Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (313)

Search Parameters:
Keywords = bacterial spot

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1299 KiB  
Article
Host-Dependent Variation in Tetranychus urticae Fitness and Microbiota Composition Across Strawberry Cultivars
by Xu Zhang, Hongjun Yang, Zhiming Yan, Yuanhua Wang, Quanzhi Wang, Shimei Huo, Zhan Chen, Jialong Cheng and Kun Yang
Insects 2025, 16(8), 767; https://doi.org/10.3390/insects16080767 - 25 Jul 2025
Viewed by 471
Abstract
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods [...] Read more.
Tetranychus urticae, commonly known as the two-spotted spider mite, is a highly adaptable and polyphagous arthropod in the family Tetranychidae, capable of feeding on over 1200 plant species, including strawberries (Fragaria × ananassa Duch.). The fitness and microbiota of herbivorous arthropods can vary significantly across different plant species and cultivars. In this study, we investigated the fecundity, longevity, growth rate, and microbiota composition of T. urticae reared on seven Chinese strawberry cultivars: Hongyan (HY), Yuexiu (YX), Tianshi (TS), Ningyu (NY), Xuetu (XT), Zhangjj (ZJ), and Xuelixiang (XLX). Our findings revealed significant differences among cultivars: mites reared on the XT cultivar exhibited the highest fecundity (166.56 ± 7.82 eggs), while those on XLX had the shortest pre-adult period (7.71 ± 0.13 days). Longevity was significantly extended in mites reared on XLX, XT, and NY cultivars (25.95–26.83 days). Microbiota analysis via 16S rRNA sequencing showed that Proteobacteria dominated (>89.96% abundance) across all mite groups, with Wolbachia as the predominant symbiont (89.58–99.19%). Male mites exhibited higher bacterial diversity (Shannon and Chao1 indices) than females, though Wolbachia abundance did not differ significantly between sexes or cultivars. Functional predictions highlighted roles of microbiota in biosynthesis, detoxification, and energy metabolism. These findings underscore the influence of host plant variety on T. urticae fitness and microbiota composition, suggesting potential strategies for breeding resistant strawberry cultivars and leveraging microbial interactions for pest management. Full article
(This article belongs to the Section Insect Behavior and Pathology)
Show Figures

Figure 1

18 pages, 4137 KiB  
Article
Three-Dimensional Printed Porous PLA Scaffolds with Dual Functionality: Cell Proliferation Enhancement and Antibacterial Properties
by Renad N. AlQurashi, Noora M. Bataweel, Mehal Atallah AlQriqri, Sarah H. Alqahtani, Ahmad A. Basalah and Laila A. Damiati
Polymers 2025, 17(14), 1928; https://doi.org/10.3390/polym17141928 - 13 Jul 2025
Viewed by 515
Abstract
Scaffold architecture plays a significant role in regulating cellular and microbial interactions in tissue engineering applications. This study evaluates the performance of 3D-printed poly (lactic acid) (PLA) scaffolds with varying porosity levels (20%, 40%, 60%, 80%, and 100%) in mechanical strength, supporting human [...] Read more.
Scaffold architecture plays a significant role in regulating cellular and microbial interactions in tissue engineering applications. This study evaluates the performance of 3D-printed poly (lactic acid) (PLA) scaffolds with varying porosity levels (20%, 40%, 60%, 80%, and 100%) in mechanical strength, supporting human skin fibroblast (HSF) viability and reducing bacterial colonization of Gram-positive bacteria (Staphylococcus epidermidis, Staphylococcus aureus), and Gram-negative bacteria (Pseudomonas aeruginosa, Escherichia coli). The maximum tensile strength (28 MPa) was achieved in the 100% dense scaffold. Increasing porosity drastically decreased tensile strength, where 80% PLA scaffold possessed 16 MPa strength. At greater levels of porosity (60% and 40%), tensile strengths greatly decrease (8 MPa and 4 MPa), while ductility increases, especially at high porosity levels. HSF viability, assessed using the AlamarBlue assay, showed a time-dependent increase in cell proliferation, with the highest viability observed on scaffolds with 60% and 80% porosity. SEM imaging confirmed strong cell adhesion on the 80% porous scaffold, indicating that intermediate-to-high porosity enhances cell attachment and metabolic activity. In contrast, bacterial adhesion showed species-specific responses to scaffold porosity. S. epidermidis and E. coli exhibited a progressive increase in adherence with porosity, peaking at 100%. P. aeruginosa showed maximum adhesion at 80%, suggesting a porosity “sweet spot” that favors its colonization. S. aureus adhered most strongly to scaffolds with intermediate porosities (40–60%) and significantly less at 100% porosity. The current study provides insights into scaffold design considerations, emphasizing the need for optimized scaffold architecture that balances regenerative potential with infection control in tissue engineering applications. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Materials for Biomedical Applications)
Show Figures

Graphical abstract

13 pages, 1208 KiB  
Article
Acaricidal Activity of Biosurfactants Produced by Serratia ureilytica on Tetranychus urticae and Their Compatibility with the Predatory Mite Amblyseius swirskii
by Arnoldo Wong-Villareal, Esaú Ruiz-Sánchez, Marcos Cua-Basulto, Saúl Espinosa-Zaragoza, Avel A. González-Sánchez, Ernesto Ramos-Carbajal, Cristian Góngora-Gamboa, René Garruña-Hernández, Rodrigo Romero-Tirado, Guillermo Moreno-Basurto and Erika P. Pinson-Rincón
Microbiol. Res. 2025, 16(7), 150; https://doi.org/10.3390/microbiolres16070150 - 4 Jul 2025
Viewed by 334
Abstract
This study evaluated the acaricidal effects of biosurfactants produced by Serratia ureilytica against the two-spotted spider mite Tetranychus urticae and their compatibility with the predatory mite Ambliseus swirski. The biosurfactants were obtained via liquid cultures of the bacterial strains. In the laboratory, [...] Read more.
This study evaluated the acaricidal effects of biosurfactants produced by Serratia ureilytica against the two-spotted spider mite Tetranychus urticae and their compatibility with the predatory mite Ambliseus swirski. The biosurfactants were obtained via liquid cultures of the bacterial strains. In the laboratory, T. urticae was exposed via acaricide-immersed leaves and A. swirskii via acaricide-coated glass vials. In the greenhouse, mite-infested plants were sprayed with the biosurfactants. In the laboratory, biosurfactants produced by S. ureilytica NOD-3 and UTS exhibited strong acaricidal activity, causing 95% mortality in adults and reducing egg viability by more than 60%. In the greenhouse trial, all biosurfactants significantly suppressed T. urticae populations at all evaluated periods (7, 14, and 21 days post-application). Gas chromatography–mass spectrometry (GC-MS) analysis of the biosurfactants identified several fatty acids, including hexadecanoic acid, pentanoic acid, octadecanoic acid, decanoic acid, and tetradecanoic acid, as well as the amino acids L-proline, L-lysine, L-valine, and glutamic acid. These fatty acids and amino acids are known structural components of lipopeptides. Furthermore, the bioinformatic analysis of the genomes of the three S. ureilytica strains revealed nonribosomal peptide synthetase (NRPS) gene clusters homologous to those involved in the biosynthesis of lipopeptides. These findings demonstrate that S. ureilytica biosurfactants are promising eco-friendly acaricides, reducing T. urticae populations by >95% while partially sparing A. swirskii. Full article
Show Figures

Figure 1

19 pages, 3104 KiB  
Article
Biocontrol Effect and Antibacterial Mechanism of Bacillus velezensis TRMB57782 Against Alternaria gaisen Blotch in Korla Pears
by Chaowen Liu, Tiancai Wang, Yuxin Zhang, Hui Jiang and Xiaoxia Luo
Biology 2025, 14(7), 793; https://doi.org/10.3390/biology14070793 - 30 Jun 2025
Viewed by 360
Abstract
Pear black spot disease seriously threatens the pear industry. Currently, its control mainly relies on chemical fungicides while biological control using antagonistic microorganisms represents a promising alternative approach. This study identified and characterized Bacillus velezensis TRMB57782 as a biocontrol strain through whole-genome sequencing. [...] Read more.
Pear black spot disease seriously threatens the pear industry. Currently, its control mainly relies on chemical fungicides while biological control using antagonistic microorganisms represents a promising alternative approach. This study identified and characterized Bacillus velezensis TRMB57782 as a biocontrol strain through whole-genome sequencing. AntiSMASH analysis predicted the strain’s potential to produce secondary metabolites such as surfactin, difficidin, and bacilysin. In vitro experiments demonstrated that TRMB57782 inhibited the growth of Alternaria gaisen. In vivo experiments using excised branches and pear fruits at two different stages also showed significant control effects. A preliminary exploration of the metabolic substances of TRMB57782 was carried out. The strain can produce siderophores and three biocontrol enzymes. Crude extracts obtained by the hydrochloric acid precipitation and ammonium sulfate saturation precipitation of the bacterial liquid exhibited significant activity and volatile organic compounds showed biocontrol activity. Meanwhile, the effects of strain TRMB57782 on the hyphae of pathogenic fungi were studied, leading to hyphal atrophy and spore shrinkage. This paper provides an effective biocontrol strategy for fragrant pear black spot disease, reveals the antibacterial mechanism of Bacillus velezensis TRMB57782, and offers a new option for the green control of pear black spot disease. Full article
(This article belongs to the Section Microbiology)
Show Figures

Figure 1

13 pages, 1109 KiB  
Technical Note
Detection of Bacterial Leaf Spot Disease in Sesame (Sesamum indicum L.) Using a U-Net Autoencoder
by Minju Lee, Jeseok Lee, Amit Ghimire, Yegyeong Bae, Tae-An Kang, Youngnam Yoon, In-Jung Lee, Choon-Wook Park, Byungwon Kim and Yoonha Kim
Remote Sens. 2025, 17(13), 2230; https://doi.org/10.3390/rs17132230 - 29 Jun 2025
Viewed by 315
Abstract
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. [...] Read more.
Hyperspectral imaging (HSI) integrates spectroscopy and imaging, providing detailed spectral–spatial information, and the selection of task-relevant wavelengths can streamline data acquisition and processing for field deployment. Anomaly detection aims to identify observations that deviate from normal patterns, typically in a one-class classification framework. In this study, we extend this framework to a binary classification by employing a U-Net based deterministic autoencoder augmented with attention blocks to analyze HSI data of sesame plants inoculated with Pseudomonas syringae pv. sesami. Single-band grayscale images across the full spectral range were used to train the model on healthy samples, while the presence of disease was classified by assessing the reconstruction error, which we refer to as the anomaly score. The average classification accuracy in the visible region spectrum (430–689 nm) exceeded 0.8, with peaks at 641 nm and 689 nm. In comparison, the near-infrared region (>700 nm) attained an accuracy of approximately 0.6. Several visible bands demonstrated potential for early disease detection. Some lesion samples showed a gradual increase in anomaly scores over time, and notably, Band 23 (689 nm) exhibited exceeded anomaly scores even at early stages before visible symptoms appeared. This supports the potential of this wavelength for the early-stage detection of bacterial leaf spots in sesame. Full article
Show Figures

Graphical abstract

24 pages, 3498 KiB  
Review
Xanthomonas spp. Infecting Araceae and Araliaceae: Taxonomy, Phylogeny, and Potential Virulence Mechanisms
by Shu-Cheng Chuang, Shefali Dobhal, Lisa M. Keith, Anne M. Alvarez and Mohammad Arif
Biology 2025, 14(7), 766; https://doi.org/10.3390/biology14070766 - 25 Jun 2025
Cited by 1 | Viewed by 540
Abstract
The genus Xanthomonas (family Xanthomonadaceae) comprises 39 validly published species and is associated with a broad host range, infecting hundreds of monocot and dicot plants worldwide. While many Xanthomonas species are notorious for causing leaf spot and blight diseases in major agricultural crops, [...] Read more.
The genus Xanthomonas (family Xanthomonadaceae) comprises 39 validly published species and is associated with a broad host range, infecting hundreds of monocot and dicot plants worldwide. While many Xanthomonas species are notorious for causing leaf spot and blight diseases in major agricultural crops, less attention has been given to their impact on ornamental plants. In Hawaii and other key production regions, xanthomonads have posed persistent threats to popular ornamentals in the Araceae and Araliaceae families. This review synthesizes the evolving phylogenetic and taxonomic framework of Xanthomonas strains isolated from Araceae and Araliaceae, highlighting recent advances enabled by multilocus sequence analysis and whole genome sequencing. We discuss the reclassification of key pathovars, unresolved phylogenetic placements, and the challenges of pathovar delineation within these plant families. Additionally, we examine current knowledge of molecular determinants of pathogenicity, including gene clusters involved in exopolysaccharide and lipopolysaccharide biosynthesis, flagellar assembly, cell-wall-degrading enzymes, and secretion systems (types II, III, and VI). Comparative genomics and functional studies reveal that significant gaps remain in our understanding of the genetic basis of host adaptation and virulence in these xanthomonads. Addressing these knowledge gaps will be crucial for developing effective diagnostics and management strategies for bacterial diseases in ornamental crops. Full article
(This article belongs to the Special Issue Advances in Research on Diseases of Plants)
Show Figures

Figure 1

21 pages, 4687 KiB  
Article
The Ability of Bacteriophages to Reduce Biofilms Produced by Pseudomonas aeruginosa Isolated from Corneal Infections
by Kuma Diriba Urgeya, Dinesh Subedi, Naresh Kumar and Mark Willcox
Antibiotics 2025, 14(7), 629; https://doi.org/10.3390/antibiotics14070629 - 20 Jun 2025
Viewed by 1231
Abstract
Pseudomonas aeruginosa (P. aeruginosa) is a common antibiotic-resistant pathogen, posing significant public health threats worldwide. It is a major cause of ocular infections, mostly linked to contact lens wear. P. aeruginosa often produces biofilm during infections, and these are also associated [...] Read more.
Pseudomonas aeruginosa (P. aeruginosa) is a common antibiotic-resistant pathogen, posing significant public health threats worldwide. It is a major cause of ocular infections, mostly linked to contact lens wear. P. aeruginosa often produces biofilm during infections, and these are also associated with antibiotic resistance. Bacteriophage (phage) therapy is emerging as a promising approach for treating multidrug-resistant P. aeruginosa. Objective: This study aimed to assess the antibiofilm effects of six phages against P. aeruginosa biofilms isolated from patients with corneal infections. Method: This study examined P. aeruginosa strains for their ability to form biofilms using crystal violet assay. Six P. aeruginosa bacteriophages (DiSu1 to DiSu6) were used, which were isolated from sewage water in Melbourne, Australia. Spot tests were used to assess phage sensitivity. The effect of phages against P. aeruginosa strains was determined using time–kill assay and efficiency of plating. The ability of phage to inhibit biofilm formation over 24 h or reduce preformed biofilms was also studied and confirmed using confocal laser scanning microscopy with Live/Dead staining. Result: After 24 h of incubation, all tested P. aeruginosa strains formed moderate to strong biofilms. All P. aeruginosa strains were sensitive to at least four of the six phages. The highest level of bacterial growth inhibition in the liquid infection model was observed when phages were applied at a multiplicity of infection (MOI) of 100. Certain bacteria/phage combinations were able to inhibit biofilm formation over 24 h, with the combination of strain PA235 and phage DiSu3 producing the highest inhibition (83%) at a MOI of 100. This was followed by the combinations of PA223/DiSu3 (56%), and PA225/DiSu5 (52%). For the reduction in preformed biofilms, the best combinations were PA235 (90%), PA221 (61%), and PA213 and PA225 (57% each), all with DiSu3 after 3 h. However, exposing the biofilm with phages for over 24 h appeared to promote phage resistance as there was evidence of biofilm growth, with the only combination still showing a significant reduction being PA221/DiSu3 (58%) at MOI of 100. Conclusions: This study showed that the effect of phages against P. aeruginosa is concentration (MOI) dependent. Phages at higher MOI have the ability to disrupt, inhibit, and reduce P. aeruginosa biofilms. However, prolonged exposure of the biofilm with phages appeared to promote phage resistance. To enhance phage efficacy and address this form of resistance, further studies utilizing phage cocktails or a combination of phages and antibiotics is warranted. Full article
Show Figures

Figure 1

37 pages, 5930 KiB  
Article
The Effectiveness of a Topical Rosehip Oil Treatment on Facial Skin Characteristics: A Pilot Study on Wrinkles, UV Spots Reduction, Erythema Mitigation, and Age-Related Signs
by Diana Patricia Oargă (Porumb), Mihaiela Cornea-Cipcigan, Silvia Amalia Nemeș and Mirela Irina Cordea
Cosmetics 2025, 12(3), 125; https://doi.org/10.3390/cosmetics12030125 - 16 Jun 2025
Viewed by 3026
Abstract
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high [...] Read more.
Skin aging is a complex process influenced by several factors, including UV exposure, environmental stressors, and lifestyle choices. The demand for effective, natural skincare products has driven research into plant-based oils rich in bioactive compounds. Rosehip oil has garnered attention for its high content of carotenoids, phenolics, and antioxidants, which are known for their anti-aging, photoprotective, and skin-rejuvenating properties. Despite the growing interest in rosehip oil, limited studies have investigated its efficacy on human skin using advanced imaging technologies. This study aims to fill this gap by evaluating the efficacy of cold-pressed Rosa canina seed oil on facial skin characteristics, specifically wrinkles, ultraviolet (UV) spot reduction, and erythema mitigation, using imaging technologies (the VISIA analysis system). Seed oil pressed from R. canina collected from the Băișoara area of Cluj County has been selected for this study due to its high carotenoid, phenolic, and antioxidant contents. The oil has also been analyzed for the content of individual carotenoids (i.e., lutein, lycopene, β Carotene, and zeaxanthin) using HPLC-DAD (High-Performance Liquid Chromatography—Diode Array Detector), along with lutein and zeaxanthin esters and diesters. After the preliminary screening of multiple Rosa species for carotenoid, phenolic, and antioxidant contents, the R. canina sample with the highest therapeutic potential was selected. A cohort of 27 volunteers (aged 30–65) underwent a five-week treatment protocol, wherein three drops of the selected rosehip oil were topically applied to the face daily. The VISIA imaging was conducted before and after the treatment to evaluate changes in skin parameters, including the wrinkle depth, UV-induced spots, porphyrins, and texture. Regarding the bioactivities, rosehip oil showed a significant total carotenoids content (28.398 μg/mL), with the highest levels in the case of the β-carotene (4.49 μg/mL), lutein (4.33 μg/mL), and zexanthin (10.88 μg/mL) contents. Results indicated a significant reduction in mean wrinkle scores across several age groups, with notable improvements in individuals with deeper baseline wrinkles. UV spots also showed visible declines, suggesting ideal photoprotective and anti-pigmentary effects attributable to the oil’s high vitamin A and carotenoid content. Porphyrin levels, often correlated with bacterial activity, decreased in most subjects, hinting at an additional antimicrobial or microbiome-modulatory property. However, skin responses varied, possibly due to individual differences in skin sensitivity, environmental factors, or compliance with sun protection. Overall, the topical application of R. canina oil appeared to improve the facial skin quality, reduce the appearance of age-related markers, and support skin health. These findings reinforce the potential use of rosehip oil in anti-aging skincare formulations. Further long-term, large-scale studies are warranted to refine dosing regimens, investigate mechanisms of action, and explore synergistic effects with other bioactive compounds. Full article
(This article belongs to the Special Issue Skin Anti-Aging Strategies)
Show Figures

Figure 1

21 pages, 2694 KiB  
Article
Isolation and Identification of Endophytic Bacterium B5 from Mentha haplocalyx Briq. and Its Biocontrol Mechanisms Against Alternaria alternata-Induced Tobacco Brown Spot
by Qunying Qin, Boyu Liu, Baige Ma, Xihong Wei, Yi Zhou and Zhengxiang Sun
J. Fungi 2025, 11(6), 446; https://doi.org/10.3390/jof11060446 - 12 Jun 2025
Viewed by 1275
Abstract
The fungus Alternaria alternata, which causes tobacco brown spot disease, poses a serious threat to the tobacco industry. Beneficial microorganisms and their secondary metabolites have emerged as a promising green strategy for disease management. This study recovered 16 endophytic bacterial strains from [...] Read more.
The fungus Alternaria alternata, which causes tobacco brown spot disease, poses a serious threat to the tobacco industry. Beneficial microorganisms and their secondary metabolites have emerged as a promising green strategy for disease management. This study recovered 16 endophytic bacterial strains from Mentha haplocalyx Briq., a therapeutic herb. The study revealed that strain B5, with an inhibition rate of 82.76%, exhibited the highest antifungal activity against A. alternata. This strain exhibited broad-spectrum antifungal activity, with inhibition rates ranging from 66.34% to 87.23%. Phylogenetic analysis of 16S rDNA and gyrA gene sequences identified it as Bacillus velezensis (GenBank: PV168970 and PV173738). Further characterization revealed that strain B5 can secrete cell wall-degrading enzymes, produce IAA, and synthesize siderophores. The growth of mycelium in A. alternata was greatly reduced by both the ethyl acetate extract and the filtered liquid from the sterile fermentation, resulting in marked morphological abnormalities. Multiple antifungal active substances were identified through liquid LC-MS analysis. Greenhouse experiments demonstrated that the B5 fermentation broth effectively suppressed the occurrence of tobacco brown spot disease, achieving a relative control efficacy of 60.66%, comparable to that of 10% difenoconazole water dispersible granule (WDG). Additionally, strain B5 enhances plant disease resistance by activating the activities of key defense enzymes. B. velezensis B5 serves as a safe alternative to chemical fungicides and is highly effective at controlling tobacco brown spot disease. Full article
(This article belongs to the Special Issue Biological Control of Fungal Plant Pathogens)
Show Figures

Figure 1

21 pages, 18182 KiB  
Article
AgriLiteNet: Lightweight Multi-Scale Tomato Pest and Disease Detection for Agricultural Robots
by Chenghan Yang, Baidong Zhao, Madina Mansurova, Tianyan Zhou, Qiyuan Liu, Junwei Bao and Dingkun Zheng
Horticulturae 2025, 11(6), 671; https://doi.org/10.3390/horticulturae11060671 - 12 Jun 2025
Viewed by 453
Abstract
Real-time detection of tomato pests and diseases is essential for precision agriculture, as it requires high accuracy, speed, and energy efficiency of edge-computing agricultural robots. This study proposes AgriLiteNet (Lightweight Networks for Agriculture), a lightweight neural network integrating MobileNetV3 for local feature extraction [...] Read more.
Real-time detection of tomato pests and diseases is essential for precision agriculture, as it requires high accuracy, speed, and energy efficiency of edge-computing agricultural robots. This study proposes AgriLiteNet (Lightweight Networks for Agriculture), a lightweight neural network integrating MobileNetV3 for local feature extraction and a streamlined Swin Transformer for global modeling. AgriLiteNet is further enhanced by a lightweight channel–spatial mixed attention module and a feature pyramid network, enabling the detection of nine tomato pests and diseases, including small targets like spider mites, dense targets like bacterial spot, and large targets like late blight. It achieves a mean average precision at an intersection-over-union threshold of 0.5 of 0.98735, which is comparable to Suppression Mask R-CNN (0.98955) and Cas-VSwin Transformer (0.98874), and exceeds the performance of YOLOv5n (0.98249) and GMC-MobileV3 (0.98143). With 2.0 million parameters and 0.608 GFLOPs, AgriLiteNet delivers an inference speed of 35 frames per second and power consumption of 15 watts on NVIDIA Jetson Orin NX, surpassing Suppression Mask R-CNN (8 FPS, 22 W) and Cas-VSwin Transformer (12 FPS, 20 W). The model’s efficiency and compact design make it highly suitable for deployment in agricultural robots, supporting sustainable farming through precise pest and disease management. Full article
Show Figures

Figure 1

13 pages, 487 KiB  
Review
Advancing Sustainable Management of Bacterial Spot of Peaches: Insights into Xanthomonas arboricola pv. pruni Pathogenicity and Control Strategies
by Nanami Sakata and Yasuhiro Ishiga
Bacteria 2025, 4(2), 27; https://doi.org/10.3390/bacteria4020027 - 3 Jun 2025
Viewed by 1029
Abstract
Peach (Prunus persica) is a fruit crop of significant economic and cultural value, particularly in Japan, where it is cherished for its symbolism of summer and high quality. However, its production is threatened by bacterial spot caused by Xanthomonas arboricola pv. [...] Read more.
Peach (Prunus persica) is a fruit crop of significant economic and cultural value, particularly in Japan, where it is cherished for its symbolism of summer and high quality. However, its production is threatened by bacterial spot caused by Xanthomonas arboricola pv. pruni (Xap), a pathogen that also affects other Prunus species such as nectarines, plums, apricots, and almonds. Xap thrives in warm, humid environments and causes symptoms such as water-soaked lesions, necrotic spots, premature defoliation, and fruit blemishes, leading to reduced yield and marketability. Traditional control methods, including copper-based bactericides and antibiotics, are increasingly ineffective due to resistance development and environmental concerns. This review focuses on the biology, epidemiology, and pathogenic mechanisms of Xap, with particular emphasis on its impact on peach production in Japan. We discuss various disease management strategies, such as integrated disease management, biostimulants, cellulose nanofibers, plant defense activators, and biological control agents, alongside novel molecular approaches targeting bacterial virulence factors. By incorporating these innovative and eco-friendly methods with traditional practices, this review offers insights into the potential for sustainable, environmentally friendly solutions to manage bacterial spot and mitigate its impact on peach production. Full article
Show Figures

Figure 1

19 pages, 3355 KiB  
Article
RLDD-YOLOv11n: Research on Rice Leaf Disease Detection Based on YOLOv11
by Kui Fang, Rui Zhou, Nan Deng, Cheng Li and Xinghui Zhu
Agronomy 2025, 15(6), 1266; https://doi.org/10.3390/agronomy15061266 - 22 May 2025
Viewed by 1013
Abstract
Rice disease identification plays a critical role in ensuring yield stability, enabling precise prevention and control, and promoting agricultural intelligence. However, existing approaches rely heavily on manual inspection, which is labor-intensive and inefficient. Moreover, the significant variability in disease features poses further challenges [...] Read more.
Rice disease identification plays a critical role in ensuring yield stability, enabling precise prevention and control, and promoting agricultural intelligence. However, existing approaches rely heavily on manual inspection, which is labor-intensive and inefficient. Moreover, the significant variability in disease features poses further challenges to accurate recognition. To address these issues, this paper proposes a novel rice leaf disease detection model—RLDD-YOLOv11n. First, the improved RLDD-YOLOv11n integrates the SCSABlock residual attention module into the neck layer to enhance multi-semantic information fusion, thereby improving the detection capability for small disease targets. Second, recognizing the limitations of the native upsampling module in YOLOv11n in reconstructing rice-disease-related features, the CARAFE upsampling module is incorporated. Finally, a rice leaf disease dataset focusing on three common diseases—Bacterial Blight, Rice Blast, and Brown Spot—was constructed. The experimental results demonstrate the effectiveness of the proposed improvements. RLDD-YOLOv11n achieved a mean Average Precision (mAP) of 88.3%, representing a 2.8% improvement over the baseline model. Furthermore, compared with existing mainstream lightweight YOLO models, RLDD-YOLOv11n exhibits a superior detection performance and robustness. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

13 pages, 981 KiB  
Article
Evaluating the Cosmetic Efficacy of Topical Micrococcus luteus Q24 Probiotic Balm: A Pilot Study in Healthy Adults
by Abigail L. Voss, Stephanie A. Mattison, Sonali S. Sali, John D. F. Hale and Rohit Jain
Cosmetics 2025, 12(3), 105; https://doi.org/10.3390/cosmetics12030105 - 22 May 2025
Viewed by 1250
Abstract
The skin microbiome is a focus for innovative skincare. This study investigated topical semi-solid balm formulations of Micrococcus luteus Q24, a live skin-native probiotic, to enhance skin quality parameters such as hydration, pores, pigmentation, wrinkles and dryness. Firstly, the compatibility and growth-promoting effects [...] Read more.
The skin microbiome is a focus for innovative skincare. This study investigated topical semi-solid balm formulations of Micrococcus luteus Q24, a live skin-native probiotic, to enhance skin quality parameters such as hydration, pores, pigmentation, wrinkles and dryness. Firstly, the compatibility and growth-promoting effects of prebiotics and functional actives on M. luteus Q24 were evaluated, identifying oil-based actives, including vitamin E and pomegranate seed oil, that significantly boosted bacterial growth compared to oatmeal, the sole effective prebiotic tested. Subsequently, a pilot cosmetic trial assessed two M. luteus Q24-enriched balms on healthy adults utilising a cutting-edge AI (Artificial Intelligence) driven skin analyser device. Balm B significantly reduced keratin levels, wrinkles, and pore size, and increased hydration, while Balm A effectively reduced spots and keratin. After 4 days of application, Balm A showed mean percentage reductions of 80% in pores, 20% in spots, 60% in wrinkles, and 100% in keratin scores, while Balm B exhibited mean percentage reductions of 100% in pores, 50% in spots, 67% in wrinkles, and 80% in keratin, with a 100% increase in hydration score. Both balms demonstrated compatibility and efficacy, highlighting the potential of M. luteus Q24 in improving skin parameters. These findings suggest that balms optimise the benefits of skin-specific probiotics for microbiome-friendly skincare. Future research with larger, placebo-controlled trials is needed to substantiate these preliminary findings. Full article
(This article belongs to the Special Issue Feature Papers in Cosmetics in 2025)
Show Figures

Figure 1

17 pages, 1223 KiB  
Article
Dynamics of IgM and IgA Antibody Response Profile Against Vibrio cholerae Toxins A, B, and P
by Salvatore Giovanni De-Simone, Paloma Napoleão-Pêgo, Guilherme Curty Lechuga, Joao Pedro Rangel Silva Carvalho, Sergian Vianna Cardozo, Alexandre Oliveira Saisse, Carlos Medicis Morel, David William Provance and Flavio Rocha da Silva
Int. J. Mol. Sci. 2025, 26(8), 3507; https://doi.org/10.3390/ijms26083507 - 9 Apr 2025
Cited by 1 | Viewed by 577
Abstract
The first immune response controls many bacterial and viral inflammatory diseases. Oral immunization with cholera toxin (CT) elicits antibodies and can prevent cholerae in endemic environments. While the IgG immune response to the toxin is well-documented, the IgA and IgM epitopes responsible for [...] Read more.
The first immune response controls many bacterial and viral inflammatory diseases. Oral immunization with cholera toxin (CT) elicits antibodies and can prevent cholerae in endemic environments. While the IgG immune response to the toxin is well-documented, the IgA and IgM epitopes responsible for the initial immune reaction to the toxin remained uncharted. In this study, our objective was to identify and characterize immunologically and structurally these IgA and IgM epitopes. We conducted SPOT synthesis to create two libraries, each containing one hundred twenty-two 15-mer peptides, encompassing the entire sequence of the three chains of the CT protein. We could map continuous IgA and IgM epitopes by testing these membrane-bound peptides with sera from mice immunized with an oral vaccine (Schankol™). Our approach involved topological studies, peptide synthesis, and the development of an ELISA. We successfully identified seven IgA epitopes, two in CTA, two in CTB, and three in protein P. Additionally, we discovered eleven IgM epitopes, all situated within CTA. Three IgA-specific and three IgM-specific epitopes were synthesized as MAP4 and validated using ELISA. We then used two chimeric 45-mer peptides, which included these six epitopes, to coat ELISA plates and screened them with sera from immunized mice. This yielded sensitivities and specificities of 100%. Our findings have unveiled a significant collection of IgA and IgM-specific peptide epitopes from cholera toxins A, B, and P. These epitopes, along with those IgG previously identified by our group, reflect the immunoreactivity associated with the dynamic of the immunoglobulins switching associated with the cholera toxin vaccination. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Figure 1

13 pages, 2359 KiB  
Article
Transcriptomic Analysis of Campylobacter jejuni Following Exposure to Gaseous Chlorine Dioxide Reveals an Oxidative Stress Response
by Gretchen E. Dykes, Yiping He, Tony Jin, Xuetong Fan, Joe Lee, Sue Reed and Joseph Capobianco
Int. J. Mol. Sci. 2025, 26(7), 3254; https://doi.org/10.3390/ijms26073254 - 1 Apr 2025
Cited by 1 | Viewed by 579
Abstract
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. [...] Read more.
Gaseous chlorine dioxide (ClO2) is a potent antimicrobial agent used to control microbial contamination in food and water. This study evaluates the bactericidal activity of gaseous ClO2 released from a sodium chlorite (NaClO2) pad against Campylobacter jejuni. Exposure to a low concentration (0.4 mg/L) of dissolved ClO2 for 2 h resulted in a >93% reduction of C. jejuni, highlighting the bacterium’s extreme sensitivity to gaseous ClO2. To elucidate the molecular mechanism of ClO2-induced bactericidal action, transcriptomic analysis was conducted using RNA sequencing (RNA-seq). The results indicate that C. jejuni responds to ClO2-induced oxidative stress by upregulating genes involved in reactive oxygen species (ROS) detoxification (sodB, ahpC, katA, msrP, and trxB), iron transport (ceuBCD, cfbpABC, and chuBCD), phosphate transport (pstSCAB), and DNA repair (rdgB and mutY). Reverse transcription-quantitative PCR (RT-qPCR) validated the increased expression of oxidative stress response genes but not general stress response genes (spoT, dnaK, and groES). These findings provide insights into the antimicrobial mechanism of ClO2, demonstrating that oxidative damage to essential cellular components results in bacterial cell death. Full article
(This article belongs to the Special Issue Molecular Insights into Antimicrobial Activity)
Show Figures

Figure 1

Back to TopTop