Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (190)

Search Parameters:
Keywords = bamboo management

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2761 KiB  
Article
Dual-Functioned Magnesium-Enriched Biochar Hydrogels for Phosphate Recovery and Slow-Release Nutrient Delivery
by Nur Maisarah Mohamad Sarbani, Hiroyuki Harada, Mitsuru Aoyagi and Endar Hidayat
Water 2025, 17(15), 2235; https://doi.org/10.3390/w17152235 - 27 Jul 2025
Viewed by 268
Abstract
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified [...] Read more.
Excessive phosphate from agriculture and industry has led to widespread eutrophication, posing a serious environmental threat. To address this issue, metal-modified biochars have emerged as promising adsorbents due to their high affinity for phosphate ions. This study investigates the application of two magnesium-modified biochar hydrogels denoted as magnesium–bamboo biochar hydrogel (Mg-BBH) and magnesium–pulp biochar hydrogel (Mg-PBH) for phosphate recovery from aqueous solutions, with an additional aim as slow-release fertilizers. The adsorbents were synthesized by impregnating Mg-modified biochars into sodium-alginate-based hydrogel. The influence of initial phosphate concentration, contact time, and temperature were investigated to determine optimal adsorption conditions. Both adsorbents exhibited excellent adsorption performance, with maximum capacities of 309.96 mg PO4/g (Mg-BBH) and 234.69 mg PO4/g (Mg-PBH). Moreover, the adsorption performance of the adsorbents was greatly influenced by the magnesium content. The adsorption process followed the Temkin isotherm and pseudo-second-order kinetics, suggesting that the adsorption energy decreases proportionally with surface coverage and the phosphate uptake was governed by chemisorption. Thermodynamic study confirmed the process was spontaneous and endothermic at 40 °C. A slow-release study further demonstrated a great release of phosphate in soil over time. These findings highlight the dual functionality of Mg-BBH and Mg-PBH as effective materials for both phosphate recovery and controlled nutrient delivery, contributing to sustainable phosphate management. Full article
(This article belongs to the Section Soil and Water)
Show Figures

Figure 1

15 pages, 1238 KiB  
Article
Assessment of Environmental Dynamics and Ecosystem Services of Guadua amplexifolia J. Presl in San Jorge River Basin, Colombia
by Yiniva Camargo-Caicedo, Jorge Augusto Montoya Arango and Fredy Tovar-Bernal
Resources 2025, 14(7), 115; https://doi.org/10.3390/resources14070115 - 18 Jul 2025
Viewed by 383
Abstract
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services [...] Read more.
Guadua amplexifolia J. Presl is a Neotropical bamboo native to southern Mexico through Central America to Colombia, where it thrives in riparian zones of the San Jorge River basin. Despite its ecological and socio-economic importance, its environmental dynamics and provision of ecosystem services remain poorly understood. This study (1) quantifies spatial and temporal land use/cover changes in the municipality of Montelíbano between 2002 and 2022 and (2) evaluates the ecosystem services that local communities derive from in 2002, 2012, and 2022, and they were classified in QGIS using G. amplexifolia. We applied a supervised classification of Landsat imagery (2002, 2012, 2022) in QGIS, achieving 85% overall accuracy and a Cohen’s Kappa of 0.82 (n = 45 reference points). For the social assessment, we held participatory workshops and conducted semi-structured interviews with artisans, fishers, authorities, and NGO representatives; responses were manually coded to extract key themes. The results show a 12% decline in total vegetated area from 2002 to 2012, followed by an 8% recovery by 2022, with bamboo-dominated stands following a similar pattern. Communities identified raw material provision (87% of mentions), climate regulation (82%), and cultural–recreational benefits (58%) as the most important services provided by G. amplexifolia. This is the first integrated assessment of G. amplexifolia’s landscape dynamics and community-valued services in the San Jorge basin, highlighting its dual function as a renewable resource and a natural safeguard against environmental risks. Our findings offer targeted recommendations for management practices and land use policies to support the species’ conservation and sustainable utilization. Full article
Show Figures

Figure 1

13 pages, 3859 KiB  
Article
Long-Term Fertilizer-Based Management Alters Soil N2O Emissions and Silicon Availability in Moso Bamboo Forests
by Jie Yang, Kecheng Wang, Jiamei Chen, Lili Fan, Peikun Jiang and Rong Zheng
Agronomy 2025, 15(7), 1647; https://doi.org/10.3390/agronomy15071647 - 7 Jul 2025
Viewed by 380
Abstract
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2 [...] Read more.
Long-term intensive management practices in Moso bamboo (Phyllostachys edulis) forests, primarily characterized by repeated fertilizer application, tillage, and biomass harvesting, can alter soil nutrient cycling and ecosystem stability. This study aimed to assess how such fertilizer-based management affects soil N2O emission potential and silicon (Si) availability. We collected soil samples (0–20 cm) from bamboo stands subjected to 0–39 years of intensive management and from adjacent natural broad-leaved forests as a reference. The Soil pH, nitrogen forms, nitrification and denitrification potential, and Si concentrations were measured. The results showed significant nitrogen accumulation and progressive soil acidification with increasing management duration. The nitrification and denitrification potentials were 5.7 and 6.0 times higher in the 39-year-old stand compared to unmanaged bamboo. Meanwhile, the available Si decreased by 20.1%, despite stable total Si levels. The available Si showed strong positive correlations with nitrogen forms and transformation rates. These findings highlight the long-term impact of fertilizer-driven bamboo management on soil biogeochemistry and emphasize the need to consider Si dynamics in sustainable nutrient strategies. Full article
(This article belongs to the Special Issue Plant Nutrition Eco-Physiology and Nutrient Management)
Show Figures

Figure 1

14 pages, 3567 KiB  
Article
Characterization of Shoot Growth and Carbon Accumulation in Moso Bamboo Based on Different Stand Densities
by Xuan Zhang, Fengying Guan, Xiao Zhou, Zheng Li, Dawei Fu and Minkai Li
Forests 2025, 16(7), 1098; https://doi.org/10.3390/f16071098 - 2 Jul 2025
Viewed by 324
Abstract
Bamboo forests are among China’s key strategic forest resources, characterized by rapid growth and high carbon sequestration efficiency. Traditional management practices primarily aim to maximize economic benefits by regulating stand density to enhance yields of bamboo culms and shoots. However, the influence of [...] Read more.
Bamboo forests are among China’s key strategic forest resources, characterized by rapid growth and high carbon sequestration efficiency. Traditional management practices primarily aim to maximize economic benefits by regulating stand density to enhance yields of bamboo culms and shoots. However, the influence of density regulation on the growth and carbon accumulation of spring bamboo shoots remains insufficiently understood. Therefore, this study focuses on moso bamboo (Phyllostachys edulis (Carrière) J. Houzeau) stands and investigates shoot emergence during the shooting period across four stand density levels: D1 (1400 stems/ha), D2 (2000 stems/ha), D3 (2600 stems/ha), and D4 (3200 stems/ha). The study analyzes the dynamics of shoot emergence, height development, and morphological traits under varying stand densities, and explores patterns of carbon accumulation during the shooting period, thereby clarifying the effects of stand density on shoot quantity, growth quality, and carbon sequestration. The main findings are as follows: the number of emerging shoots decreased with increasing stand density, ranging from 2592 to 4634 shoots per hectare. The peak shoot emergence period in the D1 stand was extended by 3 days compared to D2 and D3, while the D4 stand entered the peak emergence period 6 days later than D2 and D3. The rapid height growth phase in D1 occurred 3 days earlier than in D2 and D3, and 6 days earlier than in D4. Results from the variable exponent taper equation indicated that spring shoots in the D2 and D4 stands had larger basal diameters, following the order D4 > D2 > D3 > D1. Shoots in the D2 stand exhibited the smallest taper, with the order being D2 < D3 < D1 < D4. During the late stage of shoot emergence (3 May to 9 May), all stands entered a period of rapid carbon accumulation per individual shoot. In the early stage, carbon accumulation followed the order D1 > D2 > D4 > D3; in the middle stage, the order shifted to D4 > D3 > D2 > D1; and in the final stage, the trend was D1 > D4 > D3 > D2. Within the 30-day investigation period, the carbon storage in spring shoots reached up to one-quarter or even one-third of the total accumulation during the growth period. The D1 stand exhibited the highest rate of increase in the proportion of individual shoot carbon storage. Full article
(This article belongs to the Section Forest Ecology and Management)
Show Figures

Figure 1

14 pages, 1118 KiB  
Article
Microbial-Mediated Soil Nutrient Enhancement in Moso Bamboo–Liquidambar formosana vs. Phoebe chekiangensis Mixed Plantings
by Anming Zhu, Lili Fan, Gang Lu, Liangjin Yao and Jianzhong Fan
Plants 2025, 14(12), 1868; https://doi.org/10.3390/plants14121868 - 18 Jun 2025
Viewed by 406
Abstract
This study investigated how Moso bamboo (Phyllostachys edulis)–broadleaf mixed forests influence soil properties and microbial communities to support ecological function and sustainable bamboo forest management. Three forest types were examined: pure Moso bamboo stands (MB) and mixed stands with Liquidambar formosana [...] Read more.
This study investigated how Moso bamboo (Phyllostachys edulis)–broadleaf mixed forests influence soil properties and microbial communities to support ecological function and sustainable bamboo forest management. Three forest types were examined: pure Moso bamboo stands (MB) and mixed stands with Liquidambar formosana (LB) or Phoebe chekiangensis (PB). Soil chemical properties, microbial diversity, and community composition were assessed using high-throughput sequencing, and functional taxa were correlated with soil nutrients. The results showed that mixed forests significantly influenced soil chemical properties. PB showed the lowest pH and highest total nitrogen (TN), while MB exhibited the highest soil organic matter (SOM) and total potassium (TK). LB maintained moderate TN, high SOM and TK, and stable pH, indicating a balanced nutrient profile. Although α-diversity did not differ significantly, β-diversity analysis revealed distinct microbial community structure (p < 0.01). LB was enriched with carbon-decomposing taxa (Terriglobales and Sphingomonas), PB with acid-tolerant, nitrogen-cycling groups (Candidatus Binatus), and MB with nitrogen-fixing taxa (Nitrobacteraceae and Bradyrhizobium). Co-occurrence network and functional pathway analyses indicated group-specific microbial associations and greater metabolic diversity in LB and PB. In conclusion, mixed Moso bamboo with broadleaf species significantly modified soil chemical properties and microbial community structure, with the Moso bamboo—L. formosana combination showing potential for improving soil nutrient status and microbial function. Full article
(This article belongs to the Special Issue Nutrient Management on Soil Microbiome Dynamics and Plant Health)
Show Figures

Figure 1

15 pages, 8487 KiB  
Article
Effects of Different Management Practices on Ramet System Dynamics in Moso Bamboo (Phyllostachys edulis) Forests, China
by Guibin Gao, Xing Wen, Jinfang Qian, Yiji Huang, Zhizhuang Wu, Hao Zhong, Yanhong Pan and Xiaoping Zhang
Plants 2025, 14(12), 1835; https://doi.org/10.3390/plants14121835 - 14 Jun 2025
Viewed by 449
Abstract
Examining the ramet system in bamboo forests can provide an important theoretical basis for strategic management. Moso bamboo is an economically important species in China, and implementing the correct management measures can play a key role in improving bamboo productivity. However, the dynamics [...] Read more.
Examining the ramet system in bamboo forests can provide an important theoretical basis for strategic management. Moso bamboo is an economically important species in China, and implementing the correct management measures can play a key role in improving bamboo productivity. However, the dynamics of the Moso bamboo ramet system under timber vs. shoot forest management remain underexplored. In this study, we investigated the underground rhizome growth, bud bank structures, branch growth, and distribution patterns of bamboo ramet systems in the two main bamboo cultivation types. Shoot forest ramet systems exhibited stable early-stage rhizome renewal but instability in later stages, characterized by thin, elongated rhizomes. The opposite was observed in the timber forests. The underground bud bank of the ramet system in the shoot forest had a strong renewal ability with stable lateral bud input. However, shoot harvesting disturbed the bud bank balance. The lateral bud input in the timber forest was unstable, with the lateral buds being prone to death. The variation range and quantity of branch types in the ramet system in the shoot forest were greater than those in the timber forest. The number of branches in different parts of the ramet system was in the order of rhizome tip (RT) > middle of rhizome (RM) > rhizome base (RB). The range of variation was greater in the shoot forest. Different management methods led to growth differences in the examined bamboo ramet systems. Bamboo forest management resulted in a correlation between bud banks and ramet system renewal. Operations such as bamboo shoot harvesting significantly impacted branch growth and distribution. These findings not only provide a better understanding of the growth and management strategy of bamboo ramet systems worldwide but also provide a universal theoretical reference for the sustainable management of bamboo forests in other countries. Full article
Show Figures

Figure 1

17 pages, 3113 KiB  
Article
Optimizing Nitrogen Management to Enhance Growth and Minimize Pollution Risk in Pennisetum hydridum Cultivation
by Farhan Nabi, Zicheng Yi, Rakhwe Kama, Sumbal Sajid and Huashou Li
Agronomy 2025, 15(6), 1452; https://doi.org/10.3390/agronomy15061452 - 14 Jun 2025
Viewed by 479
Abstract
Nitrogen fertilization plays a crucial role in optimizing plant growth, but excessive application can lead to nutrient leaching, environmental pollution, and soil degradation. This study investigates the impact of nitrogen application rates (0–400 kg·ha−1) on the growth, biomass allocation, and carbon [...] Read more.
Nitrogen fertilization plays a crucial role in optimizing plant growth, but excessive application can lead to nutrient leaching, environmental pollution, and soil degradation. This study investigates the impact of nitrogen application rates (0–400 kg·ha−1) on the growth, biomass allocation, and carbon sequestration capacity of Pennisetum hydridum (Imperial Bamboo, PHY), a fast-growing tropical grass increasingly used for forage and bioenergy production in subtropical regions. Despite its agronomic potential, nutrient management strategies for P. hydridum remain poorly understood. We hypothesized that moderate nitrogen application (100–200 kg·ha−1) would enhance growth and nutrient use efficiency, while maintaining environmental sustainability. Results show that moderate nitrogen levels (100–200 kg·ha−1) significantly enhanced biomass production, with the highest aboveground biomass observed at 180 days under T2 (100 kg·ha−1) and T3 (200 kg·ha−1), reaching 166.5 g/plant and 140.6 g/plant, respectively. In contrast, excessive nitrogen application (400 kg·ha−1) led to a decline in biomass (T4, 76.8 g/plant) and impaired carbon sequestration efficiency. In addition, it was found that nitrogen uptake increased with moderate fertilization, with T2 and T3 showing optimal nitrogen use efficiency. Soil analysis revealed that soil organic matter and total nitrogen content were positively correlated with root biomass, with significant linear relationships between soil nitrogen, carbon/nitrogen ratios, and PHY biomass. Specifically, the total nitrogen content in rhizomes and fibrous roots showed coefficients of determination (R2) of 0.65 and 0.67, indicating a strong correlation with soil nitrogen levels. Furthermore, nitrogen application increased soil nitrate (NO3-N) and ammonium (NH4+-N) concentrations, with T4 showing the highest levels at 90 days (41.35 mg/kg for NO3-N and 15.6 mg/kg for NH4+-N), signaling potential nutrient loss to the environment. These findings underscore the importance of sustainable nitrogen management for maximizing the growth potential of P. hydridum, while minimizing environmental risks in subtropical agricultural systems. Full article
(This article belongs to the Special Issue Agricultural Pollution: Toxicology and Remediation Strategies)
Show Figures

Figure 1

18 pages, 2903 KiB  
Article
Characteristic and Adaptive Strategy in Leaf Functional Traits of Giant Panda (Ailuropoda melanoleuca) Staple Bamboo Species
by Xiong Liu, Yilin Zhou, Xingcheng Zou, Weiyu Zhu, Renping Wan, Zhengchuan Liang, Junxi Hu, Liehua Tie, Xinglei Cui, Yuanbin Zhang, Shixing Zhou, Jordi Sardans, Congde Huang and Josep Peñuelas Reixach
Forests 2025, 16(6), 954; https://doi.org/10.3390/f16060954 - 5 Jun 2025
Viewed by 420
Abstract
Leaf functional traits are important indicators that reveal plant adaptation and response to environmental changes. Characteristics and adaptive strategies of leaf functional traits of staple bamboo species (SBSs) for the giant panda (Ailuropoda melanoleuca) remain unclear, which limits conservation management of [...] Read more.
Leaf functional traits are important indicators that reveal plant adaptation and response to environmental changes. Characteristics and adaptive strategies of leaf functional traits of staple bamboo species (SBSs) for the giant panda (Ailuropoda melanoleuca) remain unclear, which limits conservation management of the giant panda and its habitat. Here, this study investigated 10 SBSs in 15 nature reserves across 36 counties, measured eight leaf functional traits, analyzed trait characteristics, variation, and drivers of variation, and examined trait-based strategies and strategy–environmental constraint relationships. Our results indicate that: coefficients of variation in leaf functional traits spanned from 9.58% to 79.16%, and significant differences were found among SBSs for leaf functional traits except chlorophyll concentration. The linear mixed-effects models revealed that the taxonomic factors explained 20.16 to 77.94% of variation, and environmental factors explained 17.03 to 29.12%. Leaf functional traits exhibited distinct environmental associations, primarily driven by geographic location, topography, and soil phosphorus availability. Hierarchical clustering and principal component analysis revealed 10 SBS clustered into two groups, corresponding to conservative and acquisitive resource-use strategies. Canonical correspondence analysis revealed that SBSs with conservative strategies were distributed in warm and moist habitats, and SBSs with acquisition strategies were distributed in habitats with high solar radiation. Our results reveal the key trait characteristics of SBSs and the strategy-environmental constraint model based on traits, which can provide scientific basis for the ecological management practice of SBSs. Full article
Show Figures

Figure 1

15 pages, 15304 KiB  
Article
A Fragment Insertion of AgDFR Results in a White Flower Phenotype in Arundina graminifolia (Orchidaceae)
by Jie Li, Yonglu Wei, Jianpeng Jin, Jie Gao, Qi Xie, Fengxi Yang and Genfa Zhu
Plants 2025, 14(11), 1680; https://doi.org/10.3390/plants14111680 - 31 May 2025
Viewed by 621
Abstract
Bamboo orchid (Arundina graminifolia), a fast-growing evergreen terrestrial orchid with year-round flowering capacity, exhibits limited germplasm resources for white floral variants despite its ornamental significance. This study investigates the molecular basis of natural white flower formation through comparative analysis of purple- [...] Read more.
Bamboo orchid (Arundina graminifolia), a fast-growing evergreen terrestrial orchid with year-round flowering capacity, exhibits limited germplasm resources for white floral variants despite its ornamental significance. This study investigates the molecular basis of natural white flower formation through comparative analysis of purple- and white-flowered variants across bud, post-bud, and blooming stages. Histological examination revealed anthocyanin accumulation restricted to two to three upper epidermal cell layers in purple petals, while white petals showed complete pigment absence. Transcriptome profiling coupled with RT-qPCR validation identified eleven differentially expressed structural genes in anthocyanin biosynthesis. Notably, AgDFR expression remained undetectable across all white-flower developmental stages. Sequence analysis demonstrated identical 3030 bp promoter regions of AgDFR between two variants, while white-flower AgDFR coding sequences contained over 107 bp insertion after the 330th nucleotide, causing premature translation termination. Molecular marker validation confirmed the presence of a diagnostic 472 bp fragment in all colored variants (13 purple/pink lines) and its absence in white phenotypes. This study establishes that insertional mutagenesis in AgDFR’s coding region underlies natural white flower in A. graminifolia. The developed molecular marker enables reliable differentiation of white-flowered variants from pigmented counterparts, providing valuable tools for germplasm management and breeding programs. Full article
(This article belongs to the Special Issue Orchid Conservation and Biodiversity)
Show Figures

Figure 1

17 pages, 2402 KiB  
Article
Effects of Different Vegetation Types on Soil Quality in Golden Huacha (Camellia petelotii) National Nature Reserve
by Yong Jiang, Sheng Xu, Weiwei Gu, Siqi Wu, Jian Qiu, Wenxu Zhu and Nanyan Liao
Forests 2025, 16(5), 865; https://doi.org/10.3390/f16050865 - 21 May 2025
Viewed by 343
Abstract
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural [...] Read more.
Natural and planted forests differentially regulate soil quality through vegetation–soil interactions. The effects of four types of planting covers on soil nutrients, enzyme activities, and microbial communities in the Guangxi Camellia nitidissima National Nature Reserve were studied, revealing the multi-dimensional influences of natural (broadleaf, shrubland) and planted forests (bamboo, pine) on soil quality. Surface soils (0–10 cm depth) were characterized for physicochemical properties (pH, TC, TN, NO3-N, AP), enzyme activities (α-amylase, urease, phosphatase, β-glucosidase), and microbial composition (using 16S rRNA and ITS region sequencing). Mantel tests and PLS–PM modeling were employed to investigate interactions among vegetation, soil variables, and microbes. Natural forests exhibited higher pH, nitrate nitrogen, and enzymatic activities (urease, phosphatase, β-glucosidase) alongside enhanced carbon–nitrogen accumulation and reduced acidification. Planted forests showed elevated available phosphorus and nutrient supply but lower organic matter retention. Microbial communities displayed higher similarity within natural forests, with fungal composition strongly linked to total carbon/nitrogen (p < 0.05). Vegetation type positively influenced bacterial diversity but negatively affected fungal communities. Natural forests maintained critical soil–microbe–plant interactions supporting ecosystem resilience through carbon–nitrogen cycling, while planted forests fostered divergent microbial functionality despite short-term nutrient benefits. These findings underscore natural forests’ unique role in preserving ecological stability and reveal fundamental limitations of artificial systems in mimicking microbially-mediated biogeochemical processes. Conservation policy should prioritize the protection of natural forests while simultaneously integrating microbial community management with vegetation restoration efforts to enhance long-term ecosystem functionality and nutrient cycling efficiency. Full article
Show Figures

Figure 1

16 pages, 5589 KiB  
Article
Exploring the Root–Soil Anchoring Dynamics of Bambusa pachinensis (Pachi Bamboo) Root System
by Chia-Cheng Fan, Chung-Hao Chen and Chunhsiung Chen
Forests 2025, 16(5), 832; https://doi.org/10.3390/f16050832 - 16 May 2025
Viewed by 484
Abstract
Bamboo is widely distributed throughout the world, particularly in tropical and subtropical regions. This study aims to investigate the biomechanical properties of the root system of Bambusa pachinensis (Pachi bamboo). The root system of Pachi bamboo grows densely in clusters, with most roots [...] Read more.
Bamboo is widely distributed throughout the world, particularly in tropical and subtropical regions. This study aims to investigate the biomechanical properties of the root system of Bambusa pachinensis (Pachi bamboo). The root system of Pachi bamboo grows densely in clusters, with most roots growing vertically and potentially penetrating more than one meter into the soil after growing for several years. Owing to these characteristics, Pachi bamboo is considered a promising plant species for soil reinforcement. However, research on its root reinforcement capabilities remains limited. In situ shear and pullout tests were conducted to assess the root reinforcement of the fibrous root system. The root diameters of Pachi bamboo are typically less than 4 mm, and its tensile strength is notably lower than that of tree roots. This study establishes a method for estimating the root reinforcement of Pachi bamboo based on the number and cross-sectional area of the culms in a single bamboo cluster. The relationship between the maximum tensile force (Fult) and root diameter (D) is Fult = (3.65)D2.59, where Fult is in Newtons (N), and D is in millimeters (mm). The relationship between the pullout resistance (Pult) and the shear resistance (Sult) with the number of culms (SN) is Pult = 46.5(SN) and Sult = 0.53(SN) + 5, where Pult is in Newtons (N), and Sult is in kilopascals (kPa). These results suggest a positive contribution of the number of culms to mechanical resistance. Full article
(This article belongs to the Special Issue How Does Forest Management Affect Soil Dynamics?)
Show Figures

Figure 1

17 pages, 628 KiB  
Review
Impacts of Intensive Management Practices on the Long-Term Sustainability of Soil and Water Conservation Functions in Bamboo Forests: A Mechanistic Review from Silvicultural Perspectives
by Jingxin Shen, Xianli Zeng, Shaohui Fan and Guanglu Liu
Forests 2025, 16(5), 787; https://doi.org/10.3390/f16050787 - 8 May 2025
Cited by 1 | Viewed by 494
Abstract
Bamboo forest ecosystems are an important component of the Earth’s terrestrial ecosystems and play an important role in addressing the global timber crisis as well as climate change. Bamboo is a typical shallow-rooted, fast-growing clonal plant species whose developed rhizome system and high [...] Read more.
Bamboo forest ecosystems are an important component of the Earth’s terrestrial ecosystems and play an important role in addressing the global timber crisis as well as climate change. Bamboo is a typical shallow-rooted, fast-growing clonal plant species whose developed rhizome system and high canopy closure play an important role in soil and water conservation. The function of soil and water conservation services of bamboo forests can intuitively reflect the regional regulation of precipitation, the redistribution function of precipitation, and the function of soil fixation, which is one of the crucial ecological service functions in regional ecosystems. Bamboo forests are divided into monopodial bamboo forests, sympodial bamboo forests, and mixed bamboo forests, which are mainly distributed in tropical and subtropical mountainous areas. The region’s variable climate, abundant precipitation, and high potential risk of soil erosion, in conjunction with the frequent operation of bamboo forests and frequent occurrence of extreme weather events, have the potential to adversely affect the ecosystem function of bamboo forests. Presently, bamboo forests are primarily managed through the cultivation of bamboo, with the objective of enhancing productivity. Extensive research has been conducted on the long-term maintenance of bamboo forest productivity. However, there is a paucity of research on the mechanisms of management measures for ecosystem stability and the development of adaptive management technology systems suitable for soil and water conservation, carbon sequestration and sink enhancement, and biodiversity conservation. This paper is predicated on the biological characteristics of bamboo and, thus, aims to compile the extant research progress on the following subjects: the role of rainfall redistribution in bamboo forest canopies, the role of deadfall interception, and the mechanism of soil fixation mechanics of the root system. It also synthesizes the current status of research on the impact of traditional management measures on the soil and water conservation function of bamboo forests. Finally, it discusses the problems of current research and the direction of future development. Full article
(This article belongs to the Special Issue Ecological Research in Bamboo Forests: 2nd Edition)
24 pages, 3004 KiB  
Article
Growth Process and Mortality of Sasa borealis Seedlings over Six Years Following Mass Flowering and Factors Influencing Them
by Hanami Suzuki and Hisashi Kajimura
Biology 2025, 14(5), 516; https://doi.org/10.3390/biology14050516 - 7 May 2025
Viewed by 681
Abstract
The sexual reproduction of Sasa borealis, a species of dwarf bamboo, occurred in central Japan from 2016 to 2017. S. borealis grows on the forest floor and serves as an important source of habitat and food for various animals. Sexual reproduction occurs [...] Read more.
The sexual reproduction of Sasa borealis, a species of dwarf bamboo, occurred in central Japan from 2016 to 2017. S. borealis grows on the forest floor and serves as an important source of habitat and food for various animals. Sexual reproduction occurs in synchrony among individuals in a given area, leading to a decline in population and causing substantial disturbances to the forest ecosystem; however, the subsequent regeneration process remains unclear. In this study, we investigated S. borealis seedling regeneration over six years. Fixed plots were established in the forest in the year following the sexual reproductive event, and the growth of seedlings was monitored from seed emergence to seedling growth at the individual level. We considered biotic and abiotic factors to evaluate their influence on regeneration. We examined mammalian and arthropod foraging as biotic factors. Conversely, abiotic factors included temperature and humidity near the ground surface, solar radiation, soil conditions, and snow cover. Seedling growth was characterized by a slow rate and affected by morphological changes resulting from foraging and abiotic factors. The return of S. borealis to its presexual reproductive stage requires an extended duration. Our study provides precious information for future S. borealis conservation and management strategies. Full article
(This article belongs to the Special Issue Young Researchers in Ecology)
Show Figures

Graphical abstract

18 pages, 3130 KiB  
Article
Effects of Exogenous Silicon Addition on Nitrification and Denitrification-Derived N2O Emissions from Moso Bamboo (Phyllostachys edulis) Forest Soil
by Jie Yang, Kecheng Wang, Lijun Liu, Yongchun Li, Jiasen Wu, Jinhuan Zhong, Rong Zheng, Lili Fan, Chengpeng Huang and Peikun Jiang
Land 2025, 14(5), 1004; https://doi.org/10.3390/land14051004 - 6 May 2025
Cited by 1 | Viewed by 383
Abstract
It has been reported that applying silicon (Si) to agricultural soils can reduce N2O emissions. But, we do not fully understand how this might work in forest ecosystems, especially in Phyllostachys edulis plantations. This study set out to determine how exogenous [...] Read more.
It has been reported that applying silicon (Si) to agricultural soils can reduce N2O emissions. But, we do not fully understand how this might work in forest ecosystems, especially in Phyllostachys edulis plantations. This study set out to determine how exogenous Si impacts soil nitrification and denitrification. Also, it aimed to assess their separate contributions to N2O emissions. A pot incubation experiment that lasted 28 days was carried out under controlled conditions. The soil used was collected from a bamboo plantation that is intensively managed. The treatments included adding silicon. Also, 3,4-dimethylpyrazole phosphate (DMPP) and acetylene (C2H2) were applied to specifically hold back nitrification and denitrification. We measured the rates of soil N2O emissions, the cumulative fluxes, and the concentrations of NH4+-N, NO3-N, and NO2-N. A positive correlation that was significant (p < 0.05) was found between N2O emissions and the levels of soil NO3-N. Adding Si continued to reduce both the emission rate and the cumulative flux in all of the treatment groups. Also worth mentioning is that the relative contribution of denitrification to N2O emissions dropped from 38.2% to 11.4%. Meanwhile, nitrification’s contribution went up from 61.8% to 88.6%. These findings show that adding Si mainly suppresses denitrification. And, by doing so, it lessens N2O emissions in bamboo plantations. This study underlines the potential of Si amendments. They could be used as an effective management strategy to reduce greenhouse-gas emissions in forest soils. It also provides a scientific basis for making Phyllostachys edulis ecosystems more sustainable. Full article
Show Figures

Figure 1

32 pages, 6516 KiB  
Systematic Review
Evidence on the Social, Economic, and Environmental Impact of Interventions That Facilitate Bamboo Industry Development for Sustainable Livelihoods: A Systematic Map
by Lucy Binfield, Tamara L. Britton, Chunping Dai and John L. Innes
Forests 2025, 16(5), 713; https://doi.org/10.3390/f16050713 - 22 Apr 2025
Cited by 1 | Viewed by 700
Abstract
Bamboo’s perceived potential in livelihood development has led to development interventions that aim to strengthen the bamboo industry via activities such as training participants in bamboo management, strengthening institutions, and raising awareness. Using the Campaign for Environmental Evidence’s guidelines, we systematically map the [...] Read more.
Bamboo’s perceived potential in livelihood development has led to development interventions that aim to strengthen the bamboo industry via activities such as training participants in bamboo management, strengthening institutions, and raising awareness. Using the Campaign for Environmental Evidence’s guidelines, we systematically map the available evidence of the impact of these interventions. The evidence is scattered across peer-reviewed and grey literature, with no universal reporting standards. Search sources for this systematic evidence map include a bibliographic database, CABdirect (now known as CABI Digital Library); a search platform for peer-reviewed literature, the Web of Science Core Collection; a bibliographic database for academic literature on agriculture and related fields, SEARCH by the USDA National Agricultural Library; a public search engine for scholarly literature, Google Scholar; a general search engine, Google; and the websites of 37 organizations, with both proprietary search engines and Google used to search for pdf files. Overall, 36 documents are included in the final review, describing 28 unique interventions from 13 countries. Most evidence is found outside the peer-reviewed literature. Outcomes including income changes, increased participation and engagement, and policy changes are reported, with economic impacts dominating the evidence base. Very little evidence of negative outcomes is found, likely constrained by reporting bias. Reporting on evidence of these interventions is limited, with many interventions being excluded from the database due to a lack of identifiable evidence of outcomes or impact. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

Back to TopTop