-band filtering characteristics with consistent stability over incidence angles up to 80°. Corresponding to antenna systems requirements, the proposed method gives resonant frequencies at 1.9 and 2.1 GHz which operate in the LTE band with bandwidths of 40 and 60 MHz, respectively. Moreover, the proposed design is analyzed to establish the optimal range for each resonant frequency by examining the parametric effects. The suggested FSS-based filter consists of a single-layer structure with the dimension of the unit cell of 0.33λ1 × 0.33λ1 where λ1 is the wavelength of low frequency, which delivers desired reflection and transmission coefficients using RT/Duroid 5880 with a thickness of 0.508 mm. The designed filter is validated through measurements of a fabricated prototype, demonstrating its practicality and performance. Simulations carried out with Equivalent Circuit Modeling (ECM) are demonstrated by measurements from a constructed 4 × 4 array prototype, showing a robust alignment with experimental findings. This work emphasizes an asymmetric FSS design that improves frequency selectivity and angular stability for the desired LTE dual band and also depicts the future possibilities for tuneable models and broader applications to meet the demands of modern wireless communication. Full article
Show Figures

Figure 1

26 pages, 9151 KiB  
Article
Beam-Switching Antennas Using a Butler Matrix with a Five-Element Configuration
by Wei-Heng Peng and Yen-Sheng Chen
Electronics 2025, 14(5), 959; https://doi.org/10.3390/electronics14050959 - 27 Feb 2025
Viewed by 937
Abstract
Beam-switching technology is critical for fifth-generation (5G) Frequency Range 1 (FR1) base stations, yet existing odd-number Butler matrix designs often struggle to achieve compact size, low complexity, and efficient performance. Although a few studies have investigated 5 × 5 Butler matrices, their reliance [...] Read more.
Beam-switching technology is critical for fifth-generation (5G) Frequency Range 1 (FR1) base stations, yet existing odd-number Butler matrix designs often struggle to achieve compact size, low complexity, and efficient performance. Although a few studies have investigated 5 × 5 Butler matrices, their reliance on waveguide structures or multilayer implementations leads to larger footprints and greater fabrication complexity. This work introduces a novel 5 × 5 Butler matrix integrated with a five-element dipole antenna array for 3.3–3.7 GHz applications, offering notable improvements in beam-switching efficiency and overall system design. The proposed matrix generates five distinct beams at −144°, −72°, 0°, 72°, and 144° by employing precise phase progression, while eliminating crossovers and power dividers to simplify the layout. With a compact footprint of 2.67 × 0.80 × 0.02 cubic wavelength—94.4% smaller than waveguide-based designs—the matrix achieves a bandwidth of 3.32–3.62 GHz and consistently covers the target beams. The integrated system attains measured gains up to 11.4 dBi and half-power beamwidths ranging from 7.96° to 23.66°, with sidelobe levels comparable to those of state-of-the-art configurations. By employing a low-loss substrate, the gain can be further enhanced by as much as 6.81 dB, highlighting the potential for additional performance gains. These innovations establish the proposed design as a compact, low-complexity, and high-performance solution for 5G base station applications. Full article
Show Figures

Figure 1

20 pages, 1044 KiB  
Article
Reliable Transmission of Energy Harvesting Full-Duplex Relay Systems with Short-Packet Communications
by Chenxi Yang, Mingkang Yu, Jinshu Huang, Dechuan Chen, Jin Li and Pei Jiang
Symmetry 2025, 17(2), 281; https://doi.org/10.3390/sym17020281 - 12 Feb 2025
Viewed by 631
Abstract
Energy harvesting (EH) from radio frequency (RF) signals provides a promising approach for supplying sustainable and convenient energy to low-power Internet of Things (IoT) devices. In this work, we investigate short-packet communications in a full-duplex (FD) relay system, where RF signals from a [...] Read more.
Energy harvesting (EH) from radio frequency (RF) signals provides a promising approach for supplying sustainable and convenient energy to low-power Internet of Things (IoT) devices. In this work, we investigate short-packet communications in a full-duplex (FD) relay system, where RF signals from a source are utilized to power an energy-constrained relay through the time switching protocol. Specifically, hardware impairments in each node and residual self-interference caused by FD are jointly considered. To ensure reliable transmission, two antennas are symmetrically arranged according to the position of the relay station, both of which are used for energy harvesting. Furthermore, we explored two practical schemes based on symmetric channel correlation, i.e., an independent channel for energy harvesting and an identical channel for energy harvesting. For both scenarios, we derive closed-form approximations for the overall average block error rate (BLER) and effective throughput. The validity of our analysis is confirmed through computer simulations, demonstrating that the proposed scheme enhances the reliability and throughput of the system compared with the existing scheme in the literature at low transmission rates and transmit signal-to-noise-ratios (SNRs). Full article
(This article belongs to the Special Issue Symmetry/Asymmetry in Future Wireless Networks)
Show Figures

Figure 1

Back to TopTop