Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (200)

Search Parameters:
Keywords = azomethines

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
15 pages, 1744 KiB  
Article
New Conjugatable Platinum(II) Chlorins: Synthesis, Reactivity and Singlet Oxygen Generation
by José Almeida, Giampaolo Barone, Luís Cunha-Silva, Ana F. R. Cerqueira, Augusto C. Tomé, Maria Rangel and Ana M. G. Silva
Molecules 2025, 30(12), 2496; https://doi.org/10.3390/molecules30122496 - 6 Jun 2025
Viewed by 423
Abstract
An efficient protocol was developed for the microwave-mediated metallation of 5-(4-methoxycarbonylphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (P1) with bis(benzonitrile)platinum dichloride salt and subsequent 1,3-dipolar cycloaddition of the resulting PtP1 with an azomethine ylide to give two isomeric metallochlorins: PtC1 (main isomer) and PtC3. The methyl [...] Read more.
An efficient protocol was developed for the microwave-mediated metallation of 5-(4-methoxycarbonylphenyl)-10,15,20-tris(pentafluorophenyl)porphyrin (P1) with bis(benzonitrile)platinum dichloride salt and subsequent 1,3-dipolar cycloaddition of the resulting PtP1 with an azomethine ylide to give two isomeric metallochlorins: PtC1 (main isomer) and PtC3. The methyl ester group of metalloporphyrin PtP1 and metallochlorin PtC1 was successfully hydrolysed in an alkaline medium to yield the corresponding derivatives PtP2 and PtC2 in moderate-to-good yields. As a proof of concept of the reactivity of the carboxy group in PtP2 and PtC2, these compounds were conjugated with a hydroxylated derivative of indomethacin, a known potent non-steroidal anti-inflammatory, obtaining the conjugates PtP2-Ind and PtC2-Ind. The obtained platinum(II) porphyrins and chlorins were characterized by UV-Vis, NMR spectroscopy and mass spectrometry. The structure of PtP1 was also confirmed by X-ray crystallography. Singlet oxygen generation studies were carried out, as well as theoretical calculations, which demonstrated that the prepared Pt(II) complexes can be considered potential photosensitizers for PDT. Full article
(This article belongs to the Section Colorants)
Show Figures

Graphical abstract

13 pages, 3616 KiB  
Article
Synthesis, Structure, and Luminescence Properties of Zinc(II) Complex with a Spacer-Armed Tetradentate N2O2-Donor Schiff Base
by Alexey Gusev, Elena Braga, Kirill Mamontov, Mikhail Kiskin and Wolfgang Linert
Inorganics 2025, 13(5), 173; https://doi.org/10.3390/inorganics13050173 - 19 May 2025
Viewed by 661
Abstract
A zinc complex bearing a pyrazolone-based azomethine ligand has been synthesized for blue-emitting organic light-emitting diodes (OLEDs). The azomethine ligand H2L and the complex [ZnL·H2O] were characterized by IR, 1H NMR, XRD, and TGA/DSC techniques. According to a single-crystal [...] Read more.
A zinc complex bearing a pyrazolone-based azomethine ligand has been synthesized for blue-emitting organic light-emitting diodes (OLEDs). The azomethine ligand H2L and the complex [ZnL·H2O] were characterized by IR, 1H NMR, XRD, and TGA/DSC techniques. According to a single-crystal X-ray diffraction analysis, the complex [ZnL·H2O] has a molecular structure. Its solid-state PL maxima appear to be at 416 nm and emit moderate blue emission with a quantum yield (QY) of 2%, with a dehydrated form of the complex showing greater efficiency with a QY of 55.5%. ZnL-based electroluminescent devices for OLED applications were fabricated. The devices exhibit blue emission with brightness up to 5300 Cd/A. Full article
(This article belongs to the Section Coordination Chemistry)
Show Figures

Graphical abstract

20 pages, 4648 KiB  
Article
Antioxidant and Neuroprotective Properties of Selected Pyrrole-Containing Azomethine Compounds in Neurotoxicity Models In Vitro
by Denitsa Stefanova, Alime Garip, Emilio Mateev, Magdalena Kondeva-Burdina, Yordan Yordanov, Diana Tzankova, Alexandrina Mateeva, Iva Valkova, Maya Georgieva, Alexander Zlatkov and Virginia Tzankova
Int. J. Mol. Sci. 2025, 26(9), 3957; https://doi.org/10.3390/ijms26093957 - 22 Apr 2025
Cited by 1 | Viewed by 802
Abstract
Neurodegenerative diseases involve oxidative stress and enzyme dysregulation, necessitating novel neuroprotective agents. This study evaluates the neuroprotective and antioxidant potential of seven pyrrole-based compounds with predicted radical scavenging activity and inhibitory effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE). The compounds were [...] Read more.
Neurodegenerative diseases involve oxidative stress and enzyme dysregulation, necessitating novel neuroprotective agents. This study evaluates the neuroprotective and antioxidant potential of seven pyrrole-based compounds with predicted radical scavenging activity and inhibitory effects on monoamine oxidase B (MAO-B) and acetylcholinesterase (AChE). The compounds were tested in vitro using SH-SY5Y neuroblastoma cells and subcellular rat brain fractions, including synaptosomes, mitochondria, and microsomes. Neuroprotective and antioxidant effects were assessed in oxidative stress models, including H2O2-induced stress in SH-SY5Y cells, 6-hydroxydopamine toxicity in synaptosomes, tert-butyl hydroperoxide-induced stress in mitochondria, and non-enzyme lipid peroxidation in microsomes. In silico screening for lipophilicity, hydrogen bonding, total polar surface area (TPSA), and ionization properties, was performed to evaluate bioavailability. All compounds exhibited a weak neurotoxic effect on the subcellular fractions at a concentration of 100 µM. However, in oxidative stress models, they demonstrated significant neuroprotective and antioxidant effects at 100 µM. In SH-SY5Y cells, compounds 7, 9, 12, 14, and 15 exhibited low toxicity and strong protective effects at concentrations as low as 1 µM. In silico analysis prioritized compounds 1, 7, 9, 12, and 14 for further development based on their favorable bioavailability. The tested pyrrole-based compounds exhibit promising neuroprotective and antioxidant properties, with several candidates showing potential for further development based on both in vitro efficacy and predicted oral bioavailability. Full article
(This article belongs to the Section Molecular Neurobiology)
Show Figures

Figure 1

23 pages, 6777 KiB  
Article
Study of Cytotoxicity of 3-Azabicyclo[3.1.0]hexanes and Cyclopropa[a]pyrrolizidines Spiro-Fused to Acenaphthylene-1(2H)-one and Aceanthrylene-1(2H)-one Fragments Against Tumor Cell Lines
by Anton A. Kornev, Stanislav V. Shmakov, Alexandra M. Gryschenko, Yulia A. Pronina, Alexander I. Ponyaev, Alexander V. Stepakov and Vitali M. Boitsov
Int. J. Mol. Sci. 2025, 26(8), 3474; https://doi.org/10.3390/ijms26083474 - 8 Apr 2025
Viewed by 966
Abstract
A series of 3-azabicyclo[3.1.0]hexanes and cyclopropa[a]pyrrolizidines spiro-fused to acenaphthylene-1(2H)-one and aceanthrylene-1(2H)-one frameworks have been studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), melanoma (Sk-mel-2), osteosarcoma (U2OS), as well as murine melanoma [...] Read more.
A series of 3-azabicyclo[3.1.0]hexanes and cyclopropa[a]pyrrolizidines spiro-fused to acenaphthylene-1(2H)-one and aceanthrylene-1(2H)-one frameworks have been studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), melanoma (Sk-mel-2), osteosarcoma (U2OS), as well as murine melanoma (B16) cell lines. Using confocal microscopy, it was found that cultivation with the tested spiro-fused compounds led to the disappearance of stress fibers (granular actin was distributed diffusely in the cytoplasm in up to 56% of treated cells) and decrease in filopodia-like deformations (up to 69% after cultivation), which indirectly suggests a decrease in cell motility. The human melanoma cell line scratch test showed that these cells lose their ability to move after cultivation with the tested spiro-fused compounds and do not fill the scratched strip. This was also supported by docking simulations with actin-related targets (PDB ID: 8DNH, 2Q1N). Using flow cytometry, the impact on the mitochondrial membrane potential showed that the tested compounds led to a significant increase in the number of cells with decreased mitochondrial membrane potential from 10% for the control up to 55–80% for the cyclopropa[a]pyrrolizidine adducts. The obtained results support the antitumor effect of the tested spiro-compounds and encourage the extension of the study in order to improve their anticancer activity as well as reduce their toxicological risks. Full article
Show Figures

Figure 1

16 pages, 3746 KiB  
Article
Synthesis, Characterization, and Investigation of the Properties of a New Promising Poly(Azomethine) Organic Semiconductor Material
by Jihane Ismaili, Chouki Zerrouki, Najla Fourati, Stephanie Leroy-Lhez, Daniel Montplaisir, Nicolas Villandier and Rachida Zerrouki
Materials 2025, 18(7), 1658; https://doi.org/10.3390/ma18071658 - 4 Apr 2025
Viewed by 663
Abstract
A new poly(azomethine) with improved solubility was successfully prepared by the polycondensation of terephthalaldehyde and 2,2-Bis[4-(4-aminophenoxy)phenyl]-hexafluoropropane (4-BDAF) under green chemistry conditions. This new polymer containing hexafluoroisopropylidene was compared with a polymer containing isopropylidenediphenyl to study the influence of the presence of fluorine atoms [...] Read more.
A new poly(azomethine) with improved solubility was successfully prepared by the polycondensation of terephthalaldehyde and 2,2-Bis[4-(4-aminophenoxy)phenyl]-hexafluoropropane (4-BDAF) under green chemistry conditions. This new polymer containing hexafluoroisopropylidene was compared with a polymer containing isopropylidenediphenyl to study the influence of the presence of fluorine atoms on the properties of the polymer. Both were characterized by nuclear magnetic resonance (NMR), their molecular weight was measured by gel permeation chromatography (GPC), and their morphology was studied by X-ray diffraction (XRD). The two polymers obtained were soluble in most polar aprotic solvents and even in less polar solvents, which are practical and easily accessible solvents. Their thermal properties were determined by a thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). These two new polymers showed high resistance to thermal decomposition up to 490 °C, with a glass transition temperature (Tg) of 180 °C. The photophysical properties were studied by UV/Visible absorption. The polymers were doped and then deposited on cellulose filaments, an approach that made it possible to produce self-supporting conductive composites thanks to their mechanical properties. The topography of the resulting materials was characterized at submicron scales before estimating their electronic conductivity and gap energy by diffuse reflection spectroscopy. Full article
Show Figures

Graphical abstract

12 pages, 3217 KiB  
Article
Decarboxylation-Driven Double Annulations: Innovative Multi-Component Reaction Pathways
by Desheng Zhan, Gang Yang, Tieli Zhou, Sashirekha Nallapati and Xiaofeng Zhang
Molecules 2025, 30(7), 1594; https://doi.org/10.3390/molecules30071594 - 2 Apr 2025
Viewed by 486
Abstract
A concerted five-component reaction strategy has been developed, featuring double [3+2] cycloadditions utilizing aspartic acid. This approach provides valuable insights into mechanistic pathways, allowing for the distinction between concerted and stepwise processes based on reaction efficiency and diastereoselectivity. Both aspartic and glutamic acids [...] Read more.
A concerted five-component reaction strategy has been developed, featuring double [3+2] cycloadditions utilizing aspartic acid. This approach provides valuable insights into mechanistic pathways, allowing for the distinction between concerted and stepwise processes based on reaction efficiency and diastereoselectivity. Both aspartic and glutamic acids have been employed for a thorough evaluation and exploration of decarboxylation-driven double annulations. This method effectively constructs pyrrolizidine frameworks through a concerted double 1,3-dipolar cycloaddition with aspartic acid, as well as tetrahydropyrrolizinones via three-component double annulations, which include decarboxylative 1,3-dipolar cycloaddition and lactamization with glutamic acid. These highly convergent, decarboxylation-driven multicomponent reactions (MCRs) efficiently produce fused polyheterocyclic systems while being environmentally friendly, generating only CO2 and water as byproducts. Full article
(This article belongs to the Special Issue Heterocyclic Chemistry with Applications (Second Edition))
Show Figures

Figure 1

15 pages, 7093 KiB  
Article
Synthesis of Novel Benzofuran Spiro-2-Pyrrolidine Derivatives via [3+2] Azomethine Ylide Cycloadditions and Their Antitumor Activity
by Bowen Pan, Tao Wang, Liangliang Zheng, Zhangchao Dong, Lijuan Liu, Xiongwei Liu, Tingting Feng, Ying Zhou and Yang Shi
Int. J. Mol. Sci. 2024, 25(24), 13580; https://doi.org/10.3390/ijms252413580 - 19 Dec 2024
Viewed by 1004
Abstract
A synthetic strategy of a three-component spiro-pyrrolidine compound based on benzofuran via an [3+2] azomethine ylide cycloaddition reaction is reported herein. Under mild optimal conditions, this reaction can quickly produce potentially bioactive compounds with a wide range of substrates, high yield, and simple [...] Read more.
A synthetic strategy of a three-component spiro-pyrrolidine compound based on benzofuran via an [3+2] azomethine ylide cycloaddition reaction is reported herein. Under mild optimal conditions, this reaction can quickly produce potentially bioactive compounds with a wide range of substrates, high yield, and simple operation. The desired products were obtained with a yield of 74–99% and a diastereomeric ratio (dr) of >20:1. Subsequently, the inhibitory effects of the compounds on the cell viability of the human cancer cell line HeLa and mouse cancer cell line CT26 were evaluated. Compounds 4b (IC50 = 15.14 ± 1.33 µM) and 4c (IC50 = 10.26 ± 0.87 µM) showed higher antiproliferative activities against HeLa cells than cisplatin (IC50 = 15.91 ± 1.09 µM); compounds 4e (IC50 = 8.31 ± 0.64 µM) and 4s (IC50 = 5.28 ± 0.72 µM) exhibited better inhibitory activities against CT26 cells than cisplatin (IC50 = 10.27 ± 0.71 µM). The introduction of electron-donating substituents was beneficial to the inhibitory activities against cancer cells. Molecular docking simulations revealed that 4e and 4s may exert corresponding bioactivities by binding to antitumor targets through hydrogen bonds, providing a new approach for discovering spiro-heterocyclic antitumor drugs. Full article
(This article belongs to the Special Issue Recent Progress in Addition Reactions and Organic Synthesis)
Show Figures

Figure 1

12 pages, 3610 KiB  
Communication
Synthesis and Characterization of Hydrazine Bridge Cyclotriphosphazene Derivatives with Amide–Schiff Base Linkages Attached to Decyl and Hydroxy Terminal Groups
by Fatin Junaidah Mohamad Fazli and Zuhair Jamain
Molbank 2024, 2024(4), M1934; https://doi.org/10.3390/M1934 - 7 Dec 2024
Cited by 1 | Viewed by 1596
Abstract
New cyclotriphosphazene derivatives featuring amide–Schiff base linkages with a hydrazine bridge and different terminal ends, such as decyl alkyl chains and hydroxy groups, were successfully synthesized and characterized. Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and CHN elemental analysis were used [...] Read more.
New cyclotriphosphazene derivatives featuring amide–Schiff base linkages with a hydrazine bridge and different terminal ends, such as decyl alkyl chains and hydroxy groups, were successfully synthesized and characterized. Fourier-transform infrared spectroscopy (FTIR), nuclear magnetic resonance spectroscopy (NMR), and CHN elemental analysis were used to characterize the structures of these compounds. The formation of hydrazine-bridged cyclotriphosphazene derivatives with amide–Schiff base linkages was confirmed by the FTIR spectra, showing a primary amine band for the amide linkage around ~3300 cm−1 and a band for the Schiff base linkage near ~1595 cm−1. This was further supported by NMR analysis, which displayed an amide proton (H-N-C=O) at ~δ 10.00 ppm and an azomethine proton (H-C=N) within the δ 8.40–8.70 ppm range. The 31P NMR spectra of cyclotriphosphazene compounds display a singlet at ~δ 8.20 ppm, indicating an upfield shift that suggests the complete substitution of all phosphorus atoms with identical side chains. Furthermore, CHN analysis verified the purity of the synthesized compounds, with a percentage error below 2%. The introduction of hydrazine bridges and amide–Schiff base linkages into the cyclotriphosphazene core significantly enriches the molecular structure with diverse functional groups. These modifications not only improve the compound’s stability and reactivity, but also expand its potential for a wide range of applications. Full article
Show Figures

Figure 1

30 pages, 13074 KiB  
Article
An Azomethine Derivative, BCS3, Targets XIAP and cIAP1/2 to Arrest Breast Cancer Progression Through MDM2-p53 and Bcl-2-Caspase Signaling Modulation
by Reetuparna Acharya, Pran Kishore Deb, Katharigatta N. Venugopala and Shakti Prasad Pattanayak
Pharmaceuticals 2024, 17(12), 1645; https://doi.org/10.3390/ph17121645 - 6 Dec 2024
Cited by 4 | Viewed by 1415
Abstract
Background: Breast cancer influences more than 2 million women worldwide annually. Since apoptotic dysregulation is a cancer hallmark, targeting apoptotic regulators encompasses strategic drug development for cancer therapy. One such class of apoptotic regulators is inhibitors of apoptosis proteins (IAP) which are [...] Read more.
Background: Breast cancer influences more than 2 million women worldwide annually. Since apoptotic dysregulation is a cancer hallmark, targeting apoptotic regulators encompasses strategic drug development for cancer therapy. One such class of apoptotic regulators is inhibitors of apoptosis proteins (IAP) which are a class of E3 ubiquitin ligases that actively function to support cancer growth and survival. Methods: The current study reports design, synthesis, docking analysis (based on binding to IAP-BIR3 domains), anti-proliferative and anti-tumor potential of the azomethine derivative, 1-(4-chlorophenyl)-N-(4-ethoxyphenyl)methanimine (BCS3) on breast cancer (in vitro and in vivo) and its possible mechanisms of action. Results: Strong selective cytotoxic activity was observed in MDA-MB-231, MCF-7, and MDA-MB-468 breast cancer cell lines that exhibited IC50 values, 1.554 µM, 5.979 µM, and 6.462 µM, respectively, without affecting normal breast cells, MCF-10A. For the evaluation of the cytotoxic potential of BCS3, immunofluorescence, immunoblotting, and FACS (apoptosis and cell cycle) analyses were conducted. BCS3 antagonized IAPs, thereby causing MDM2-p53 and Bcl-2-Caspase-mediated intrinsic and extrinsic apoptosis. It also modulated p53 expression causing p21-CDK1/cyclin B1-mediated cell cycle arrest at S and G2/M phases. The in vitro findings were consistent with in vivo findings as observed by reduced tumor volume and apoptosis initiation (TUNEL assay) by IAP downregulation. BCS3 also produced potent synergistic effects with doxorubicin on tumor inhibition. Conclusions: Having witnessed the profound anti-proliferative potential of BCS3, the possible adverse effects related to anti-cancer therapy were examined following OECD 407 guidelines which confirmed its systemic safety profile and well tolerability. The results indicate the promising effect of BCS3 as an IAP antagonist for breast cancer therapy with fewer adverse effects. Full article
(This article belongs to the Special Issue Potential Therapeutic Targets for the Treatment of Pathological Pain)
Show Figures

Figure 1

19 pages, 5662 KiB  
Article
Synthesis, Characterization and Catalytic/Antimicrobial Activities of Some Transition Metal Complexes Derived from 2-Floro-N-((2-Hydroxyphenyl)Methylene)Benzohydrazide
by Ahmed K. Hijazi, Ziyad A. Taha, Dua’a K. Issa, Heba M. Alshare, Waleed M. Al-Momani, Ali Elrashidi and Ahmad S. Barham
Molecules 2024, 29(23), 5758; https://doi.org/10.3390/molecules29235758 - 5 Dec 2024
Cited by 2 | Viewed by 1527
Abstract
Background: In the last few decades, the field of coordination chemistry has grown very fast, especially in the fields of pharmaceutical, biological and catalytic studies. In ancient times, metals were thought to be beneficial to health issues but nowadays the link between organic–metal [...] Read more.
Background: In the last few decades, the field of coordination chemistry has grown very fast, especially in the fields of pharmaceutical, biological and catalytic studies. In ancient times, metals were thought to be beneficial to health issues but nowadays the link between organic–metal substances and different industrial and medicinal properties is well established. Methods: A Schiff base ligand (2-fluoro-N’-[(E)-2-hydroxyphenyl) methylene] benzohydrazide) was reacted with a series of transition metals to produce complexes with a general formula [ML2(NO3)]NO3.nH2O, where [M = Zn, Cu, Co, Ni, Mn], and [n = 0, 1], corresponding to complexes 15. The nature of the bond was determined in the solid state and solution using spectral studies (1H-NMR, 13C-NMR, UV-Vis and FT-IR), TGA, EPR, elemental analysis and molar conductivity measurement. Results: All M(II) complexes are 1:1 electrolytes, as illustrated by their molar conductivities. The results demonstrate that all synthesized complexes present a coordination number of six by the bonding of the bidentate ligand via its azomethine nitrogen atoms and carbonyl oxygen atoms, as well as with one nitrate group as a bidentate ligand via two oxygen atoms. The DPPH radical scavenging technique was used to investigate the antioxidant activities of the ligand [L] and the metal complexes. It is clear that the activity increased in M (II) complexes compared to the Schiff base ligand. Complex 5 showed the highest activity, with an excellent activity of 90.4%, while complex 4 showed the lowest. The antibacterial activities of the Schiff base and its complexes have been examined against various pathogenic bacteria to measure their inhibition potential. Complex 2 showed remarkable activity against Gram (+) bacteria and fungi with an MIC value of 8 μg/mL, which is greater than that of the positive controls, oxytetracycline and fluconazole. The catalytic activities of all complexes were examined in the oxidation of aniline, and the results illustrated that all complexes had a 100% selectivity in producing only azobenzene, and complex 4 had the highest activity (91%). Conclusion: The obtained results from this study show that the antioxidant and antibacterial properties of both the Schiff base ligand and its derived complexes are promising, with some demonstrating remarkable activities. Moreover, the catalytic activities and selectivities of the prepared complexes in aniline oxidation are interesting. Full article
Show Figures

Figure 1

18 pages, 6951 KiB  
Review
Glycine-Based [3+2] Cycloaddition for the Synthesis of Pyrrolidine-Containing Polycyclic Compounds
by Tieli Zhou, Xiaofeng Zhang, Desheng Zhan and Wei Zhang
Molecules 2024, 29(23), 5726; https://doi.org/10.3390/molecules29235726 - 4 Dec 2024
Cited by 1 | Viewed by 2041
Abstract
The synthesis of pyrrolidine compounds with biological interest is an active research topic. Glycine could be a versatile starting material for making pyrrolidine derivatives. This review covers recent works on glycine-based [3+2] cycloaddition and combines other annulation reactions in the one-pot synthesis of [...] Read more.
The synthesis of pyrrolidine compounds with biological interest is an active research topic. Glycine could be a versatile starting material for making pyrrolidine derivatives. This review covers recent works on glycine-based [3+2] cycloaddition and combines other annulation reactions in the one-pot synthesis of pyrrolidine-containing heterocyclic compounds. Synthetic method development, substrate scope, and reaction mechanisms are discussed. Applications of the compounds in drug discovery are briefly mentioned. This paper is helpful for chemists in the development of efficient and sustainable methods for the preparation of bioactive pyrrolidine compounds. Full article
(This article belongs to the Special Issue Cyclization Reactions in the Synthesis of Heterocyclic Compounds)
Show Figures

Graphical abstract

17 pages, 6328 KiB  
Article
Study of Cytotoxicity of Spiro-Fused [3-Azabicyclo[3.1.0]hexane]oxindoles and Cyclopropa[a]pyrrolizidine-oxindoles Against Tumor Cell Lines
by Anton A. Kornev, Stanislav V. Shmakov, Alexander I. Ponyaev, Alexander V. Stepakov and Vitali M. Boitsov
Pharmaceuticals 2024, 17(12), 1582; https://doi.org/10.3390/ph17121582 - 25 Nov 2024
Cited by 3 | Viewed by 1273
Abstract
Background: A series of spiro-fused heterocyclic compounds containing cyclopropa[a]pyrrolizidine-2,3′-oxindole and 3-spiro[3-azabicyclo[3.1.0]-hexane]oxindole frameworks were synthesized and studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), acute T cell leukemia (Jurkat), melanoma (Sk-mel-2) and breast cancer (MCF-7) as well [...] Read more.
Background: A series of spiro-fused heterocyclic compounds containing cyclopropa[a]pyrrolizidine-2,3′-oxindole and 3-spiro[3-azabicyclo[3.1.0]-hexane]oxindole frameworks were synthesized and studied for their in vitro antiproliferative activity against human erythroleukemia (K562), cervical carcinoma (HeLa), acute T cell leukemia (Jurkat), melanoma (Sk-mel-2) and breast cancer (MCF-7) as well as mouse colon carcinoma (CT26) cell lines. Methods: Cell proliferation was evaluated in vitro by MTS assay. Confocal microscopy was used to study actin cytoskeleton structure and cell motility. Cell cycle analysis was evaluated by flow cytometry. Results: It was found that compounds 4, 8, 18 and 24 showed antiproliferative activity against the Jurkat, K-562, HeLa and Sk-mel-2 cell lines with IC50 ranging from 2 to 10 μM (72 h). Evaluation of the impact on cell cycle progression showed that the tested compounds achieved significant cell-cycle perturbation with a higher accumulation of cells in the SubG1 and G0/G1 phases of the cell cycle, in comparison to the negative control. I Incubation with tested compounds led to the disappearance of stress fibers (granular actin was distributed diffusely in the cytoplasm in up to 38% of treated HeLa cells) and changes in the number of filopodia-like deformations (reduced from 93% in control cells to 64% after treatment). The impact on the Sk-mel-2 cell actin cytoskeleton structure was even greater: granular actin was distributed diffusely in the cytoplasm in up to 90% of treated cells while the number of filopodia-like deformations was reduced by up to 23%. A scratch test performed on the human melanoma cell line showed that these cells did not fill the scratched strip and lose their ability to move under treatment. Conclusions: The obtained results support the antitumor effect of the tested spiro-compounds and encourage the extension of this study in order to improve their anticancer activity as well as reduce their toxicological risks. Full article
Show Figures

Figure 1

27 pages, 5704 KiB  
Review
Viewpoints Concerning Crystal Structure from Recent Reports on Schiff Base Compounds and Their Metal Complexes
by Takashiro Akitsu, Daisuke Nakane and Barbara Miroslaw
Symmetry 2024, 16(11), 1525; https://doi.org/10.3390/sym16111525 - 14 Nov 2024
Cited by 2 | Viewed by 2034
Abstract
Schiff bases are organic compounds that are often used as ligands in metal complexes. In addition to the C=N double bond, which is characteristic of Schiff bases, intermolecular hydrogen bonds are frequently observed in both the twisting of planar substituents in organic compounds [...] Read more.
Schiff bases are organic compounds that are often used as ligands in metal complexes. In addition to the C=N double bond, which is characteristic of Schiff bases, intermolecular hydrogen bonds are frequently observed in both the twisting of planar substituents in organic compounds and the geometric structure of the coordination environment in metal complexes. The results of the crystal structure analyses are stored in databases, which can be used to assess three-dimensional structures. To examine the important structural aspects for novel molecular and material designs, this review examines the important discussion of crystal structure “features” from various viewpoints based on papers on Schiff bases and Schiff base metal complexes from recent years. Full article
(This article belongs to the Section Chemistry: Symmetry/Asymmetry)
Show Figures

Figure 1

24 pages, 6486 KiB  
Article
Unexpected Course of Reaction Between (1E,3E)-1,4-Dinitro-1,3-butadiene and N-Methyl Azomethine Ylide—A Comprehensive Experimental and Quantum-Chemical Study
by Mikołaj Sadowski and Karolina Kula
Molecules 2024, 29(21), 5066; https://doi.org/10.3390/molecules29215066 - 26 Oct 2024
Cited by 17 | Viewed by 1974
Abstract
In recent times, interest in the chemistry of conjugated nitrodienes is still significantly increasing. In particular, the application of these compounds as building blocks to obtain heterocycles is a popular object of research. Therefore, in continuation of our research devoted to the topic [...] Read more.
In recent times, interest in the chemistry of conjugated nitrodienes is still significantly increasing. In particular, the application of these compounds as building blocks to obtain heterocycles is a popular object of research. Therefore, in continuation of our research devoted to the topic of conjugated nitrodienes, experimental and quantum-chemical studies of a cycloaddition reaction between (1E,3E)-1,4-dinitro-1,3-butadiene and N-methyl azomethine ylide have been investigated. The computational results present that the tested reaction is realized through a pdr-type polar mechanism. In turn, the experimental study shows that in a course of this cycloaddition, only one reaction product in the form of 1-methyl-3-(trans-2-nitrovinyl)-Δ3-pyrroline is created. The constitution of this compound has been confirmed via spectroscopic methods. Finally, ADME analysis indicated that the synthesized Δ3-pyrroline exhibits biological potential, and it is a good drug candidate according to Lipinski, Veber and Egan rules. Nevertheless, PASS simulation showed that the compound exhibits weak antimicrobial, inhibitory and antagonist properties. Preliminary in silico research shows that although the obtained Δ3-pyrroline is not a good candidate for a drug, the presence of a nitrovinyl moiety in its structure indicates that the compound is an initial basis for further modifications. Full article
(This article belongs to the Special Issue Heterocyclic Compounds: Synthesis, Application and Theoretical Study)
Show Figures

Figure 1

25 pages, 13251 KiB  
Article
Synthesis, Physicochemical Characterization, and Antimicrobial Evaluation of Halogen-Substituted Non-Metal Pyridine Schiff Bases
by Alexander Carreño, Rosaly Morales-Guevara, Marjorie Cepeda-Plaza, Dayán Páez-Hernández, Marcelo Preite, Rubén Polanco, Boris Barrera, Ignacio Fuentes, Pedro Marchant and Juan A. Fuentes
Molecules 2024, 29(19), 4726; https://doi.org/10.3390/molecules29194726 - 6 Oct 2024
Cited by 4 | Viewed by 2207
Abstract
Four synthetic Schiff bases (PSB1 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-dibromophenol], PSB2 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-diiodophenol], PSB3 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-iodophenol], and PSB4 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-chloro-6-iodophenol]) were fully characterized. These compounds exhibit an intramolecular hydrogen bond between the hydroxyl group of the phenolic ring and the nitrogen of the azomethine group, contributing to their stability. Their [...] Read more.
Four synthetic Schiff bases (PSB1 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-dibromophenol], PSB2 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4,6-diiodophenol], PSB3 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-iodophenol], and PSB4 [(E)-2-(((4-aminopyridin-3-yl)imino)methyl)-4-chloro-6-iodophenol]) were fully characterized. These compounds exhibit an intramolecular hydrogen bond between the hydroxyl group of the phenolic ring and the nitrogen of the azomethine group, contributing to their stability. Their antimicrobial activity was evaluated against various Gram-negative and Gram-positive bacteria, and it was found that the synthetic pyridine Schiff bases, as well as their precursors, showed no discernible antimicrobial effect on Gram-negative bacteria, including Salmonella Typhi (and mutant derivatives), Salmonella Typhimurium, Escherichia coli, and Morganella morganii. In contrast, a more pronounced biocidal effect against Gram-positive bacteria was found, including Bacillus subtilis, Streptococcus agalactiae, Streptococcus pyogenes, Enterococcus faecalis, Staphylococcus aureus, and Staphylococcus haemolyticus. Among the tested compounds, PSB1 and PSB2 were identified as the most effective against Gram-positive bacteria, with PSB2 showing the most potent biocidal effects. Although the presence of reactive oxygen species (ROS) was noted after treatment with PSB2, the primary mode of action for PSB2 does not appear to involve ROS generation. This conclusion is supported by the observation that antioxidant treatment with vitamin C only partially mitigated bacterial inhibition, indicating an alternative biocidal mechanism. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

Back to TopTop