Advancing Sustainable Management of Bacterial Spot of Peaches: Insights into Xanthomonas arboricola pv. pruni Pathogenicity and Control Strategies
Abstract
:1. Introduction
2. Impact of Bacterial Spot
3. Disease Symptoms and Host Range
4. Epidemiology and Disease Cycle in Peach Orchards
5. Virulence Factors in Xap
6. Management Strategies
7. Future Perspectives
8. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
Xap | Xanthomonas arboricola pv. pruni |
IDM | Integrated disease management |
T3SS | Type III secretion system |
T3Es | Type III effectors |
T2SS | Type II secretion system |
T6SS | Type VI secretion system |
QTL | Quantitative trait loci |
PCR | Polymerase chain reaction |
PMA-qPCR | Propidium monoazide-quantitative PCR |
LAMP | Loop-mediated isothermal amplification |
HBM | Hierarchical Bayesian model |
BABA | β-aminobutyric acid |
PR | Pathogenesis-related protein |
Peps | Plant elicitor peptides |
ASM | Acibenzolar-S-methyl |
Pcal | Pseudomonas cannabina pv. alisalensis |
References
- Food and Agriculture Organizations of the United Nations STAT Home Page. Available online: http://faostat.fao.org (accessed on 10 April 2025).
- Garita-Cambronero, J.; Palacio-Bielsa, A.; Cubero, J. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: Its genomic and phenotypic characteristics in the X. arboricola species context. Mol. Plant Pathol. 2018, 19, 2053–2065. [Google Scholar] [CrossRef] [PubMed]
- Stefani, E. Economic significance and control of bacterial spot/canker of stone fruits caused by Xanthomonas arboricola pv. pruni. J. Plant Pathol. 2010, 92, 99–103. [Google Scholar]
- Lamichhane, J.R. Xanthomonas arboricola diseases of stone fruit, almond, and walnut trees: Progress toward understanding and management. Plant Dis. 2014, 98, 1600–1610. [Google Scholar] [CrossRef] [PubMed]
- Cox, B.M.; Wang, H.; Schnabel, G. Copper tolerance in Xanthomonas arboricola pv. pruni in South Carolina peach orchards. Plant Dis. 2022, 106, 1626–1631. [Google Scholar] [CrossRef]
- Giovanardi, D.; Dallai, D.; Stefani, E. Population features of Xanthomonas arboricola pv. pruni from Prunus spp. orchards in northern Italy. Eur. J. Plant Pathol. 2017, 147, 761–771. [Google Scholar]
- Herbert, A.; Hancock, C.N.; Cox, B.; Schnabel, G.; Moreno, D.; Carvalho, R.; Jones, J.; Paret, M.; Geng, X.; Wang, H. Oxytetracycline and streptomycin resistance genes in Xanthomonas arboricola pv. pruni, the causal agent of bacterial spot in peach. Front. Microbiol. 2022, 13, 821808. [Google Scholar]
- Yamaguchi, S.; Iyama, K.; Takata, K.; Natsuaki, T.K.; Negishi, H.; Shinohara, H. Bactericide susceptibility of bacterial shot hole bacteria of peach (mainly Xanthomonas arboricola pv. pruni). J. Agric. Sci. Tokyo Univ. Agric. 2014, 59, 74–80. [Google Scholar]
- Garita-Cambronero, J.; Palacio-Bielsa, A.; López, M.M.; Cubero, J. Comparative genomic and phenotypic characterization of pathogenic and non-pathogenic strains of Xanthomonas arboricola reveals insights into the infection process of bacterial spot disease of stone fruits. PLoS ONE 2016, 11, e0161977. [Google Scholar] [CrossRef]
- Dunegan, J.C. The Bacterial Spot Disease of the Peach and Other Stone Fruits; Technical Bulletin; US Department of Agriculture: Washington, DC, USA, 1932; Volume 273, p. 53. [Google Scholar]
- Tjou-Tam-Sin, N.N.A.; van de Bilt, J.L.J.; Bergsma-Vlami, M.; Koenraadt, H.; Naktuinbouw, J.W.; van Doorn, J.; Pham, K.T.K.; Martin, W.S. First report of Xanthomonas arboricola pv. pruni in ornamental Prunus laurocerasus in The Netherlands. Plant Dis. 2012, 96, 759. [Google Scholar]
- Nanaumi, T. Integrated control of bacterial spot on peach in Fukushima prefecture. Plant Prot. 2020, 74, 260–265. [Google Scholar]
- Nanaumi, T. Integrated control of bacterial spot on peach. Plant Prot. 2021, 75, 300–304. [Google Scholar]
- Kawaguchi, A. Risk factors for bacterial spot on peach in Okayama Prefecture, Japan. J. Gen. Plant Pathol. 2014, 80, 435–442. [Google Scholar] [CrossRef]
- Kawaguchi, A.; Inoue, K.; Inoue, Y. Biological control of bacterial spot on peach by nonpathogenic Xanthomonas campestris strains AZ98101 and AZ98106. J. Gen. Plant Pathol. 2014, 80, 158–163. [Google Scholar] [CrossRef]
- Nanaumi, T.; Yaginuma, K. Control of bacterial shot hole on peach by rain protected culture. Ann. Rept Plant Prot. North Jpn. 2017, 68, 120–122. [Google Scholar]
- Iličić, R.; Jelušić, A.; Milovanović, P.; Stanković, S.; Zečević, K.; Stanisavljević, R.; Popović, T. Characterization of Xanthomonas arboricola pv. pruni from Prunus spp. orchards in Western Balkans. Plant Pathol. 2023, 72, 290–299. [Google Scholar] [CrossRef]
- Iličić, R.; Popović, T. Occurrence of bacterial spot caused by Xanthomonas arboricola pv. pruni on peach and apricot in Serbia. Plant Dis. 2020, 105, 697. [Google Scholar] [CrossRef]
- Morales, G.; Moragrega, C.; Montesinos, E.; Llorente, I. Effects of leaf wetness duration and temperature on infection of Prunus by Xanthomonas arboricola pv. pruni. PLoS ONE 2018, 13, e0193813. [Google Scholar] [CrossRef]
- Boudon, S.; Manceau, C.; Nottéghem, J.L. Structure and origin of Xanthomonas arboricola pv. pruni populations causing bacterial spot of stone fruit trees in western Europe. Phytopathology 2005, 95, 1081–1088. [Google Scholar]
- Palacio-Bielsa, A.; Cubero, J.; Cambra, M.A.; Collados, R.; Berruete, I.M.; López, M.M. Development of an efficient real-time quantitative PCR protocol for detection of Xanthomonas arboricola pv. pruni in Prunus species. Appl. Environ. Microbiol. 2011, 77, 89–97. [Google Scholar] [CrossRef]
- Takanashi, K. Ecological studies on bacterial spot caused by Xanthomonas pruni (E. F. Smith) Dowson. Bull. Fruit. Tree Res. Sta. 1978, A5, 1–71, (In Japanese with English summary). [Google Scholar]
- Zarei, S.; Taghavi, S.M.; Hamzehzarghani, H.; Osdaghi, E.; Lamichhane, J.R. Epiphytic growth of Xanthomonas arboricola and Xanthomonas citri on non-host plants. Plant Pathol. 2018, 67, 660–670. [Google Scholar] [CrossRef]
- Timilsina, S.; Potnis, N.; Newberry, E.A.; Liyanapathiranage, P.; Iruegas-Bocardo, F.; White, F.F.; Goss, E.M.; Jones, J.B. Xanthomonas diversity, virulence and plant–pathogen interactions. Nat. Rev. Microbiol. 2020, 18, 415–427. [Google Scholar] [CrossRef] [PubMed]
- Hajri, A.; Pothier, J.F.; Fischer-Le Saux, M.; Bonneau, S.; Poussier, S.; Boureau, T.; Duffy, B.; Manceau, C. Type three effector gene distribution and sequence analysis provide new insights into the pathogenicity of plant-pathogenic Xanthomonas arboricola. Appl. Environ. Microbiol. 2012, 78, 371–384. [Google Scholar] [CrossRef] [PubMed]
- Garita-Cambronero, J.; Palacio-Bielsa, A.; López, M.M.; Cubero, J. Pan-genomic analysis permits differentiation of virulent and non-virulent strains of Xanthomonas arboricola that cohabit Prunus spp. and elucidate bacterial virulence factors. Front. Microbiol. 2017, 8, 573. [Google Scholar] [CrossRef]
- Sakata, N.; Mukaihara, T.; Kami, C.; Noutoshi, Y.; Toyoda, K.; Matsui, H.; Ichinose, Y. Establishment of inoculation methods for evaluating the virulence of Xanthomonas arboricola pv. pruni on peach. Jpn. J. Phytopathol. 2025, 91, 39, (abstract In Japanese). [Google Scholar]
- Ruiz, C.; Nadal, A.; Foix, L.; Montesinos, L.; Montesinos, E.; Pla, M. Diversity of plant defense elicitor peptides within the Rosaceae. BMC Genet. 2018, 19, 11. [Google Scholar] [CrossRef]
- Luo, M.; Meng, F.Z.; Tan, Q.; Zhou, Y.; Chaisiri, C.; Fan, F.; Yin, W.X.; Luo, C.X. Identification, genetic diversity, and chemical control of Xanthomonas arboricola pv. pruni in China. Plant Dis. 2022, 106, 2415–2423. [Google Scholar] [CrossRef]
- Suesada, Y.; Yamada, M.; Yamane, T.; Adachi, E.; Yaegaki, H.; Yamaguchi, M. Varietal differences in susceptibility to bacterial spot (Xanthomonas arboricola pv. pruni) among 69 peach cultivars and selections as evaluated by artificial inoculation to shoots. J. Jpn. Soc. Hortic. Sci. 2013, 82, 293–300. [Google Scholar]
- Park, S.Y.; Lee, Y.; Koh, Y.J.; Hur, J.S.; Jung, J.S. Detection of Xanthomonas arboricola pv. pruni by PCR using primers based on DNA sequences related to the hrp genes. J. Microbiol. 2010, 48, 554–558. [Google Scholar]
- Panth, M.; Noh, E.; Schnabel, G.; Wang, H. Development of a long-amplicon propidium monoazide-quantitative PCR assay for detection of viable Xanthomonas arboricola pv. pruni cells in peach trees. Plant Dis. 2024, 108, 2190–2196. [Google Scholar]
- Li, W.; Lee, S.Y.; Back, C.G.; Ten, L.N.; Jung, H.Y. Loop-mediated isothermal amplification for the detection of Xanthomonas arboricola pv. pruni in peaches. Plant Pathol. J. 2019, 35, 635–643. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, A.; Nanaumi, T. Model-based forecasting of twig canker incidence of bacterial spot of peach in Fukushima Prefecture. J. Gen. Plant Pathol. 2022, 88, 41–47. [Google Scholar] [CrossRef]
- Neville, N.; Jia, Z. Approaches to the structure-based design of antivirulence drugs: Therapeutics for the post-antibiotic era. Molecules 2019, 24, 378. [Google Scholar] [CrossRef] [PubMed]
- Baron, C. Antivirulence drugs to target bacterial secretion systems. Curr. Opin. Microbiol. 2010, 13, 100–105. [Google Scholar] [CrossRef]
- Dehbanipour, R.; Ghalavand, Z. Acinetobacter baumannii: Pathogenesis, virulence factors, novel therapeutic options and mechanisms of resistance to antimicrobial agents with emphasis on tigecycline. J. Clin. Pharm. Ther. 2022, 47, 1875–1884. [Google Scholar] [CrossRef]
- Mühlen, S.; Dersch, P. Anti-virulence strategies to target bacterial infections. Curr. Top. Microbiol. Immunol. 2016, 398, 147–183. [Google Scholar]
- Liao, C.; Huang, X.; Wang, Q.; Yao, D.; Lu, W. Virulence factors of Pseudomonas aeruginosa and antivirulence strategies to combat its drug resistance. Front. Cell Infect. Microbiol. 2022, 12, 926758. [Google Scholar] [CrossRef]
- Qin, S.; Xiao, W.; Zhou, C.; Pu, Q.; Deng, X.; Lan, L.; Liang, H.; Song, X.; Wu, M. Pseudomonas aeruginosa: Pathogenesis, virulence factors, antibiotic resistance, interaction with host, technology advances and emerging therapeutics. Signal Transduct. Target. Ther. 2022, 7, 199. [Google Scholar] [CrossRef]
- Veesenmeyer, J.L.; Hauser, A.R.; Lisboa, T.; Rello, J. Pseudomonas aeruginosa virulence and therapy: Evolving translational strategies. Crit. Care Med. 2009, 37, 1777–1786. [Google Scholar] [CrossRef]
- Wagner, S.; Sommer, R.; Hinsberger, S.; Lu, C.; Hartmann, R.W.; Empting, M.; Titz, A. Novel strategies for the treatment of Pseudomonas aeruginosa infections. J. Med. Chem. 2016, 59, 5929–5969. [Google Scholar] [CrossRef]
- Sakata, N.; Ishiga, T.; Saito, H.; Nguyen, V.T.; Ishiga, Y. Transposon mutagenesis reveals Pseudomonas cannabina pv. alisalensis optimizes its virulence factors for pathogenicity on different hosts. PeerJ 2019, 7, e7698. [Google Scholar] [PubMed]
- Ishiga, T.; Sakata, N.; Usuki, G.; Nguyen, V.T.; Gomi, K.; Ishiga, Y. Large-scale transposon mutagenesis reveals type III secretion effector HopR1 is a major virulence factor in Pseudomonas syringae pv. actinidiae. Plants 2022, 12, 141. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.T.; Sakata, N.; Usuki, G.; Ishiga, T.; Hashimoto, Y.; Ishiga, Y. Multiple virulence factors regulated by AlgU contribute to the pathogenicity of Pseudomonas savastanoi pv. glycinea in soybean. PeerJ 2021, 9, e12405. [Google Scholar] [CrossRef] [PubMed]
- Brooks, D.M.; Bender, C.L.; Kunkel, B.N. The Pseudomonas syringae phytotoxin coronatine promotes virulence by overcoming salicylic acid-dependent defences in Arabidopsis thaliana. Mol. Plant Pathol. 2005, 6, 629–639. [Google Scholar] [CrossRef]
- Yan, Q.; Hu, X.; Wang, N. The novel virulence-related gene nlxA in the lipopolysaccharide cluster of Xanthomonas citri ssp. citri is involved in the production of lipopolysaccharide and extracellular polysaccharide, motility, biofilm formation and stress resistance: Involvement of nlxA in LPS and virulence. Mol. Plant Pathol. 2012, 13, 923–934. [Google Scholar]
- Qian, W.; Jia, Y.; Ren, S.X.; He, Y.Q.; Feng, J.X.; Lu, L.F.; Sun, Q.; Ying, G.; Tang, D.J.; Tang, H.; et al. Comparative and functional genomic analyses of the pathogenicity of phytopathogen Xanthomonas campestris pv. campestris. Genome Res. 2005, 15, 757–767. [Google Scholar] [CrossRef]
- Guo, W.; Cui, Y.P.; Li, Y.R.; Che, Y.Z.; Yuan, L.; Zou, L.F.; Zou, H.S.; Chen, G.Y. Identification of seven Xanthomonas oryzae pv. oryzicola genes potentially involved in pathogenesis in rice. Microbiology 2012, 158, 505–518. [Google Scholar]
- Wang, C.L.; Xu, A.B.; Gao, Y.; Fan, Y.L.; Liang, Y.T.; Zheng, C.K.; Sun, L.Q.; Wang, W.Q.; Zhao, K.J. Generation and characterisation of Tn5-tagged Xanthomonas oryzae pv. oryzae mutants that overcome Xa23-mediated resistance to bacterial blight of rice. Eur. J. Plant Pathol. 2009, 123, 343–351. [Google Scholar]
- Gebashe, F.; Gupta, S.; Van Staden, J. Disease management using biostimulants. In Biostimulants for Crops from Seed Germination to Plant Development; Academic Press: New York, NY, USA, 2021; pp. 411–442. ISBN 9780128230480. [Google Scholar]
- Ghosh, U.K.; Islam, M.N.; Siddiqui, M.N.; Cao, X.; Khan, M.A.R. Proline, a multifaceted signalling molecule in plant responses to abiotic stress: Understanding the physiological mechanisms. Plant Biol. 2022, 24, 227–239. [Google Scholar] [CrossRef]
- Annunziata, M.G.; Ciarmiello, L.F.; Woodrow, P.; Dell’Aversana, E.; Carillo, P. Spatial and temporal profile of Glycine betaine accumulation in plants under abiotic stresses. Front. Plant Sci. 2019, 10, 230. [Google Scholar] [CrossRef]
- Qiu, X.M.; Sun, Y.Y.; Ye, X.Y.; Li, Z.G. Signaling role of glutamate in plants. Front. Plant Sci. 2019, 10, 1743. [Google Scholar] [CrossRef] [PubMed]
- Hasabi, V.; Askari, H.; Alavi, S.M.; Zamanizadeh, H. Effect of amino acid application on induced resistance against citrus canker disease in lime plants. J. Plant Prot. Rec. 2014, 54, 144–149. [Google Scholar] [CrossRef]
- Safaie Farahani, A.; Taghavi, S.M. Induction of resistance in pepper against Xanthomonas euvesicatoria by β-aminobutyric acid. Australas. Plant Dis. Notes 2017, 12, 1. [Google Scholar] [CrossRef]
- Foix, L.; Nadal, A.; Zagorščak, M.; Ramšak, Ž.; Esteve-Codina, A.; Gruden, K.; Pla, M. Prunus persica plant endogenous peptides PpPep1 and PpPep2 cause PTI-like transcriptome reprogramming in peach and enhance resistance to Xanthomonas arboricola pv. pruni. BMC Genom. 2021, 22, 360. [Google Scholar] [CrossRef]
- Rabbee, M.F.; Islam, N.; Baek, K.H. Biocontrol of citrus bacterial canker caused by Xanthomonas citri subsp. citri by Bacillus velezensis. Saudi J. Biol. Sci. 2022, 29, 2363–2371. [Google Scholar] [CrossRef]
- Nakayinga, R.; Makumi, A.; Tumuhaise, V.; Tinzaara, W. Xanthomonas bacteriophages: A review of their biology and biocontrol applications in agriculture. BMC Microbiol. 2021, 21, 291. [Google Scholar] [CrossRef]
- Naz, M.; Zhang, D.; Liao, K.; Chen, X.; Ahmed, N.; Wang, D.; Zhou, J.; Chen, Z. The past, present, and future of plant activators targeting the salicylic acid signaling pathway. Genes 2024, 15, 1237. [Google Scholar] [CrossRef]
- Ishiga, T.; Iida, Y.; Sakata, N.; Ugajin, T.; Hirata, T.; Taniguchi, S.; Hayashi, K.; Ishiga, Y. Acibenzolar-S-methyl activates stomatal-based defense against Pseudomonas cannabina pv. alisalensis in cabbage. J. Gen. Plant Pathol. 2020, 86, 48–54. [Google Scholar] [CrossRef]
- Sakata, N.; Ishiga, T.; Taniguchi, S.; Ishiga, Y. Acibenzolar-S-methyl activates stomatal-based defense systemically in Japanese radish. Front. Plant Sci. 2020, 11, 1670. [Google Scholar] [CrossRef]
- Yigit, F. Acibenzolar-S-methyl induces lettuce resistance against Xanthomonas campestris pv. vitians. Afr. J. Biotechnol. 2011, 10, 9613–9622. [Google Scholar]
- Babu, R.; Sajeena, A.; Samundeeswari, A.; Sreedhar, A.; Vidhyasekeran, P.; Reddy, M.S. Induction of bacterial blight (Xanthomonas oryzae pv. oryzae) resistance in rice by treatment with acibenzolar-S-methyl. Ann. Appl. Biol. 2003, 143, 333–340. [Google Scholar]
- Cavalcanti, F.R.; Resende, M.L.V.; Lima, J.P.M.S.; Sylveira, J.A.G.; Oliveira, J.T.A. Activities of antioxidant enzymes and photosynthetic responses in tomato pre-treated by plant activators and inoculated by Xanthomonas vesicatoria. Physiol. Mol. Plant Pathol. 2006, 68, 198–208. [Google Scholar] [CrossRef]
- Saito, H.; Yamashita, Y.; Sakata, N.; Ishiga, T.; Shiraishi, N.; Usuki, G.; Nguyen, V.T.; Yamamura, E.; Ishiga, Y. Covering soybean leaves with cellulose nanofiber changes leaf surface hydrophobicity and confers resistance against Phakopsora pachyrhizi. Front. Plant Sci. 2021, 12, 726565. [Google Scholar] [CrossRef] [PubMed]
- Sakata, N.; Shiraishi, N.; Saito, H.; Komoto, H.; Ishiga, T.; Usuki, G.; Yamashita, Y.; Ishiga, Y. Covering cabbage leaves with cellulose nanofiber confers resistance against Pseudomonas cannabina pv. alisalensis. J. Gen. Plant Pathol. 2023, 89, 53–60. [Google Scholar] [CrossRef]
- Kusakabe, S. Efficacy of cellulose nanofiber for bacterial spot on peach. Jpn. J. Phytopathol. 2024, 90, 221, (abstract In Japanese). [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sakata, N.; Ishiga, Y. Advancing Sustainable Management of Bacterial Spot of Peaches: Insights into Xanthomonas arboricola pv. pruni Pathogenicity and Control Strategies. Bacteria 2025, 4, 27. https://doi.org/10.3390/bacteria4020027
Sakata N, Ishiga Y. Advancing Sustainable Management of Bacterial Spot of Peaches: Insights into Xanthomonas arboricola pv. pruni Pathogenicity and Control Strategies. Bacteria. 2025; 4(2):27. https://doi.org/10.3390/bacteria4020027
Chicago/Turabian StyleSakata, Nanami, and Yasuhiro Ishiga. 2025. "Advancing Sustainable Management of Bacterial Spot of Peaches: Insights into Xanthomonas arboricola pv. pruni Pathogenicity and Control Strategies" Bacteria 4, no. 2: 27. https://doi.org/10.3390/bacteria4020027
APA StyleSakata, N., & Ishiga, Y. (2025). Advancing Sustainable Management of Bacterial Spot of Peaches: Insights into Xanthomonas arboricola pv. pruni Pathogenicity and Control Strategies. Bacteria, 4(2), 27. https://doi.org/10.3390/bacteria4020027