Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (98)

Search Parameters:
Keywords = basaltic units

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1471 KiB  
Article
Impact of Basalt Rock Powder on Ryegrass Growth and Nutrition on Sandy and Loamy Acid Soils
by Charles Desmalles, Lionel Jordan-Meille, Javier Hernandez, Cathy L. Thomas, Sarah Dunham, Feifei Deng, Steve P. McGrath and Stephan M. Haefele
Agronomy 2025, 15(8), 1791; https://doi.org/10.3390/agronomy15081791 - 25 Jul 2025
Viewed by 440
Abstract
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt [...] Read more.
Enhanced weathering of silicate rocks in agriculture is an option for atmospheric CO2 removal and fertility improvement. The objective of our work is to characterise some of the agricultural consequences of a basaltic powder amendment on soil-crop systems. Two doses of basalt (80 and 160 t ha−1) were applied to two types of slightly acid soils (sandy or silty clayey), derived from long-term trials at Bordeaux (INRAE, France) and Rothamsted Research (England), respectively. For each soil, half of the pots were planted with ryegrass; the other half were left bare. Thus, the experiment had twelve treatments with four replications per treatment. Soil pH increased with the addition of basalt (+0.8 unit), with a 5% equivalence of that of reactive chalk. The basalt contained macro- and micronutrients. Some cations extractable in the basalt before being mixed to the soil became more extractable with increased weathering, independent of plant cover. Plant uptake generally increased for macronutrients and decreased for micronutrients, due to increased stock (macro) and reduced availability (micronutrients and P), related to pH increases. K supplied in the basalt was responsible for a significant increase in plant yield on the sandy soil, linked to an average basalt K utilisation efficiency of 33%. Our general conclusion is that rock dust applications have to be re-evaluated at each site with differing soil characteristics. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

43 pages, 20293 KiB  
Article
Volcanic Stratigraphy, Petrology, Geochemistry and Precise U-Pb Zircon Geochronology of the Late Ediacaran Ouarzazate Group at the Oued Dar’a Caldera: Intracontinental Felsic Super-Eruptions in Association with Continental Flood Basalt Magmatism on the West African Craton (Saghro Massif, Anti-Atlas)
by Rachid Oukhro, Nasrrddine Youbi, Boriana Kalderon-Asael, David A. D. Evans, James Pierce, Jörn-Frederik Wotzlaw, Maria Ovtcharova, João Mata, Mohamed Achraf Mediany, Jihane Ounar, Warda El Moume, Ismail Hadimi, Oussama Moutbir, Moulay Ahmed Boumehdi, Abdelmalek Ouadjou and Andrey Bekker
Minerals 2025, 15(8), 776; https://doi.org/10.3390/min15080776 - 24 Jul 2025
Viewed by 594
Abstract
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. [...] Read more.
The Ouarzazate Group in the Anti-Atlas Belt of southern Morocco, part of the West African Craton (WAC), is a significant Proterozoic lithostratigraphic unit formed during the late Ediacaran period. It includes extensive volcanic rocks associated with the early stages of Iapetus Ocean opening. Zircon U-Pb dating and geochemical analyses of the Oued Dar’a Caldera (ODC) volcanic succession in the Saghro Massif reveal two major eruptive cycles corresponding to the lower and upper Ouarzazate Group. The 1st cycle (588–563 Ma) includes pre- and syn-caldera volcanic succession characterized by basaltic andesite to rhyolitic rocks, formed in a volcanic arc setting through lithospheric mantle-derived mafic magmatism and crustal melting. A major caldera-forming eruption occurred approximately 571–562 Ma, with associated rhyolitic dyke swarms indicating a larger caldera extent than previously known. The 2nd cycle (561–543 Ma) features post-caldera bimodal volcanism, with tholeiitic basalts and intraplate felsic magmas, signaling a shift to continental flood basalts and silicic volcanic systems. The entire volcanic activity spans approximately 23–40 million years. This succession is linked to late Ediacaran intracontinental super-eruptions tied to orogenic collapse and continental extension, likely in association with the Central Iapetus Magmatic Province (CIMP), marking a significant transition in the geodynamic evolution of the WAC. Full article
Show Figures

Figure 1

20 pages, 10834 KiB  
Article
Genesis of Basalts of the Raohe Subduction–Accretion Complex in the Wandashan Block, NE China, and Its Inspirations for Evolution of the Paleo-Pacific Ocean
by Qing Liu, Cui Liu, Jixu Liu, Jinfu Deng and Shipan Tian
Appl. Sci. 2025, 15(15), 8139; https://doi.org/10.3390/app15158139 - 22 Jul 2025
Viewed by 192
Abstract
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow [...] Read more.
The Raohe subduction–accretion complex (RSAC) in the Wandashan Block, NE China, comprises ultramafic rocks, gabbro, mafic volcanic rocks, deep-sea and hemipelagic sediments, and trench–slope turbidites. We investigate the basalts within the RSAC to resolve debates on its origin. Zircon U-Pb dating of pillow basalt from Dadingzi Mountain yields a concordant age of 117.5 ± 2.1 Ma (MSWD = 3.6). Integrating previous studies, we identify three distinct basalt phases. The Late Triassic basalt (210 Ma–230 Ma) is characterized as komatites–melilitite, exhibiting features of island arc basalt, as well as some characteristics of E-MORB. It also contains high-magnesium lava, suggesting that it may be a product of a juvenile arc. The Middle Jurassic basalt (around 159 Ma–172 Ma) consists of a combination of basalt and magnesium andesite, displaying features of oceanic island basalt and mid-ocean ridge basalt. Considering the contemporaneous sedimentary rocks as hemipelagic continental slope deposits, it is inferred that these basalts were formed in an arc environment associated with oceanic subduction, likely as a result of subduction of the young oceanic crust. The Early Cretaceous basalt (around 117 Ma) occurs in pillow structures, exhibiting some characteristics of oceanic island basalt but also showing transitional features towards a continental arc. Considering the regional distribution of the rocks, it is inferred that this basalt likely formed in a back-arc basin. Integrating the formation ages, nature, and tectonic attributes of the various structural units within the RSAC, as well as previous research, it is inferred that subduction of the Paleo-Pacific Ocean had already begun during the Late Triassic and continued into the Early Cretaceous without cessation. Full article
Show Figures

Figure 1

21 pages, 2049 KiB  
Article
Tracking Lava Flow Cooling from Space: Implications for Erupted Volume Estimation and Cooling Mechanisms
by Simone Aveni, Gaetana Ganci, Andrew J. L. Harris and Diego Coppola
Remote Sens. 2025, 17(15), 2543; https://doi.org/10.3390/rs17152543 - 22 Jul 2025
Viewed by 1022
Abstract
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we [...] Read more.
Accurate estimation of erupted lava volumes is essential for understanding volcanic processes, interpreting eruptive cycles, and assessing volcanic hazards. Traditional methods based on Mid-Infrared (MIR) satellite imagery require clear-sky conditions during eruptions and are prone to sensor saturation, limiting data availability. Here, we present an alternative approach based on the post-eruptive Thermal InfraRed (TIR) signal, using the recently proposed VRPTIR method to quantify radiative energy loss during lava flow cooling. We identify thermally anomalous pixels in VIIRS I5 scenes (11.45 µm, 375 m resolution) using the TIRVolcH algorithm, this allowing the detection of subtle thermal anomalies throughout the cooling phase, and retrieve lava flow area by fitting theoretical cooling curves to observed VRPTIR time series. Collating a dataset of 191 mafic eruptions that occurred between 2010 and 2025 at (i) Etna and Stromboli (Italy); (ii) Piton de la Fournaise (France); (iii) Bárðarbunga, Fagradalsfjall, and Sundhnúkagígar (Iceland); (iv) Kīlauea and Mauna Loa (United States); (v) Wolf, Fernandina, and Sierra Negra (Ecuador); (vi) Nyamuragira and Nyiragongo (DRC); (vii) Fogo (Cape Verde); and (viii) La Palma (Spain), we derive a new power-law equation describing mafic lava flow thickening as a function of time across five orders of magnitude (from 0.02 Mm3 to 5.5 km3). Finally, from knowledge of areas and episode durations, we estimate erupted volumes. The method is validated against 68 eruptions with known volumes, yielding high agreement (R2 = 0.947; ρ = 0.96; MAPE = 28.60%), a negligible bias (MPE = −0.85%), and uncertainties within ±50%. Application to the February-March 2025 Etna eruption further corroborates the robustness of our workflow, from which we estimate a bulk erupted volume of 4.23 ± 2.12 × 106 m3, in close agreement with preliminary estimates from independent data. Beyond volume estimation, we show that VRPTIR cooling curves follow a consistent decay pattern that aligns with established theoretical thermal models, indicating a stable conductive regime during the cooling stage. This scale-invariant pattern suggests that crustal insulation and heat transfer across a solidifying boundary govern the thermal evolution of cooling basaltic flows. Full article
Show Figures

Figure 1

22 pages, 4738 KiB  
Article
The Orogeny Transition of the Southern Beishan Orogenic Belt During the Early–Middle Devonian: Evidence from the Wudaomingshui Volcanic Rocks and Granite
by Tongtong He, Yuxi Wang, Jing Yan, Zhiyong Yang, Kangning Li, Zirui Liu, Zixuan Wang and Lei Wu
Minerals 2025, 15(6), 632; https://doi.org/10.3390/min15060632 - 10 Jun 2025
Viewed by 327
Abstract
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the [...] Read more.
The Southern Beishan Orogenic Belt (SBOB), an integral part of the Southern Central Asian Orogenic Belt (CAOB), is characterized by extensive Late Paleozoic magmatism. These igneous rocks are the key to studying the tectonic evolution process and the ocean–continent tectonic transformation in the southern margin of the CAOB and Paleo-Asian Ocean. We present zircon U-Pb chronology, in situ Lu-Hf isotopes, and whole-rock geochemistry data for Early–Middle Devonian volcanic rocks in the Sangejing Formation and granites from the Shuangyingshan-Huaniushan (SH) unit in the SBOB. The Wudaomingshiu volcanic rocks (Ca. 411.5 Ma) are calc-alkaline basalt-basaltic andesites with low SiO2 (47.35~55.59 wt.%) and high TiO2 (1.46~4.16 wt.%) contents, and are enriched in LREEs and LILEs (e.g., Rb, Ba, and Th), depleted in HREEs and HFSEs (Nb, Ta, and Ti), and weakly enriched in Zr-Hf. These mafic rocks are derived from the partial melting of the depleted lithosphere metasomatized by subduction fluid and contaminated by the lower crust. Wudaomingshui’s high-K calc-alkaline I-type granite has a crystallization age of 383.6 ± 2.2 Ma (MSWD = 0.11, n = 13), high Na2O (3.46~3.96 wt.%) and MgO (1.25~1.68 wt.%) contents, and a high DI differentiation index (70.69~80.45); it is enriched in LREEs and LILEs (e.g., Rb, Ba, and Th) and depleted in HREEs and HFSEs (e.g., Nb, Ta, and Ti). Granites have variable zircon εHf(t) values (−2.5~3.3) with Mesoproterozoic TDM2 ages (1310~1013 Ma) and originated from lower crustal melting with mantle inputs and minor upper crustal assimilation. An integrated analysis of magmatic suites in the SBOB, including rock assemblages, geochemical signatures, and zircon εHf(t) values (−2.5 to +3.3), revealed a tectonic transition from advancing to retreating subduction during the Early–Middle Devonian. Full article
(This article belongs to the Special Issue Tectonic Evolution of the Tethys Ocean in the Qinghai–Tibet Plateau)
Show Figures

Figure 1

15 pages, 12382 KiB  
Article
Origins of Zircon Xenocrysts in the Neoproterozoic South Anhui Ophiolite, Yangtze Block
by Ziming Sun, Junyong Li and Xiaolei Wang
Minerals 2025, 15(6), 563; https://doi.org/10.3390/min15060563 - 26 May 2025
Viewed by 388
Abstract
Zircon serves as a robust tracer for crustal recycling processes owing to its wide stability under diverse geological conditions. Its cryptic occurrence within ophiolites offers valuable insights into regional paleotectonic evolution. In this study, we identify a few zircon xenocrysts in both peridotite [...] Read more.
Zircon serves as a robust tracer for crustal recycling processes owing to its wide stability under diverse geological conditions. Its cryptic occurrence within ophiolites offers valuable insights into regional paleotectonic evolution. In this study, we identify a few zircon xenocrysts in both peridotite and basalt units from the Neoproterozoic South Anhui Ophiolite (SAO) in the southeastern Yangtze Block, South China. Zircon xenocrysts within the peridotite yield U-Pb ages ranging from ca. 2.7 to 1.0 Ga (n = 21), with three peaks of 2.8–2.5 Ga, 2.2–1.8 Ga, and 1.2–1.0 Ga. Comparative analysis of age spectra suggests these xenocrysts likely originated from recycled subducted continental materials within the Yangtze Block. In the basaltic rocks, zircon xenocrysts exhibit ages of ca. 2.1–0.9 Ga (n = 27), with peaks of 1.1–0.9 Ga, 1.5–1.4 Ga, and 2.1–1.7 Ga. These zircons are interpreted to have been inherited from wall rocks through crustal contamination during magma ascent, as their age spectra closely resemble those of the surrounding basement strata. Collectively, these findings support that the SAO possibly formed in a back-arc basin setting, characterized by significant crust–mantle interactions. Full article
Show Figures

Figure 1

20 pages, 43321 KiB  
Article
Volcano–Sedimentary Processes on an Ancient Oceanic Seafloor: Insights from the Gimigliano Metaophiolite Succession (Calabria, Southern Italy)
by Federica Barilaro, Andrea Di Capua, Giuseppe Cianflone, Giovanni Turano, Gianluca Robertelli, Fabrizio Brutto, Giuseppe Ciccone, Alessandro Foti, Vincenzo Festa and Rocco Dominici
Minerals 2025, 15(6), 552; https://doi.org/10.3390/min15060552 - 22 May 2025
Viewed by 1015
Abstract
This study investigates the volcano–sedimentary processes that occurred in an oceanic branch of the Western Tethys, now part of the Gimigliano–Monte-Reventino metaophiolite Unit, exposed at the southeastern termination of the Sila Piccola Massif, within the northern sector of the Calabria–Peloritani terrane (Calabria, southern [...] Read more.
This study investigates the volcano–sedimentary processes that occurred in an oceanic branch of the Western Tethys, now part of the Gimigliano–Monte-Reventino metaophiolite Unit, exposed at the southeastern termination of the Sila Piccola Massif, within the northern sector of the Calabria–Peloritani terrane (Calabria, southern Italy). Fieldwork, petrography, and mineralogical analyses on the Gimigliano metaophiolite succession have identified five distinct volcano–sedimentary lithofacies. These lithofacies are characterized by mineral assemblages of epidote, chlorite, quartz, and albite, with minor amounts of muscovite and calcite, resulting from high-pressure–low-temperature (HP-LT) metamorphism followed by low-grade greenschist metamorphism of mid-oceanic ridge basalt (MORB)-type volcanic products. Based on their stratigraphic and textural features, these lithofacies have been interpreted as metabasaltic flow layers emplaced during effusive volcanic eruptions and metahyaloclastic and metavolcaniclastic deposits formed by explosion-driven processes. This lithofacies assemblage suggests that the Gimigliano area likely represented an oceanic sector with high rates of magmatic outflows, where interactions between magma and water facilitated explosive activity and the dispersion of primary volcaniclastic deposits, mainly from the water column, in addition to the emplacement of basaltic lava flow. In contrast, other metaophiolite complexes in the Calabria region, characterized by the presence of pillow basalts, were areas with low effusive rates. The coexistence of these differences, along with the extensive presence of metaultramafites, portrays the Calabrian branch of the Tethys as a slow-spreading oceanic ridge where variations in surficial volcanic processes were controlled by differences in the effusion rates across its structure. This study is a valuable example of how a volcano–sedimentary approach to reconstructing the emplacement mechanisms of metaophiolite successions can provide geodynamic insights into ancient oceanic ridges. Full article
(This article belongs to the Special Issue Volcaniclastic Sedimentation in Deep-Water Basins)
Show Figures

Figure 1

28 pages, 17232 KiB  
Article
Mafic VMS Mineralization in the Mesozoic Metavolcanic Rocks of the Evros Ophiolite, Xylagani Area, Greece
by Vasilios Melfos, Panagiotis Voudouris, Grigorios-Aarne Sakellaris, Christos L. Stergiou, Margarita Melfou, Eftychia Peristeridou, Lambrini Papadopoulou, Jaroslav Pršek and Anestis Filippidis
Minerals 2025, 15(4), 420; https://doi.org/10.3390/min15040420 - 17 Apr 2025
Viewed by 622
Abstract
The sulfide mineralization at Xylagani is hosted in metamorphosed mafic massive and pillow lava. It has an Early–Middle Jurassic age and belongs to the Makri unit, which represents the upper crustal section of the Evros ophiolite in the Circum Rhodope Belt, Northern Greece. [...] Read more.
The sulfide mineralization at Xylagani is hosted in metamorphosed mafic massive and pillow lava. It has an Early–Middle Jurassic age and belongs to the Makri unit, which represents the upper crustal section of the Evros ophiolite in the Circum Rhodope Belt, Northern Greece. The protolith of the host rock is basalt that has a boninitic-to-low-Ti tholeiitic composition and was formed in an intra-oceanic supra-subduction zone within a juvenile forearc-to-volcanic arc setting. The volcanic rocks were subjected to ocean-floor metamorphism at very low-grade prehnite–pumpellyite facies and low-grade greenschist facies at temperatures of up to 360 °C and pressures between 1 and 4 kbar. The mineralization shows typical features of a stratabound–stratiform deposit and occurs as silicified lenses and layers with disseminated and massive sulfides and gold. Based on host rock composition, geotectonic setting, and base metal content, the mineralization at Xylagani is classified as a Cu-rich mafic volcanic-associated deposit, i.e., Cyprus-type VMS (volcanogenic massive sulfide). The mineralization consists of pyrite, chalcopyrite, gold, pyrrhotite, sphalerite, galena, and tennantite-(Zn). It was formed at a subseafloor setting where hydrothermal fluids circulated through the host volcanic rocks, resulting in a pervasive alteration (silicification and chloritization) and the development of a replacement VMS deposit. The very low-to-low-grade orogenic metamorphism and related deformation during the Alpine collision in the Middle Jurassic to Early Cretaceous periods remobilized the mineralization and formed milky quartz veins with rare sulfides, crosscutting the metavolcanic rocks. Full article
(This article belongs to the Special Issue Ore Deposits Related to Metamorphism)
Show Figures

Figure 1

22 pages, 17789 KiB  
Article
Mafic Enclaves Reveal Multi-Magma Storage and Feeding of Shangri-La Lavas at the Nevados de Chillán Volcanic Complex
by Camila Pineda, Gloria Arancibia, Valentina Mura, Diego Morata, Santiago Maza and John Browning
Minerals 2025, 15(4), 418; https://doi.org/10.3390/min15040418 - 17 Apr 2025
Cited by 1 | Viewed by 729
Abstract
The Nevados de Chillán Volcanic Complex is one of the most active of the Southern Volcanic Zone. It is formed by NW-SE-aligned eruptive centers divided into two subcomplexes, namely Cerro Blanco (basaltic andesitic) and Las Termas (dacitic), and two satellite cones (to the [...] Read more.
The Nevados de Chillán Volcanic Complex is one of the most active of the Southern Volcanic Zone. It is formed by NW-SE-aligned eruptive centers divided into two subcomplexes, namely Cerro Blanco (basaltic andesitic) and Las Termas (dacitic), and two satellite cones (to the SW and NE of the main alignment). Our study of the Shangri-La volcano, which is located between the two subcomplexes, in alignment with the satellite cones, and which produced dacitic lavas with basaltic andesitic enclaves, sheds light on the compositional and structural diversity of the volcanic complex. Detailed petrography along with mineral chemistry allows us to suggest partial hybridization between the enclaves and the host lavas and that mixing processes are related to the generation of the Shangri-La volcano and to other volcanic products generated in the complex. This is supported by mixing trends between the enclaves and the most differentiated units from Las Termas. We argue the presence of two main magma storage areas genetically related to crustal structures. A dacitic reservoir (~950 °C) is fed along NW-SE structures, whereas a deeper mafic reservoir (>1100 °C) utilizes predominantly NE-SW structures. We suggest that the intersection between these sets of structures facilitates magma ascent and controls the Nevados de Chillán plumbing system dynamics. Full article
Show Figures

Figure 1

40 pages, 14218 KiB  
Article
Geochemistry and Petrogenesis of Permo–Triassic Silicic Volcanic Rocks from the Circum-Rhodope Belt in the Vardar/Axios Zone, Northern Greece: An Example of a Post-Collision Extensional Tectonic Setting in the Tethyan Realm
by Argyro Asvesta
Geosciences 2025, 15(2), 48; https://doi.org/10.3390/geosciences15020048 - 2 Feb 2025
Viewed by 989
Abstract
The western side of the Vertiskos Unit crystalline basement in northern Greece is fringed by a Permo–Triassic low-grade metamorphic volcano-sedimentary complex that belongs to the Circum-Rhodope Belt (CRB), which is an important part of the Vardar/ Axios oceanic suture zone. The silicic volcanic [...] Read more.
The western side of the Vertiskos Unit crystalline basement in northern Greece is fringed by a Permo–Triassic low-grade metamorphic volcano-sedimentary complex that belongs to the Circum-Rhodope Belt (CRB), which is an important part of the Vardar/ Axios oceanic suture zone. The silicic volcanic rocks from the CRB are mainly rhyolitic to rhyodacitic lavas with aphyric and porphyritic textures as well as pyroclastic deposits. In this study, geochemical data obtained with X-ray fluorescence (XRF) for the CRB silicic volcanic rocks are reported and discussed to constrain their petrogenesis and tectonic setting. The rocks are peraluminous and show enrichment in K, Rb, Th, Zr, Y, and Pb while being depleted in Ba, Sr, Nb, P, and Ti, and they have Zr + Nb + Y + Ce > 350 ppm, which are characteristic features of anorogenic A-type granites. They have a Y/Nb ratio > 1.2 and belong to A2-subtype granitoids, implying crust-derived magma in a post-collisional tectonic setting. The high Rb/Sr ratio (3.45–39.14), the low molar CaO/(MgO + FeOt) ratio, and the CaO/Na2O ratio (<0.5), which they display, indicate that metapelites are the magma sources. Their low Al2O3/TiO2 ratio (<100), consistent with their high zircon saturation temperatures (average TZr = 886 °C), and their low Pb/Ba ratio (average 0.06) reveal that they were generated by biotite dehydration melting. The increased Rb/Sr ratio relative to that of presumable parental metapelites of the Vertiskos Unit, coupled with their low Sr/Y ratio (0.12–1.08), reflects plagioclase and little or no garnet in the source residue, indicating magma derivation at low pressures of 0.4–0.8 GPa that correspond to a depth of ~15–30 km. The nearby tholeiitic basalts and dolerites, interstratified with the Triassic pelagic sediments, indicate bimodal volcanism in the region. They also support a model involving an upwelling asthenosphere that underplated the Vertiskos Unit basement, supplying the heat required for crustal melting at low pressures. The Permo–Triassic magmatism marks the transition from an orogenic to an anorogenic environment during the initial stage of continental breakup of the Variscan basement in a post-collision extensional tectonic framework, leading to the formation of the nascent Mesozoic Neo-Tethyan Maliac–Vardar Ocean. This apparently reveals that the Variscan continental collision between the Gondwana-derived Vertiskos and Pelagonian terranes must have been completed by at least the earliest Late Permian. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

39 pages, 48972 KiB  
Article
Volcanic Response to Post-Pan-African Orogeny Delamination: Insights from Volcanology, Precise U-Pb Geochronology, Geochemistry, and Petrology of the Ediacaran Ouarzazate Group of the Anti-Atlas, Morocco
by Mohamed Achraf Mediany, Nasrrddine Youbi, Mohamed Ben Chra, Oussama Moutbir, Ismail Hadimi, João Mata, Jörn-Frederik Wotzlaw, José Madeira, Miguel Doblas, Ezz El Din Abdel Hakim Khalaf, Rachid Oukhro, Warda El Moume, Jihane Ounar, Abdelhak Ait Lahna, Moulay Ahmed Boumehdi and Andrey Bekker
Minerals 2025, 15(2), 142; https://doi.org/10.3390/min15020142 - 31 Jan 2025
Cited by 1 | Viewed by 1998
Abstract
Post-collisional volcanism provides valuable insights into mantle dynamics, crustal processes, and mechanisms driving orogen uplift and collapse. This study presents geological, geochemical, and geochronological data for Ediacaran effusive and pyroclastic units from the Taghdout Volcanic Field (TVF) in the Siroua Window, Anti-Atlas Belt. [...] Read more.
Post-collisional volcanism provides valuable insights into mantle dynamics, crustal processes, and mechanisms driving orogen uplift and collapse. This study presents geological, geochemical, and geochronological data for Ediacaran effusive and pyroclastic units from the Taghdout Volcanic Field (TVF) in the Siroua Window, Anti-Atlas Belt. Two eruptive cycles are identified based on volcanological and geochemical signatures. The first cycle comprises a diverse volcanic succession of basalts, basaltic andesites, andesites, dacites, and rhyolitic crystal-rich tuffs and ignimbrites, exhibiting arc calc-alkaline affinities. These mafic magmas were derived from a lithospheric mantle metasomatized by subduction-related fluids and are associated with the gravitational collapse of the Pan-African Orogen. The second cycle is marked by bimodal volcanism, featuring tholeiitic basalts sourced from the asthenospheric mantle and felsic intraplate magmas. These units display volcanological characteristics typical of facies models for continental basaltsuccessions and continental felsic volcanoes. Precise CA-ID-TIMS U-Pb zircon dating constrains the volcanic activity to 575–557 Ma, reflecting an 18-million-year period of lithospheric thinning, delamination, and asthenospheric upwelling. This progression marks the transition from orogen collapse to continental rifting, culminating in the breakup of the Rodinia supercontinent and the opening of the Iapetus Ocean. The TVF exemplifies the dynamic interplay between lithospheric and asthenospheric processes during post-collisional tectonic evolution. Full article
(This article belongs to the Section Mineral Geochemistry and Geochronology)
Show Figures

Figure 1

25 pages, 6044 KiB  
Article
Application of Pumping Tests to Estimate Hydraulic Parameters of Volcanic Aquifers in Lake Tana Basin, Ethiopia
by Fenta Nigate, Alemu Yenehun, Ashebir Sewale Belay, Desale Kidane Asmamaw and Kristine Walraevens
Water 2025, 17(1), 9; https://doi.org/10.3390/w17010009 - 24 Dec 2024
Cited by 1 | Viewed by 1293
Abstract
The purpose of this study was to enhance the understanding and sustainable groundwater management of volcanic aquifer systems by estimating key hydrogeological parameters. The transmissivity of a volcanic aquifer system was estimated using analytical solutions based on 68 constant rate and recovery data [...] Read more.
The purpose of this study was to enhance the understanding and sustainable groundwater management of volcanic aquifer systems by estimating key hydrogeological parameters. The transmissivity of a volcanic aquifer system was estimated using analytical solutions based on 68 constant rate and recovery data sets collected from various sources. A combination of hydro-lithostratigraphy and diagnostic plots was employed to identify the aquifer types and flow conditions, which facilitated model selection. Transmissivity of the confined aquifer was modeled using both Theis and Cooper–Jacob methods, with the Theis residual drawdown solution utilized for estimation. For the unconfined aquifer, the Neuman method was used, and the Hantush/Jacob method was employed for leaky aquifers. The results showed that the transmissivity of the Tertiary basalt varied from 0.38 m2/d to 860 m2/d, while the Quaternary aquifer system ranged from 2.33 m2/d to 1.8 × 104 m2/d, indicating an increase in transmissivity with younger volcanic flows. Specific capacity (SC) was estimated for 74 wells and the values ranged from 0.62 to 5860 m2/d. This wide variation of specific capacity and transmissivity showed significant heterogeneity within the volcanic aquifers. This study introduces the innovative application of derivative diagnostic plots in groundwater research, offering an efficient approach for analyzing and interpreting pumping test data to characterize aquifer systems in various hydrogeologic units. This study focuses on aquifer characterization in hard rock formation, demonstrating methods that can be applied to similar geological environments globally. For the Blue Nile basin in general and for the Lake Tana basin in particular, the study result of aquifer characterization will contribute to exploration, development, and improved groundwater management in the region. Full article
Show Figures

Figure 1

21 pages, 8154 KiB  
Article
Bedrock Origins from Petrology and Geochemistry: Volcanic Gravel Clasts from the Rawhide Terrace in the Pleistocene Ancestral Mississippi River Pre-Loess Terrace Deposits
by Maxwell G. Pizarro, Jennifer N. Gifford, James E. Starnes and Brian F. Platt
Geosciences 2024, 14(12), 340; https://doi.org/10.3390/geosciences14120340 - 10 Dec 2024
Viewed by 1769
Abstract
Situated throughout the southeastern United States within the Laurentian craton are occurrences of various aged deposits (Late Proterozoic to Early Paleogene) that contain volcanics spanning from lamprophyres to carbonatites and basalts to rhyolites. Several are intrusive, while others have been reworked detritally, deposited [...] Read more.
Situated throughout the southeastern United States within the Laurentian craton are occurrences of various aged deposits (Late Proterozoic to Early Paleogene) that contain volcanics spanning from lamprophyres to carbonatites and basalts to rhyolites. Several are intrusive, while others have been reworked detritally, deposited as river gravels out onto the Gulf Coastal Plain. The earliest occurrence of igneous gravel clasts in the coastal plain of the lower Mississippi Valley lie along the Mississippi River’s eastern valley wall in the ancestral Mississippi River’s pre-loess terrace deposits (PLTDs). The coarse clastics of the PLTDs are dominantly chert gravels derived from Paleozoic carbonate bedrock, but also include clasts of Precambrian Sioux Quartzite, glacially faceted and striated stones, and ice-rafted boulders, which indicate a direct relationship between the PLTDs and glacial outwash during the cyclic glaciation of the Pleistocene Epoch. The PLTDs also contain the oldest known examples of igneous gravels exposed at the surface in Mississippi. An understanding of their igneous bedrock provenance and the timing of their contribution to the sedimentary record of the lower Mississippi River Valley sheds a valuable light onto the geologic history and evolution of the ancestral Mississippi River during the Pleistocene Epoch. The use of fusion inductively coupled plasma mass-spectroscopy (ICP-MS) in the identification of the igneous suites of one of the pre-loess terraces, well-delineated by geologic mapping, adds important geochemical source data from the gravel constituents for the further interpretation and correlation of the individual PLTD allounits. Gravel constituent geochemistry also offers a better understanding of the evolution of the ancestral Mississippi River watershed and the contributions of bedrock sources during Pleistocene glaciation. This petrological study suggests that the igneous gravels sampled from within the Rawhide PLTD allounit originated from the St. Francois Mountains (SFMs) in southwestern Missouri, with the implications that the SFM igneous terrain was in the direct path of the Independence “Kansan” glaciation. This could indicate a glacial extent further southwest than previously documented. Full article
(This article belongs to the Section Geochemistry)
Show Figures

Figure 1

21 pages, 4971 KiB  
Article
The Influence of the Assembly Unit of CO2-Cured Secondary Aluminum Ash and CO2-Cured Iron Tailings on High Performance Concrete’s Properties
by Hongrun Yu, Baolong Chen, Zixuan Zhang and Hui Wang
Coatings 2024, 14(12), 1536; https://doi.org/10.3390/coatings14121536 - 6 Dec 2024
Cited by 1 | Viewed by 825
Abstract
This paper aims to study the influence of the assembly units of CO2-cured iron tailings (IOT) and CO2-cured secondary aluminum ash (SAA) on the fresh high-performance concrete’s (HPC’s) slump flow and setting time. The mechanical properties including the flexural strength, compressive strength, the [...] Read more.
This paper aims to study the influence of the assembly units of CO2-cured iron tailings (IOT) and CO2-cured secondary aluminum ash (SAA) on the fresh high-performance concrete’s (HPC’s) slump flow and setting time. The mechanical properties including the flexural strength, compressive strength, the bonding strength and the dry shrinkage rate of the hardened HPC are measured. The amount of leached Cr and Zn after immersing in deionized water for 1 month~6 months is measured. The influence of the basalt fibers’ volume ratio and the aspect ratio of the high-performance concrete’s performance is considered. The scanning electron microscopy energy spectrums (SEM-EDS) are obtained. The results show that the slump flow and the setting time of fresh HPC are increased by the added CO2-cured SAA and IOT. The fresh HPC with 10% CO2-cured IOT and 20% CO2-cured SAA had the highest slump flow. The slump flow decreases in the form of cubic function with the placing time. The mechanical strengths and the dry shrinkage rate of HPC during the early curing ages (cured for 0.5 day~7 days) are decreased by the CO2-cured SAA and CO2-cured IOT, while the mechanical strengths at later curing ages (14 days~90 days) are increased by the added CO2-cured SAA and CO2-cured IOT. HPC with 10% CO2-cured SAA and 20% CO2-cured IOT shows the highest mechanical strengths. The amount of leached Cr and Zn is decreased by the CO2 cured SAA and IOT. The relationship between the mechanical strengths and the curing time coincides with the cubic equation. The basalt fibers with a volume ratio of 2% and aspect ratio of 1000 show the highest mechanical strengths, the lowest dry shrinkage rate and the least amount of leached Cr and Zn. CO2-cured SAA and IOT can improve the compactness of HPC’s hydration products. HPC with 10% CO2-cured SAA and 20% CO2-cured IOT shows the highest compact hydration products. Full article
Show Figures

Figure 1

15 pages, 10534 KiB  
Article
Genetic Type and Formation Evolution of Mantle-Derived Olivine in Ultramafic Xenolith of Damaping Basalt, Northern North China Block
by Cun Zhang, Fan Yang, Zengsheng Li, Leon Bagas, Lu Niu, Xinyi Zhu and Jianjun Li
Minerals 2024, 14(12), 1207; https://doi.org/10.3390/min14121207 - 27 Nov 2024
Viewed by 1344
Abstract
Olivine in deep-seated ultramafic xenoliths beneath the North China Block serves as a crucial proxy for decoding the compositions, properties, and evolution of the lithospheric mantle. Here, we conduct an investigation on olivine (including gem-grade) hosted in ultramafic xenoliths from Damaping basalt in [...] Read more.
Olivine in deep-seated ultramafic xenoliths beneath the North China Block serves as a crucial proxy for decoding the compositions, properties, and evolution of the lithospheric mantle. Here, we conduct an investigation on olivine (including gem-grade) hosted in ultramafic xenoliths from Damaping basalt in the northern part of the North China Block. This contribution presents the results from petrographic, Raman spectroscopic, and major and trace elemental studies of olivine, with the aim of characterising the formation environment and genetic type of the olivine. The analysed olivine samples are characterised by high Mg# values (close to 91%) possessing refractory to fertile features and doublet bands with unit Raman spectra beams of 822 and 853 cm−1, which are indicative of a forsterite signature. Major and trace geochemistry of olivine indicates the presence of mantle xenolith olivine. All the analytical olivine assays ≤0.1 wt % CaO, ~40 wt % SiO2, and ≤0.05 wt % Al2O3. Furthermore, olivine displays significantly different concentrations of Ti, Y, Sc, V, Co, and Ni. The Ni/Co values in olivine range from 21.21 to 22.98, indicating that the crystallisation differentiation of basic magma relates to oceanic crust recycling. The V/Sc values in mantle/xenolith olivine vary from 0.54 to 2.64, indicating a more oxidised state of the mantle. Rare earth element (REE) patterns show that the LREEs and HREEs of olivine host obviously differentiated characteristics. The HREE enrichments of olivine and the LREE depletion of clinopyroxene further assert that the mantle in the Damaping area underwent partial melting. The wide variations of Mg# values in olivine and the Cr# values in clinopyroxene, along with major element geochemistry indicate transitional characteristics of different peridotite xenoliths. This is possibly indicative of a newly accreted lithospheric mantle interaction with an old lithospheric mantle at the time of the basaltic eruption during the Paleozoic to Cenozoic. Full article
(This article belongs to the Section Mineral Deposits)
Show Figures

Figure 1

Back to TopTop