Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = balsa-wood

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 3634 KiB  
Article
Optimization of Hierarchical Groove–Perforation Structures in PET Foam Cores for Wind Turbine Blade Applications
by Jinlin Li, Gaojian Lin and Xiaowei Chen
Materials 2025, 18(12), 2876; https://doi.org/10.3390/ma18122876 - 18 Jun 2025
Viewed by 354
Abstract
To bridge the mechanical performance gap between polyethylene terephthalate (PET) foam cores and balsa wood in wind turbine blades, this study proposes a hierarchical groove-perforation design for structural optimization. A finite element model integrating PET foam and epoxy resin was developed and validated [...] Read more.
To bridge the mechanical performance gap between polyethylene terephthalate (PET) foam cores and balsa wood in wind turbine blades, this study proposes a hierarchical groove-perforation design for structural optimization. A finite element model integrating PET foam and epoxy resin was developed and validated against experimental shear modulus data (α < 0.5%). Machine learning combined with a multi-island genetic algorithm (MIGA) optimized groove parameters (spacing: 7.5–30 mm, width: 0.9–2 mm, depth: 0–23.5 mm, perforation angle: 45–90°) under constant resin infusion. The optimal configuration (width: 1 mm, spacing: 15 mm, angle: 65°) increased the shear modulus by 9.2% (from 125 MPa to 137.1 MPa) and enhanced compressive/tensile modulus by 10.7% compared to conventional designs, without increasing core mass. Stress distribution analysis demonstrated that secondary grooves improved resin infiltration uniformity and interfacial stress transfer, reducing localized strain concentration. Further integration of machine learning with MIGA for parameter optimization enabled the shear modulus to reach 150 MPa while minimizing weight gain, achieving a balance between structural performance and material efficiency. This hierarchical optimization strategy offers a cost-effective and lightweight alternative to balsa, promoting broader application of PET foam cores in wind energy and other high-performance composite structures. Full article
Show Figures

Figure 1

17 pages, 7583 KiB  
Article
The Effect of Drying Methods on the Pore Structure of Balsa Wood Aerogels
by Min Yin, Zongying Fu, Xia Yu, Ximing Wang and Yun Lu
Polymers 2025, 17(12), 1686; https://doi.org/10.3390/polym17121686 - 17 Jun 2025
Viewed by 384
Abstract
Drying constitutes an essential step in aerogel fabrication, where the drying method directly determines the pore structure and consequently influences the material’s functionality. This study employed various drying techniques to prepare balsa-wood-derived aerogels, systematically investigating their effects on microstructure, density, and performance characteristics. [...] Read more.
Drying constitutes an essential step in aerogel fabrication, where the drying method directly determines the pore structure and consequently influences the material’s functionality. This study employed various drying techniques to prepare balsa-wood-derived aerogels, systematically investigating their effects on microstructure, density, and performance characteristics. The results demonstrate that different drying methods regulate aerogels through distinct pore structure modifications. Supercritical CO2 drying optimally preserves the native wood microstructure, yielding aerogels with superior thermal insulation performance. Freeze-drying induces the formation of ice crystals, which reconstructs the microstructure, resulting in aerogels with minimal density, significantly enhanced permeability, and exceptional cyclic water absorption capacity. Vacuum drying, oven drying, and natural drying all lead to significant deformation of the aerogel pore structure. Among them, oven drying increases the pore quantity of aerogels through volumetric contraction, thereby achieving the highest specific surface area. However, aerogels prepared by air drying have the highest density and the poorest thermal insulation performance. This study demonstrates that precise control of liquid surface tension during drying can effectively regulate both the pore architecture and functional performance of wood-derived aerogels. The findings offer fundamental insights into tailoring aerogel properties through optimized drying processes, providing valuable guidance for material design and application development. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

14 pages, 10181 KiB  
Article
Degradation of Tetracycline Hydrochloride by Cobalt-Doped Biochar-Activated Peroxymonosulfate
by Bingliang Su, Yuecheng Zhong, Xiaojie Zhuang, Liyong Zhang, Minghai Zhang, Jia Chen, Hui Liang, Yue Mu, Tao Xu, Yonghua Chen, Rongkui Su, Xiaofeng Hao and Yiting Luo
Water 2025, 17(12), 1730; https://doi.org/10.3390/w17121730 - 7 Jun 2025
Viewed by 460
Abstract
The presence of tetracycline hydrochloride (TC) in the environment poses significant risks to human health and ecological stability, necessitating the development of effective and rapid removal strategies. In this research, we investigate the efficacy of degrading tetracycline hydrochloride using cobalt-doped-biochar (Co-BC)-activated peroxymonosulfate (PMS) [...] Read more.
The presence of tetracycline hydrochloride (TC) in the environment poses significant risks to human health and ecological stability, necessitating the development of effective and rapid removal strategies. In this research, we investigate the efficacy of degrading tetracycline hydrochloride using cobalt-doped-biochar (Co-BC)-activated peroxymonosulfate (PMS) and the underlying mechanisms of this process. The research objectives and conclusions were as follows: (1) Co-BC materials were synthesized from balsa wood powder through a process of impregnation followed by high-temperature calcination. Characterization techniques such as SEM, XRD, FTIR, and XPS were used to confirm the material’s structure and composition. (2) In a TC solution of 20 mg L−1, the use of 100.0 mg L−1 of Co-BC and 1.0 mM PMS led to a TC degradation efficiency of 96.2% within 30 min. (3) The Co-BC+PMS system exhibited wide pH adaptability (4.34–9.02) and strong resistance to environmental matrix interference (Cl, NO3, and SO42). (4) Free-radical quenching experiments indicated that sulfate radicals (SO4) were the primary reactive species in TC degradation. The 11 intermediates of TC were analyzed using LC-MS, and two possible degradation pathways were deduced. In summary, this study offers significant, valuable insights into and technical support for the green, efficient, and environmentally friendly removal of antibiotics from sewage. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

22 pages, 5832 KiB  
Article
Carbonized Dual-Layer Balsa Wood Membrane for Efficient Oil–Water Separation in Kitchen Applications
by Mamadou Souare, Changqing Dong, Xiaoying Hu, Junjiao Zhang, Juejie Xue and Quanjun Zheng
Membranes 2025, 15(6), 160; https://doi.org/10.3390/membranes15060160 - 24 May 2025
Viewed by 1511
Abstract
Wood-based membranes have garnered increasing attention due to their structural advantages and durability in the efficient treatment of oily kitchen wastewater. However, conventional fabrication methods often rely on toxic chemicals or synthetic processes, generating secondary pollutants and suffering from fouling, which reduces performance [...] Read more.
Wood-based membranes have garnered increasing attention due to their structural advantages and durability in the efficient treatment of oily kitchen wastewater. However, conventional fabrication methods often rely on toxic chemicals or synthetic processes, generating secondary pollutants and suffering from fouling, which reduces performance and increases resource loss. In this study, an innovative bilayer membrane was developed from balsa wood by combining a hydrophilic longitudinal layer for water transport with a polydimethylsiloxane (PDMS)-impregnated carbonized transverse layer to enhance hydrophobicity, resulting in increased separation efficiency and a reduction in fouling by 98.38%. The results show a high permeation flux of 1176.86 Lm–2 h–1 and a separation efficiency of 98.60%, maintaining low fouling resistance (<3%) over 20 cycles. Mechanical tests revealed a tensile strength of 10.92 MPa and a fracture elongation of 10.42%, ensuring robust mechanical properties. Wettability measurements indicate a 144° contact angle and a 7° sliding angle with water on the carbonized side, and a 163.7° contact angle with oil underwater and a 5° sliding angle on the hydrophilic side, demonstrating excellent selective wettability. This study demonstrates the potential of carbonized wood-based membranes as a sustainable, effective alternative for large-scale wastewater treatment. Full article
Show Figures

Graphical abstract

13 pages, 2893 KiB  
Article
Fabrication of Wood-Derived Carbon Aerogel/Mg(OH)2 Bio-Composite and Its High Performance for Adsorption and Separation of Cadmium Ions
by Ran An, Jinyue Liu, Haomiao Ma, Yuqing Yan, Yuanru Guo, Qingjiang Pan and Shujun Li
C 2025, 11(2), 32; https://doi.org/10.3390/c11020032 - 6 May 2025
Viewed by 1084
Abstract
To address the need for reducing carbon emissions and enhancing the sustainable utilization of non-fossil resources, a one-step calcination strategy has been developed to fabricate hierarchical carbon aerogels from balsa wood. The resulting wood-derived carbon aerogels (WCA) were functionalized with Mg(OH)2 to [...] Read more.
To address the need for reducing carbon emissions and enhancing the sustainable utilization of non-fossil resources, a one-step calcination strategy has been developed to fabricate hierarchical carbon aerogels from balsa wood. The resulting wood-derived carbon aerogels (WCA) were functionalized with Mg(OH)2 to boost their environmental remediation potential. Comprehensive characterization using XRD, FT-IR, XPS, and SEM confirmed that the optimized WCA/Mg(OH)2 composite (WCAMg) retained a three-dimensional hierarchical porous structure, and Mg(OH)2 nanosheets were attached to it. The adsorption performance of WCAMg composites towards Cd2+ was systematically investigated through controlled experiments, which focused on three critical variables (Mg(OH)2 loading content, initial Cd2+ concentration and solution ionic strength). The functionalized WCAMg demonstrated a maximum Cd2+ adsorption capacity of 351.1 mg g−1—a tenfold improvement over pristine WCA. Combined with exceptional adsorption efficiency, this biomass-derived composite offers an eco-friendly, cost-effective solution for heavy metal ion remediation. Its scalable fabrication from renewable resources aligns with sustainable water treatment objectives, presenting the advantage of pollution mitigation. Full article
(This article belongs to the Special Issue Carbon-Based Materials Applied in Water and Wastewater Treatment)
Show Figures

Graphical abstract

24 pages, 3714 KiB  
Article
Comparison of Bending Properties of Sandwich Structures Using Conventional and 3D-Printed Core with Flax Fiber Reinforcement
by Viktor Brejcha, Martin Böhm, Tomáš Holeček, Miloš Jerman, Klára Kobetičová, Ivana Burianová, Robert Černý and Zbyšek Pavlík
J. Compos. Sci. 2025, 9(4), 182; https://doi.org/10.3390/jcs9040182 - 9 Apr 2025
Cited by 1 | Viewed by 1166
Abstract
The growing demand for sustainable composites has increased interest in natural fiber reinforcements as alternatives to synthetic materials. This study evaluates the bending properties of sandwich structures with flax fibers and 3D-printed lightweight foaming PLA cores compared to conventional designs using glass fibers [...] Read more.
The growing demand for sustainable composites has increased interest in natural fiber reinforcements as alternatives to synthetic materials. This study evaluates the bending properties of sandwich structures with flax fibers and 3D-printed lightweight foaming PLA cores compared to conventional designs using glass fibers and traditional cores. Three-point bending tests (EN 310) and density profile analysis showed that, despite its lower density, the 3D-printed foaming PLA core achieved a modulus of elasticity of 2269.19 MPa and a bending strength of 31.46 MPa, demonstrating its potential for lightweight applications. However, natural fibers influenced resin absorption, affecting core saturation compared to glass fibers. The use of bio-based epoxy and foaming PLA contributes to a lower environmental footprint, while 3D printing enables precise material optimization. These findings confirm that 3D-printed cores offer a competitive and sustainable alternative, with future research focusing on further optimization of internal structure to enhance mechanical performance. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2024)
Show Figures

Figure 1

18 pages, 4720 KiB  
Article
Design of Wood-Based Gd (III)-Hemoporphyrin Monomethyl Ether Eco-Material for Optical Oxygen Sensing with a Wide Detection Range
by Yujie Niu, Jinxin Wang, Zhongxing Zhang and Ting Liu
Sensors 2025, 25(6), 1670; https://doi.org/10.3390/s25061670 - 8 Mar 2025
Viewed by 575
Abstract
Gaseous oxygen detection is essential in numerous production and manufacturing sectors. To meet the varying oxygen detection requirements across different fields, techniques that offer a wide oxygen detection range should be developed. In this study, a wood-based oxygen sensing material was designed using [...] Read more.
Gaseous oxygen detection is essential in numerous production and manufacturing sectors. To meet the varying oxygen detection requirements across different fields, techniques that offer a wide oxygen detection range should be developed. In this study, a wood-based oxygen sensing material was designed using balsa wood as the supporting matrix and gadolinium hemoporphyrin monomethyl ether (Gd-HMME) as the oxygen-sensitive indicator. The wood-based Gd-HMME exhibits a cellular porous structure, which not only facilitates the loading of a substantial number of indicator molecules but also enables the rapid interaction between indicators and oxygen molecules. OP is defined as the ratio of the phosphorescence intensity of the oxygen-sensing material in the anaerobic and aerobic environment. A linear relationship between OP and oxygen partial pressure ([O2]) was obtained within the whole range of [O2] (0–100 kPa). The wood-based Gd-HMME exhibited excellent resistance to photobleaching, along with a rapid response time (3.9 s) and recovery time (4.4 s). It was demonstrated that the measurement results obtained using wood-based Gd-HMME were not influenced by other gaseous components present in the air. An automatic oxygen detection system was developed using LabVIEW for practical use, and the limit of detection was determined to be 0.01 kPa. Full article
(This article belongs to the Section Chemical Sensors)
Show Figures

Figure 1

20 pages, 5958 KiB  
Article
Scalable Fabrication of Light-Responsive Superhydrophobic Composite Phase Change Materials via Bionic-Engineered Wood for Solar–Thermal Energy Management
by Yang Meng, Jiangyu Zhang, Yuchan Li, Hui Jiang and Delong Xie
Molecules 2025, 30(1), 168; https://doi.org/10.3390/molecules30010168 - 4 Jan 2025
Viewed by 1259
Abstract
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. [...] Read more.
The growing demand for sustainable energy storage solutions has underscored the importance of phase change materials (PCMs) for thermal energy management. However, traditional PCMs are always inherently constrained by issues such as leakage, poor thermal conductivity, and lack of solar energy conversion capacity. Herein, a multifunctional composite phase change material (CPCM) is developed using a balsa-derived morphology genetic scaffold, engineered via bionic catechol surface chemistry. The scaffold undergoes selective delignification, followed by a simple, room-temperature polydopamine (PDA) modification to deposit Ag nanoparticles (Ag NPs) and graft octadecyl chains, resulting in a superhydrophobic hierarchical structure. This superhydrophobicity plays a critical role in preventing PCM leakage and enhancing environmental adaptability, ensuring long-term stability under diverse conditions. Encapsulating stearic acid (SA) as the PCM, the CPCM exhibits exceptional stability, achieving a high latent heat of 175.5 J g−1 and an energy storage efficiency of 87.7%. In addition, the thermal conductivity of the CPCM is significantly enhanced along the longitudinal direction, a 2.1-fold increase compared to pure SA, due to the integration of Ag NPs and the unidirectional wood architecture. This synergy also drives efficient photothermal conversion via π-π stacking interactions of PDA and the surface plasmon effects of Ag NPs, enabling rapid solar-to-thermal energy conversion. Moreover, the CPCM demonstrates remarkable water resistance, self-cleaning ability, and long-term thermal reliability, retaining its functionality through 100 heating–cooling cycles. This multifunctional balsa-based CPCM represents a breakthrough in integrating phase-change behavior with advanced environmental adaptability, offering promising applications in solar–thermal energy systems. Full article
(This article belongs to the Special Issue Recent Advances in Superhydrophobic Materials and Their Application)
Show Figures

Graphical abstract

22 pages, 7879 KiB  
Article
Mechanical Properties of Concrete Mixes with Selectively Crushed Wind Turbine Blade: Comparison with Raw-Crushing
by Víctor Revilla-Cuesta, Ana B. Espinosa, Roberto Serrano-López, Marta Skaf and Juan M. Manso
Materials 2024, 17(24), 6299; https://doi.org/10.3390/ma17246299 - 23 Dec 2024
Cited by 3 | Viewed by 879
Abstract
The glass fiber-reinforced polymer (GFRP) materials of wind turbine blades can be recovered and recycled by crushing, thereby solving one of the most perplexing problems facing the wind energy sector. This process yields selectively crushed wind turbine blade (SCWTB), a novel waste that [...] Read more.
The glass fiber-reinforced polymer (GFRP) materials of wind turbine blades can be recovered and recycled by crushing, thereby solving one of the most perplexing problems facing the wind energy sector. This process yields selectively crushed wind turbine blade (SCWTB), a novel waste that is almost exclusively composed of GFRP composite fibers that can be revalued in terms of their use as a raw material in concrete production. In this research, the fresh and mechanical performance of concrete made with 1.5%, 3.0%, 4.5%, and 6.0% SCWTB is studied. Once incorporated into concrete mixes, SCWTB waste slightly reduced slumps due to the large specific surface area of the fibers, and the stitching effect of the fibers on mechanical behavior was generally adequate, as scanning electron microscopy demonstrated good fiber adhesion within the cementitious matrix. Thus, despite the increase in the content of water and plasticizers when adding this waste to preserve workability, the compressive strength only decreased in the long term with the addition of 6.0% SCWTB, a value of 45 MPa always being reached at 28 days; Poisson’s coefficient remained constant from 3.0% SCWTB; splitting tensile strength was maintained at around 4.7 MPa up to additions of 3.0% SCWTB; and the flexural strength of mixes containing 6.0% and 1.5% SCWTB was statistically equal, with a value near 6.1 MPa. Furthermore, all mechanical properties of the concrete except for flexural strength were improved with additions of SCWTB compared to raw crushed wind turbine blade, which apart from GFRP composite fibers contains approximately spherical polymer and balsa wood particles. Flexural strength was conditioned by the proportion of fibers, their dimensions, and their strength, which were almost identical for both waste types. SCWTB would be preferable for applications in which compression stresses predominate. Full article
Show Figures

Graphical abstract

14 pages, 4426 KiB  
Article
Preparation of Alumina Oxo-Cluster/Cellulose Polymers and Dye Adsorption Application
by Henglong Tang, Simeng Yao, Zhu Long, Xuefei Yang, Pengxiang Si, Chang Sun and Dan Zhang
Materials 2024, 17(23), 6023; https://doi.org/10.3390/ma17236023 - 9 Dec 2024
Viewed by 956
Abstract
Aluminum oxide clusters (AlOCs) possess high surface areas and customizable pore structures, making them applicable in the field of environmental remediation. However, their practical use is hindered by stability issues, aggregation tendencies, and recycling challenges. This study presents an in -situ synthesis of [...] Read more.
Aluminum oxide clusters (AlOCs) possess high surface areas and customizable pore structures, making them applicable in the field of environmental remediation. However, their practical use is hindered by stability issues, aggregation tendencies, and recycling challenges. This study presents an in -situ synthesis of AlOCs on cellulose using a solvent thermal method. The resulting adsorbent’s structural and property profiles were thoroughly characterized using multiple analytical techniques. Batch adsorption experiments were performed to assess the adsorbent’s capacity and kinetics in removing selected dyes from aqueous solutions. Additionally, both real-environment simulation and regeneration experiments have been conducted to thoroughly assess the adsorbent’s reliability, stability, and practical applicability. The aim was to engineer an effective and recyclable adsorbent specifically tailored for dye-contaminated wastewater treatment. Full article
(This article belongs to the Special Issue Construction and Applications in Functional Polymers)
Show Figures

Figure 1

23 pages, 8761 KiB  
Article
Structural Optimization of a High-Performance Green Sandwich Made of Sisal Reinforced Epoxy Facings and Balsa Core
by Bernardo Zuccarello, Francesco Bongiorno and Carmelo Militello
Polymers 2024, 16(23), 3341; https://doi.org/10.3390/polym16233341 - 28 Nov 2024
Cited by 3 | Viewed by 1106
Abstract
Within the range of composite laminates for structural applications, sandwich laminates are a special category intended for applications characterized by high flexural stresses. As it is well known from the technical literature, structural sandwich laminates have a simple configuration consisting of two skins [...] Read more.
Within the range of composite laminates for structural applications, sandwich laminates are a special category intended for applications characterized by high flexural stresses. As it is well known from the technical literature, structural sandwich laminates have a simple configuration consisting of two skins of very strong material, to which the flexural strength is delegated, between which an inner layer (core) of light material with sufficient shear strength is interposed. As an example, a sandwich configuration widely used in civil, naval, and mechanical engineering is that obtained with fiberglass skins and a core of various materials, such as polyurethane foam or another lightweight material, depending on the application. Increasingly stringent regulations aimed at protecting the environment by reducing harmful emissions of carbon dioxide and carbon monoxide have directed recent research towards the development of new composites and new sandwiches characterized by low environmental impact. Among the various green composite solutions proposed in the literature, a very promising category is that of high-performance biocomposites, which use bio-based matrices reinforced by fiber reinforcements. This approach can also be used to develop green sandwiches for structural applications, consisting of biocomposite skins and cores made by low-environmental impact or renewable materials. In order to make a contribution to this field, a structural sandwich consisting of high-performance sisal–epoxy biocomposite skins and an innovative renewable core made of balsa wood laminates with appropriate lay-ups has been developed and then properly characterized in this work. Through a systematic theoretical–experimental analysis of three distinct core configurations, the unidirectional natural core, the cross-ply type, and the angle-ply type, it has been shown how the use of natural balsa gives rise to inefficient sandwiches, whereas performance optimization is fully achieved by considering the angle-ply core type [±45/90]. Finally, the subsequent comparison with literature data of similar sandwiches has shown how the optimal configuration proposed can be advantageously used to replace synthetic glass–resin sandwiches widely used in various industrial sectors (mechanical engineering, shipbuilding, etc.) and in civil engineering. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Figure 1

15 pages, 5929 KiB  
Article
The Confinement Behavior and Mechanistic Insights of Organic Phase Change Material Encapsulated in Wood Morphology Genetic Nanostructures for Thermal Energy Storage
by Yang Meng, Yanping Jiang, Yuhui Chen and Jiangyu Zhang
Polymers 2024, 16(22), 3213; https://doi.org/10.3390/polym16223213 - 20 Nov 2024
Cited by 1 | Viewed by 1153
Abstract
Wood, a renewable and abundant biomass resource, holds substantial promise as an encapsulation matrix for thermal energy storage (TES) applications involving phase change materials (PCMs). However, practical implementations often reveal a disparity between observed and theoretical phase change enthalpy values of wood-derived composite [...] Read more.
Wood, a renewable and abundant biomass resource, holds substantial promise as an encapsulation matrix for thermal energy storage (TES) applications involving phase change materials (PCMs). However, practical implementations often reveal a disparity between observed and theoretical phase change enthalpy values of wood-derived composite PCMs (CPCMs). This study systematically explores the confinement behavior of organic PCMs encapsulated in a delignified balsa wood matrix with morphology genetic nanostructure, characterized by a specific surface area of 25.4 ± 1.1 m2/g and nanoscale pores averaging 2.2 nm. Detailed thermal performance evaluations uncover distinct phase change behaviors among various organic PCMs, influenced by the unique characteristics of functional groups and carbon chain lengths. The encapsulation mechanism is primarily dictated by host–guest interactions, which modulate PCM molecular mobility through hydrogen bonding and spatial constraints imposed by the hierarchical pore structure of the wood. Notably, results demonstrate a progressive enhancement of nanoconfinement effects, evidencing a transition from octadecane to stearic acid, further supported by density functional theory (DFT) calculations. This research significantly advances the understanding of nanoconfinement mechanisms in wood-derived matrices, paving the way for the development of high-performance, shape-stabilized composite PCMs that are essential for sustainable thermal energy storage solutions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

31 pages, 17042 KiB  
Article
An Effective Alternative to the Open Trench Method for Mitigating Ground-Borne Environmental Body Waves: Corrugated Cardboard Boxes Reinforced with Balsa Wood
by Ayşenur Subaşı, Erkan Çelebi, Muhammet Burhan Navdar, Osman Kırtel and Berna İstegün
Appl. Sci. 2024, 14(22), 10544; https://doi.org/10.3390/app142210544 - 15 Nov 2024
Viewed by 2180
Abstract
This research develops and evaluates a recyclable corrugated cardboard vibration isolation box reinforced with balsa wood as an alternative to traditional open trench methods for mitigating ground-borne environmental body waves. This study includes designing and testing scaled prototypes, laboratory analyses, prototype fabrication, and [...] Read more.
This research develops and evaluates a recyclable corrugated cardboard vibration isolation box reinforced with balsa wood as an alternative to traditional open trench methods for mitigating ground-borne environmental body waves. This study includes designing and testing scaled prototypes, laboratory analyses, prototype fabrication, and full-scale field experiments. In soft ground conditions, ensuring slope stability during deep excavations is a key engineering challenge for open trenches. For this purpose, scaled prototypes were subjected to laboratory tests to assess the resistance of the wave barrier’s wall surface. Numerical analyses were also conducted to evaluate the strength of the internal lattice structure under various loads. A prototype was fabricated for on-site experiments simulating real-world conditions. Field experiments evaluated the vibration isolation performance of the proposed barrier. Accelerometer sensors were strategically placed to gather data, analyzing ground surface vibrations for free field motions to assess the vibration shielding efficiency of both the open trench method and the corrugated vibration isolation box, with and without Styrofoam infill. This study concludes that the recyclable corrugated vibration isolation box is a viable alternative, offering comparable or improved vibration isolation efficiency in soft soil conditions while promoting environmental sustainability using recyclable materials. Full article
Show Figures

Figure 1

15 pages, 9046 KiB  
Article
Numerical Modelling of the Hydrodynamic Performance of Biodegradable Drifting Fish Aggregating Devices in Currents
by Tongzheng Zhang, Junbo Zhang, Qinglian Hou, Gangyi Yu, Ao Chen, Zhiqiang Liu and Rong Wan
J. Mar. Sci. Eng. 2024, 12(7), 1059; https://doi.org/10.3390/jmse12071059 - 24 Jun 2024
Cited by 4 | Viewed by 1329
Abstract
Fish Aggregating Devices (FADs) are essential supplementary structures used in tropical tuna purse-seine fishing. They are strategically placed to attract tuna species and enhance fishing productivity. The hydrodynamic performance of FADs has a direct effect on their structural and environmental safety in the [...] Read more.
Fish Aggregating Devices (FADs) are essential supplementary structures used in tropical tuna purse-seine fishing. They are strategically placed to attract tuna species and enhance fishing productivity. The hydrodynamic performance of FADs has a direct effect on their structural and environmental safety in the harsh marine environment. Conventional FADs are composed of materials that do not break down naturally, leading to the accumulation of waste in the ocean and potential negative effects on marine ecosystems. Therefore, this work aimed to examine the hydrodynamic performance of biodegradable drifting FADs (Bio-DFADs) in oceanic currents by numerical modelling. The Reynolds-averaged Navier–Stokes equation was used to solve the flow field and discretized based on the realizable k-ε turbulence model, employing the finite volume method. A set of Bio-DFADs was developed to assess the hydrodynamic performance under varying current velocities and attack angles, as well as different balsa wood diameters and sinker weights. The results indicated that the relative current velocity significantly affected the relative velocity of Bio-DFADs. The relative length of the raft significantly affected both the relative velocity and the relative wetted area in a pure stream. Finally, the diameter of the balsa wood affected the drift velocity, and the sinker’s relative weight affected the hydrodynamic performance of the Bio-DFADs. Full article
(This article belongs to the Special Issue Advanced Analysis of Marine Structures—Edition II)
Show Figures

Figure 1

13 pages, 9668 KiB  
Article
Highly Mechanical Strength, Flexible and Stretchable Wood-Based Elastomers without Chemical Cross-Linking
by Yongyue Zhang, Jiayao Li, Yun Lu and Jiangtao Shi
Forests 2024, 15(5), 836; https://doi.org/10.3390/f15050836 - 10 May 2024
Cited by 2 | Viewed by 1685
Abstract
Wood exhibits a limited elastic deformation capacity under external forces due to its small range of elastic limit, which restricts its widespread use as an elastic material. This study presents the development of a stretchable wood-based elastomer (SWE) that is highly mechanical and [...] Read more.
Wood exhibits a limited elastic deformation capacity under external forces due to its small range of elastic limit, which restricts its widespread use as an elastic material. This study presents the development of a stretchable wood-based elastomer (SWE) that is highly mechanical and flexible, achieved without the use of chemical cross-linking. Balsa wood was utilized as a raw material, which was chemically pretreated to remove the majority of the lignin and create a more abundant pore structure, while exposing the active hydroxyl groups on the cellulose surface. The polyvinyl alcohol (PVA) solution was impregnated into delignified wood, resulting in the formation of a cross-linked structure through multiple freeze–thaw cycles. After eight cycles, the tensile strength in the longitudinal direction reached up to 25.68 MPa with a strain of ~463%. This excellent mechanical strength is superior to that of most wood-based elastomers reported to date. The SWE can also perform complex deformations such as winding and knotting, and SWE soaked in salt solution exhibits excellent sensing characteristics and can be used to detect human finger bending. Stretchable wood-based elastomers with high mechanical strength and toughness have potential future applications in biomedicine, flexible electronics, and other fields. Full article
Show Figures

Figure 1

Back to TopTop