Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = ballast weight

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3084 KiB  
Article
Overall Design and Performance Analysis of the Semi-Submersible Platform for a 10 MW Vertical-Axis Wind Turbine
by Qun Cao, Xinyu Zhang, Ying Chen, Xinxin Wu, Kai Zhang and Can Zhang
Energies 2025, 18(13), 3488; https://doi.org/10.3390/en18133488 - 2 Jul 2025
Viewed by 389
Abstract
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, [...] Read more.
This study presents a novel semi-submersible platform design for 10 MW vertical-axis wind turbines (VAWTs), specifically engineered to address the compounded challenges of China’s intermediate-depth (40 m), typhoon-prone maritime environment. Unlike conventional horizontal-axis configurations, VAWTs impose unique demands due to omnidirectional wind reception, high aerodynamic load fluctuations, and substantial self-weight—factors exacerbated by short installation windows and complex hydrodynamic interactions. Through systematic scheme demonstration, we establish the optimal four-column configuration, resolving critical limitations of existing concepts in terms of water depth adaptability, stability, and fabrication economics. The integrated design features central turbine mounting, hexagonal pontoons for enhanced damping, and optimized ballast distribution, achieving a 3400-tonne steel mass (29% reduction vs. benchmarks). Comprehensive performance validation confirms exceptional survivability under 50-year typhoon conditions (Hs = 4.42 m, Uw = 54 m/s), limiting platform tilt to 8.02° (53% of allowable) and nacelle accelerations to 0.10 g (17% of structural limit). Hydrodynamic analysis reveals heave/pitch natural periods > 20 s, avoiding wave resonance (Tp = 7.64 s), while comparative assessment demonstrates 33% lower pitch RAOs than leading horizontal-axis platforms. The design achieves unprecedented synergy of typhoon resilience, motion performance, and cost-efficiency—validated by 29% steel savings—providing a technically and economically viable solution for megawatt-scale VAWT deployment in challenging seas. Full article
Show Figures

Figure 1

20 pages, 2532 KiB  
Article
Feeding Habits of the Invasive Atlantic Blue Crab Callinectes sapidus in Different Habitats of the SE Iberian Peninsula, Spain (Western Mediterranean)
by Fikret Öndes, Isabel Esteso, Elena Guijarro-García, Elena Barcala, Francisca Giménez-Casalduero, Alfonso A. Ramos-Esplá and Carmen Barberá
Water 2025, 17(11), 1615; https://doi.org/10.3390/w17111615 - 26 May 2025
Viewed by 850
Abstract
The blue crab Callinectes sapidus Rathbun, 1896 is native to the western coast of the Atlantic Ocean. Although its arrival to the Mediterranean was probably due to ballast water, this species has several characteristics that have enabled it to successfully invade countless localities [...] Read more.
The blue crab Callinectes sapidus Rathbun, 1896 is native to the western coast of the Atlantic Ocean. Although its arrival to the Mediterranean was probably due to ballast water, this species has several characteristics that have enabled it to successfully invade countless localities in the Mediterranean and the Black Sea. Little is known about its feeding habits and ecosystem impacts in the Mediterranean basin. This study aimed to provide information on the natural diet of C. sapidus by comparing the stomach contents of specimens caught in different seasons and habitats of the SE Iberian Peninsula (hypersaline waters in Mar Menor Lagoon and brackish waters in Guardamar Bay). This study also tested whether gender influences prey selection and if ovigerous females exhibit limited feeding activity. Regarding the frequency of occurrence, the results indicated that in Mar Menor Lagoon the most frequently consumed prey were Crustacea (60%), followed by fish (57%) and Mollusca (29%), whilst in Guardamar Bay, Mollusca (40%), sediment (32%), algae (24%) and Crustacea (24%) were dominant. It has been determined that this species predates heavily on Mediterranean shrimp Penaeus kerathurus, an economically important shrimp species in the lagoon area. Analysis using a generalised linear model indicated that sex, season and size class were factors that significantly influenced the stomach content weight. Furthermore, non-ovigerous females had significantly fuller stomachs than ovigerous individuals. Since the population of Callinectes sapidus tends to increase in the Mediterranean basin, monitoring of its feeding ecology is recommended to determine its impact on the ecosystem. Full article
(This article belongs to the Special Issue Aquatic Environment and Ecosystems)
Show Figures

Figure 1

18 pages, 5217 KiB  
Article
Effect of the Particle Size Distribution of the Ballast on the Lateral Resistance of Continuously Welded Rail Tracks
by Jafar Chalabii, Morteza Esmaeili, Dániel Gosztola, Szabolcs Fischer and Majid Movahedi Rad
Infrastructures 2024, 9(8), 129; https://doi.org/10.3390/infrastructures9080129 - 6 Aug 2024
Cited by 5 | Viewed by 1997
Abstract
While the effect of ballast degradation on lateral resistance is noteworthy, limited research has delved into the specific aspect of ballast breakage in this context. This study is dedicated to assessing the influence of breakage on sleeper lateral resistance. For simplicity, it is [...] Read more.
While the effect of ballast degradation on lateral resistance is noteworthy, limited research has delved into the specific aspect of ballast breakage in this context. This study is dedicated to assessing the influence of breakage on sleeper lateral resistance. For simplicity, it is assumed that ballast breakage has already occurred. Accordingly, nine granularity variations finer than No. 24 were chosen for simulation, with No. 24 as the assumed initial particle size distribution. Initially, a DEM model was validated for this purpose using experimental outcomes. Subsequently, employing this model, the lateral resistance of different particle size distributions was examined for a 3.5 mm displacement. The track was replaced by a reinforced concrete sleeper in the models, and no rails or rail fasteners were considered. The sleeper had a simplified model with clumps, the type of which was the so-called B70 and was applied in Western Europe. The sleeper was taken into consideration as a rigid body. The crushed stone ballast was considered as spherical grains with the addition that they were divided into fractions (sieves) in weight proportions (based on the particle distribution curve) and randomly generated in the 3D model. The complete 3D model was a 4.84 × 0.6 × 0.57 m trapezoidal prism with the sleeper at the longitudinal axis centered and at the top of the model. Compaction was performed with gravity and slope walls, with the latter being deleted before running the simulation. During the simulation, the sleeper was moved horizontally parallel to its longitudinal axis and laterally up to 3.5 mm in static load in the compacted ballast. The study successfully established a relationship between lateral resistance and ballast breakage. The current study’s findings indicate that lateral resistance decreases as ballast breakage increases. Moreover, it was observed that the rate of lateral resistance decrease becomes zero when the ballast breakage index reaches 0.6. Full article
Show Figures

Figure 1

21 pages, 4724 KiB  
Article
ETE-SRSP: An Enhanced Optimization of Tramp Ship Routing and Scheduling
by Xiaohu Huang, Yuhan Liu, Mei Sha, Bing Han, Dezhi Han and Han Liu
J. Mar. Sci. Eng. 2024, 12(5), 817; https://doi.org/10.3390/jmse12050817 - 14 May 2024
Cited by 4 | Viewed by 1911
Abstract
In the contemporary tramp shipping industry, route optimization and scheduling are directly linked to enhancements in operations, economics, and the environment, making them key factors for the effective management of maritime transportation. To enhance effective ship-to-cargo matching and the refinement of maritime transportation [...] Read more.
In the contemporary tramp shipping industry, route optimization and scheduling are directly linked to enhancements in operations, economics, and the environment, making them key factors for the effective management of maritime transportation. To enhance effective ship-to-cargo matching and the refinement of maritime transportation itineraries, this paper introduces a time efficiency and carbon dioxide emission multi-objective optimization algorithm named ETE-SRSP (efficiency–time–emission multi-optimization algorithm). ETE-SRSP incorporates several factors, including the initial positions of ships, time windows for loading and unloading operations, and varying sailing speeds. Within the ETE-SRSP framework, pioneering an approach that integrates ballast and laden sailing velocities as decisional parameters, it employs a multi-objective optimization technique to investigate the intricate interplay between temporal efficiency and carbon dioxide emissions. Additionally, the model’s proficiency in mitigating emissions and managing costs is clearly demonstrated through the optimization of these objectives, thereby offering a robust framework for decision support. The experimental results show that the optimal sailing speeds derived from the ETE-SRSP, under typical time-weight scenarios, can achieve an optimal balance between emission reduction and cost control. In summary, this study underscores the optimization strategy’s potential to effectively address the maritime sector’s need for economic growth and ecological conservation, showcasing its practical value in the industry. Full article
Show Figures

Figure 1

18 pages, 8146 KiB  
Article
Evaluating Different Track Sub-Ballast Solutions Considering Traffic Loads and Sustainability
by Guilherme Castro, Jonathan Saico, Edson de Moura, Rosangela Motta, Liedi Bernucci, André Paixão, Eduardo Fortunato and Luciano Oliveira
Infrastructures 2024, 9(3), 54; https://doi.org/10.3390/infrastructures9030054 - 9 Mar 2024
Cited by 3 | Viewed by 4002
Abstract
The railway industry is seeking high-performance and sustainable solutions for sub-ballast materials, particularly in light of increasing cargo transport demands and climate events. The meticulous design and construction of track bed geomaterials play a crucial role in ensuring an extended track service life. [...] Read more.
The railway industry is seeking high-performance and sustainable solutions for sub-ballast materials, particularly in light of increasing cargo transport demands and climate events. The meticulous design and construction of track bed geomaterials play a crucial role in ensuring an extended track service life. The global push for sustainability has prompted the evaluation of recycling ballast waste within the railway sector, aiming to mitigate environmental contamination, reduce the consumption of natural resources, and lower costs. This study explores materials for application and compaction using a formation rehabilitation machine equipped with an integrated ballast recycling system designed for heavy haul railways. Two recycled ballast-stabilised soil materials underwent investigation, meeting the necessary grain size distribution for the proper compaction and structural conditions. One utilised a low-bearing-capacity silty sand soil stabilised with recycled ballast fouled waste (RFBW) with iron ore at a 3:7 weight ratio, while the second was stabilised with 3% cement. Laboratory tests were conducted to assess their physical, chemical, and mechanical properties, and a non-linear elastic finite element numerical model was developed to evaluate the potential of these alternative solutions for railway sub-ballast. The findings indicate the significant potential of using soils stabilised with recycled fouled ballast as sub-ballast for heavy haul tracks, underscoring the advantages of adopting sustainable sub-ballast solutions through the reuse of crushed deteriorated ballast material. Full article
Show Figures

Figure 1

27 pages, 11743 KiB  
Article
Ballast-Supported Foundation Designs for Low-Cost Open-Source Solar Photovoltaic Racking
by Nicholas Vandewetering, Uzair Jamil and Joshua M. Pearce
Designs 2024, 8(1), 17; https://doi.org/10.3390/designs8010017 - 4 Feb 2024
Cited by 1 | Viewed by 3700
Abstract
Although solar photovoltaic (PV) system costs have declined, capital cost remains a barrier to widespread adoption. Do-it-yourself (DIY) system designs can significantly reduce labor costs, but if they are not attached to a building structure, they require ground penetrating footings. This is not [...] Read more.
Although solar photovoltaic (PV) system costs have declined, capital cost remains a barrier to widespread adoption. Do-it-yourself (DIY) system designs can significantly reduce labor costs, but if they are not attached to a building structure, they require ground penetrating footings. This is not technically and economically feasible at all sites. To overcome these challenges, this study details systems designed to (1) eliminate drilling holes and pouring concrete, (2) propose solutions for both fixed and variable tilt systems, (3) remain cost effective, and (4) allow for modifications to best fit the user’s needs. The ballast-supported foundations are analyzed for eight systems by proposing two separate ballast designs: one for a single line of post systems, and one for a double line of post systems, both built on a 4-kW basis. The results of the analysis found that both designs are slightly more expensive than typical in-ground concrete systems by 25% (assuming rocks are purchased at a landscaping company), but the overall DIY system’s costs remain economically advantageous. Sensitivity analyses are conducted to show how modifications to the dimensions influence the weight of the system and thus change the economic value of the design, so users can trade dimensional freedom for cost savings, and vice versa. Overall, all wood-based PV racking system designs provide users with cost-effective and easy DIY alternatives to conventional metal racking, and the novel ballast systems presented provide more versatility for PV systems installations. Full article
Show Figures

Graphical abstract

21 pages, 5753 KiB  
Article
Enhancing Wave Energy Conversion Efficiency through Supervised Regression Machine Learning Models
by Sunny Kumar Poguluri and Yoon Hyeok Bae
J. Mar. Sci. Eng. 2024, 12(1), 153; https://doi.org/10.3390/jmse12010153 - 12 Jan 2024
Cited by 5 | Viewed by 2083
Abstract
The incorporation of machine learning (ML) has yielded substantial benefits in detecting nonlinear patterns across a wide range of applications, including offshore engineering. Existing ML works, specifically supervised regression models, have not undergone exhaustive scrutiny, and there are no potential or concurrent models [...] Read more.
The incorporation of machine learning (ML) has yielded substantial benefits in detecting nonlinear patterns across a wide range of applications, including offshore engineering. Existing ML works, specifically supervised regression models, have not undergone exhaustive scrutiny, and there are no potential or concurrent models for improving the performance of wave energy converter (WEC) devices. This study employs supervised regression ML models, including multi-layer perceptron, support vector regression, and XGBoost, to optimize the geometric aspects of an asymmetric WEC inspired by Salter’s duck, based on key parameters. These important parameters, the ballast weight and its position, vary along a guided line within the available geometric resilience of the asymmetric WEC. Each supervised regression ML model was fine-tuned through hyperparameter optimization using Grid cross-validation. When evaluating the performance of each ML model, it became evident that the tuned hyperparameters of XGBoost led to predictions that strongly aligned with the actual values compared to other models. Furthermore, the study extended to assess the performance of the optimized WEC at the designated deployment test site location. Full article
(This article belongs to the Special Issue Study on the Performance of Wave Energy Converters)
Show Figures

Figure 1

31 pages, 8927 KiB  
Article
Shear Force and Bending Moment Tuning Algorithm of Shuttle Tanker Model for Global Structural Analysis
by Chaeog Lim, Ik-seung Han, Ju-Young Kang, Im-jun Ban, Byungkeun Lee, Jun Soo Park and Sung-chul Shin
J. Mar. Sci. Eng. 2023, 11(10), 1900; https://doi.org/10.3390/jmse11101900 - 29 Sep 2023
Cited by 2 | Viewed by 2532
Abstract
Global ship analysis is conducted using a finite element model (FE model) for ship design and construction, which involves structural, motion, and vibration analyses. It is crucial to examine the structural safety of the hull and motion response. In the ship FE model [...] Read more.
Global ship analysis is conducted using a finite element model (FE model) for ship design and construction, which involves structural, motion, and vibration analyses. It is crucial to examine the structural safety of the hull and motion response. In the ship FE model used in global ship analysis, weight distribution is employed to adjust the light weight and center of gravity (COG), which are required to perform the analysis. Further, the FE model needs to satisfy the required longitudinal shear force (SF) and bending moment (BM) under the loading conditions of the ship. Moreover, the SF and BM in the ship Trim and Stability data are utilized to perform shear force tuning (SFT) and bending moment tuning (BMT) for the ship FE model. This ensures the ship model exhibits curves of the SF and BM that coincide with those of the ship. The SFT and BMT for the ship FE model are time-consuming and costly. Thus, to address these limitations, we propose an effective and accurate algorithm and program for SFT and BMT. Accordingly, we developed a C#-based algorithm to tune the weight, SF, BM, and COG of the ship FE model to the required target value. Finally, the accuracy of the newly developed algorithm was analyzed and compared by applying it to the shuttle tanker FE model under the ballast and full load conditions. Accuracy was within tolerance in both loading conditions. The average errors of SF and BM were smaller in the ballast condition than in the full load condition, and the errors were smaller at the bow than at the stern. Full article
(This article belongs to the Special Issue Advances in Marine Mechanical and Structural Engineering)
Show Figures

Figure 1

16 pages, 11311 KiB  
Article
Optimal Shape Design of Concrete Sleepers under Lateral Loading Using DEM
by Jafar Chalabii, Majid Movahedi Rad and Seyedsaber Hosseini
Buildings 2023, 13(7), 1574; https://doi.org/10.3390/buildings13071574 - 21 Jun 2023
Cited by 4 | Viewed by 2261
Abstract
Despite the significant contribution of sleepers to the lateral resistance of ballasted tracks, limited research has focused on improving the shape of sleepers in this aspect. This study aims to evaluate proposed sleeper shapes based on the B70 form, utilizing a linear optimization [...] Read more.
Despite the significant contribution of sleepers to the lateral resistance of ballasted tracks, limited research has focused on improving the shape of sleepers in this aspect. This study aims to evaluate proposed sleeper shapes based on the B70 form, utilizing a linear optimization algorithm. First, a DEM model was verified for this purpose using the outcomes of the experiments. Then, using this model, the effect of the weight of the B70 sleeper was carried out on lateral resistance. Next, suggested shapes contacted with ballast materials were applied to lateral force while maintaining the mechanical ballast’s properties until a displacement of 3.5 mm was achieved. The current study’s results showed that the rate of lateral resistance increasing becomes lower for weights higher than 400 kg. Additionally, it was demonstrated that the sleeper’s weight will not always increase lateral resistance. The findings also indicated that although some proposal shapes had higher lateral resistance in comparison to other forms, these designs are not practical from an economic standpoint. Furthermore, despite the lower weight of some other suggested shapes in comparison with B70, the lateral resistances are 31.2% greater. As a result, it is possible to recommend employing a proposed sleeper rather than a B70 sleeper. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

23 pages, 11426 KiB  
Article
Design and Experimental Validation of a Rapidly Deployable Folding Floating Bridge Based on Rigid-Flexible Combination
by Chenxin Wang, Haiyue Hu and Jin Gan
Machines 2023, 11(4), 415; https://doi.org/10.3390/machines11040415 - 23 Mar 2023
Cited by 2 | Viewed by 3298
Abstract
As a temporary means of water transportation, floating bridges play an important role in the military and other fields. However, traditional floating bridges have limitations such as large size, heavy weight, and slow construction time. In this paper, we propose a rigid-flexible composite [...] Read more.
As a temporary means of water transportation, floating bridges play an important role in the military and other fields. However, traditional floating bridges have limitations such as large size, heavy weight, and slow construction time. In this paper, we propose a rigid-flexible composite folding floating bridge. The main structure of the floating bridge consists of three layers: the bridge deck, airbag, and water bag. The floating bridge units are connected by flexible connectors to allow for pre-connection and folding of the bridge, reducing storage and transportation space, and improving construction efficiency. The proposed floating bridge also has a complete engineering application design and has been checked for safety and reliability (including the strength, buoyancy, and bearing capacity of the connections). We used AQWA software to simulate and analyze the anchorage scheme of the floating bridge and its response to wave loads and conducted a ballast test on a floating bridge model to verify its feasibility as a main bearing body. The results show that the floating bridge we designed has the advantages of being lightweight, having fewer consumables, having a small storage and transportation space, and being able to be constructed quickly. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

21 pages, 2628 KiB  
Article
Determination of the Major By-Products of Citrus hystrix Peel and Their Characteristics in the Context of Utilization in the Industry
by Martyna Lubinska-Szczygeł, Anna Kuczyńska-Łażewska, Małgorzata Rutkowska, Żaneta Polkowska, Elena Katrich and Shela Gorinstein
Molecules 2023, 28(6), 2596; https://doi.org/10.3390/molecules28062596 - 13 Mar 2023
Cited by 14 | Viewed by 5296
Abstract
Kaffir lime (Citrus hystrix) is a popular citrus in Southeast Asia. Despite the growing interest in the peel of the fruit, the leaves are the most frequently used part of the fruit. The aim of the study was to determine the [...] Read more.
Kaffir lime (Citrus hystrix) is a popular citrus in Southeast Asia. Despite the growing interest in the peel of the fruit, the leaves are the most frequently used part of the fruit. The aim of the study was to determine the main by-products of the peel, such as pectins, minerals, essential oil, and bioactive compounds, and to evaluate the possibility of using them in various branches of industry. In the study of the essential oil obtained by hydrodistillation performed using the TGA chromatography technique (GC-MS), sabinene (31.93%), β-pinene (26%), and limonene (19%) were selected as the most abundant volatile compounds. Nine microelements (Fe, Zn, Cu, Mn, Co, Ni, Cr, Mo, and V), four macroelements (Mg, Ca, K, and Na), and seven ballast substances (Cd, Hg, Pb, Al, V, Sr, and Pt) were also determined using the microwave plasma-atomic emission spectrometry technique (MP-AES). In the case of microelements, iron 32.72 ± 0.39 mg/kg DW (dry weight) had the highest concentration. In the case of macroelements, the calcium content was 9416 ± 34 mg/kg DW. Optimization of the pectin extraction was also performed by selecting citric acid and obtaining a yield of 7.6–17.6% for acid extraction and 9.9–28.2% for ultrasound-assisted extraction (UAE), depending on the temperature used. The obtained pectins were characterized by the degree of methylation, galacturonic acid content, 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging, and DSC (differential scanning calorimetry) analysis. Among bioactive compounds, the contents of polyphenols (22.63 ± 2.12 mg GAE/g DW), flavonoids (2.72 ± 0.25 mg CE/g DW, vitamin C (2.43 ± 0.19 mg Asc), xantoproteins + carotenes (53.8 ± 4.24 ug), anthocyanins (24.8 ± 1.8 mg CGE/kg DW), and chlorophylls A and B (188.5 ± 8.1, 60.4 ± 3.23 µg/g DW) were evaluated. Antioxidant capacity using (cupric ion-reducing antioxidant capacity) CUPRAC and DPPH assays was also provided with the results of 76.98 ± 8.1, and 12.01 ± 1.02 µmol TE/g DW, respectively. Full article
(This article belongs to the Special Issue Bioactive Compounds of Fruits, Vegetables and Mushrooms II)
Show Figures

Graphical abstract

20 pages, 6533 KiB  
Article
Mechanical Behaviour of Steel Slag–Rubber Mixtures: Laboratory Assessment
by Rubens Alves, Sara Rios, Eduardo Fortunato, António Viana da Fonseca and Bruno Guimarães Delgado
Sustainability 2023, 15(2), 1563; https://doi.org/10.3390/su15021563 - 13 Jan 2023
Cited by 13 | Viewed by 2480
Abstract
Slags and rubber from end-of-life tires represent a liability to the steel and tire industry, causing economic and environmental problems that are difficult to manage. Transport infrastructures can use these industrial by-products instead of extracting natural raw materials, but the adequate mechanical performance [...] Read more.
Slags and rubber from end-of-life tires represent a liability to the steel and tire industry, causing economic and environmental problems that are difficult to manage. Transport infrastructures can use these industrial by-products instead of extracting natural raw materials, but the adequate mechanical performance of the materials needs to be assured. This paper addresses the mechanical behaviour of slag–rubber mixtures in the laboratory with CBR, monotonic and cyclic triaxial tests. In addition, light falling weight deflectometer tests were also performed in a physical model. The results were analysed to meet technical specifications from Brazil, Portugal and Australia using railway sub-ballast layers, capping layers or road pavement layers as the base and sub-base to identify the applicability range of slag–rubber mixtures for transport infrastructures. Concerning the analysed parameters, it was demonstrated that slag–rubber mixtures can show resilient behaviour and strength adequate for the support layers of transport infrastructures provided that the rubber content is below 5% in weight and that the slag is milled to comply with the grain size distribution ranges available in the technical specifications of the cited countries. Full article
Show Figures

Figure 1

26 pages, 7524 KiB  
Article
Evaluating the Forest Road Systems Subjected to Different Loadings by Using the Finite Element Method
by Elena-Camelia Mușat and Ioan Bitir
Forests 2022, 13(11), 1872; https://doi.org/10.3390/f13111872 - 9 Nov 2022
Cited by 2 | Viewed by 1799
Abstract
In the actual context, in which there is a trend of increasing the weight of the vehicles used to transport materials, checking the deformations of road systems as a response to dynamic and static loadings is necessary to better manage the road infrastructure. [...] Read more.
In the actual context, in which there is a trend of increasing the weight of the vehicles used to transport materials, checking the deformations of road systems as a response to dynamic and static loadings is necessary to better manage the road infrastructure. The goal of the study was to evaluate how the number and the thickness of layers, and the material types could influence the behavior of the road systems subjected to different loads, and to find out which of the road systems have the smallest deformations. The Romania forest roads are classified into three categories, and the most important are the principal forest roads. There were chosen road systems proper to this category. Consequently, nine types of road systems were considered, based on the materials used and the thickness of the layers, and the deformations were evaluated by considering loads of 25, 35 and 45 tons. For modeling the behavior of road systems under different loads, the Finite Element Method (FEM) was used taking into consideration the static domain. The models show that, in all the cases, the deformations depend on the number of layers, while the thickness of the ballast layer can reduce the deformations because of the rigidness of the structure. Those findings are very important because not all the modeled roads systems could provide suitable bearing capacity. Hence, an inappropriate thickness of the layers could negatively influence the behavior of road systems under the traffic with weight increased. Full article
Show Figures

Figure 1

11 pages, 3559 KiB  
Article
Effect of Sleeper-Ballast Particle Contact on Lateral Resistance of Concrete Sleepers in Ballasted Railway Tracks
by Jafar Chalabii, Majid Movahedi Rad, Ebrahim Hadizadeh Raisi and Reza Esfandiari Mehni
Materials 2022, 15(21), 7508; https://doi.org/10.3390/ma15217508 - 26 Oct 2022
Cited by 7 | Viewed by 2874
Abstract
Although a sleeper makes a great contribution to the lateral resistance of ballasted tracks, in this regard, limited studies have been carried out on the effect of its contact surface with ballast aggregates. The current paper is dedicated to evaluating the effect of [...] Read more.
Although a sleeper makes a great contribution to the lateral resistance of ballasted tracks, in this regard, limited studies have been carried out on the effect of its contact surface with ballast aggregates. The current paper is dedicated to evaluating the effect of sleeper shape on the lateral resistance of ballasted track through discrete element modelling (DEM). For this purpose, firstly, a DEM model was validated based on the experimental results. Then, a sensitivity analysis was undertaken on the effect of the different contact areas that a standard concrete sleeper faces with the crib, shoulder and underlying ballast aggregates on lateral resistance of a single sleeper. As the main result of the current study, a high accurate regression equation for constant weight 319.2 kg and constant density 2500 kg/m3 of the sleepers was fitted between different sleeper contact areas and the maximum lateral resistance of a concrete sleeper for 3.5 mm lateral displacement in ballasted railway tracks. The obtained results showed that the effect of the sleeper’s head area compared to the underlying area of the sleeper and the head area of the sleeper compared to the sleeper’s side area in terms of lateral resistance are 8.2 times and 14.5 times more, respectively. Full article
(This article belongs to the Special Issue Modeling and Simulations of Construction Materials)
Show Figures

Figure 1

14 pages, 32118 KiB  
Article
Research on Static Stability of Firefighting Adapter
by Jaroslav Matej, Richard Hnilica and Michaela Hnilicová
Forests 2022, 13(8), 1180; https://doi.org/10.3390/f13081180 - 26 Jul 2022
Viewed by 1722
Abstract
The article is focused on the static stability of a vehicle with a 2000-liter water tank behind the rear axle. The purpose of the research is to evaluate the influence of the tank on stability. The vehicle is composed of a forestry skidder, [...] Read more.
The article is focused on the static stability of a vehicle with a 2000-liter water tank behind the rear axle. The purpose of the research is to evaluate the influence of the tank on stability. The vehicle is composed of a forestry skidder, a water tank, and equipment. To equilibrate the tank a ballast weight of 500 kg in front of the skidder is used. The influence of various combinations of the full water tank, half-filled water tank, and ballast weight is evaluated. The stability is determined as the distances of vectors of a stability triangle and a gravity vector, that is placed in a center of gravity of the whole vehicle. A Python programming language is used to implement the solution. The results are displayed in form of heatmaps. For the analyses, a slope angle of 18 is used. The results show that the longitudinal stability is decreased and lateral stability is increased. The tank also makes the vehicle unstable in some positions. Full article
Show Figures

Figure 1

Back to TopTop