Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (31)

Search Parameters:
Keywords = axial flux permanent magnet electric motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 5435 KiB  
Article
Multi-Physics and Multi-Objective Design of an Axial Flux Permanent Magnet-Assisted Synchronous Reluctance Motor for Use in Electric Vehicles
by Emre Gözüaçık and Mehmet Akar
Machines 2025, 13(7), 555; https://doi.org/10.3390/machines13070555 - 26 Jun 2025
Viewed by 572
Abstract
In this study, an axial flux double airgap permanent magnet-assisted synchronous reluctance motor (AF-Pma-SynRM) was designed for electric vehicles (EVs). The AF-Pma-SynRM model employs a forced liquid cooling method (cooling jacket) for a high current density. The model was tested using multi-objective optimization [...] Read more.
In this study, an axial flux double airgap permanent magnet-assisted synchronous reluctance motor (AF-Pma-SynRM) was designed for electric vehicles (EVs). The AF-Pma-SynRM model employs a forced liquid cooling method (cooling jacket) for a high current density. The model was tested using multi-objective optimization and multi-physics analysis. The AF-Pma-SynRM design has achieved 95.6 Nm of torque, 30 kW of power, and 93.8% efficiency at a 3000 rpm rated speed. The motor exhibits a maximum speed of 10,000 rpm, 253.1 Nm of torque, and 65 kW of output power. This study employs a novel barrier structure for axial motors characterized by fixed outer and inner dimensions, and is suitable for mass production. In the final stage, the motor was cooled using the cooling jacket method, and the average temperature of the winding was measured as 73.83 °C, and the average magnet temperature was 66.44 °C at a nominal power of 30 kW. Also to show variable speed performance, an efficiency map of the AF-Pma-SynRM is presented. Full article
(This article belongs to the Section Electrical Machines and Drives)
Show Figures

Graphical abstract

20 pages, 15147 KiB  
Article
Design for Loss Reduction in a Compact AFPM Electric Water Pump with a PCB Motor
by Do-Hyeon Choi, Hyung-Sub Han, Min-Ki Hong, Dong-Hoon Jung and Won-Ho Kim
Energies 2025, 18(10), 2538; https://doi.org/10.3390/en18102538 - 14 May 2025
Viewed by 723
Abstract
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process [...] Read more.
A PCB stator axial flux permanent magnet (AFPM) motor is presented that overcomes the manufacturing challenges associated with the complex geometry of conventional stators by employing a PCB substrate. Traditionally, AFPM motors are produced by winding coils around the stator teeth, a process that requires specialized winding machinery and is both labor intensive and time consuming, ultimately incurring considerable manufacturing costs and delays. In contrast, PCB substrates offer significant advantages in manufacturability and mass production, effectively resolving these issues. Furthermore, the primary material used in PCB substrates, FR-4, exhibits a permeability similar to that of air, resulting in negligible electromagnetic cogging torque. Cogging torque arises from the attraction between permanent magnets and stator teeth, creating forces that interfere with motor rotation and generate unwanted vibration, noise, and potential mechanical collisions between the rotor and stator. In the PCB stator design, the conventional PCB circuit pattern is replaced by the motor’s coil configuration, and the absence of stator teeth eliminates these interference issues. Consequently, a slotless motor configuration with minimal vibration and noise is achieved. The PCB AFPM motor has been applied to a vehicle-mounted electric water pump (EWP), where mass production and space efficiency are critical. In an EWP, which integrates the impeller with the motor, it is essential that vibrations are minimized since excessive vibration could compromise impeller operation and, due to fluid resistance, require high power input. Moreover, the AFPM configuration facilitates higher torque generation compared to a conventional radial flux permanent magnet synchronous motor (RFPM). In a slotless AFPM motor, the absence of stator teeth prevents core flux saturation, thereby further enhancing torque performance. AC losses occur in the conductors as a result of the magnetic flux produced by the permanent magnets, and similar losses arise within the PCB circuits. Therefore, an optimized PCB circuit design is essential to reduce these losses. The Constant Trace Conductor (CTC) PCB circuit design process is proposed as a viable solution to mitigate AC losses. A 3D finite element analysis (3D FEA) model was developed, analyzed, fabricated, and validated to verify the proposed solution. Full article
Show Figures

Figure 1

29 pages, 10065 KiB  
Article
Experimental Determination of a Spoke-Type Axial-Flux Permanent Magnet Motor’s Lumped Parameters
by Andre Mrad, Jean-François Llibre, Yvan Lefèvre and Mohamad Arnaout
Electricity 2025, 6(2), 24; https://doi.org/10.3390/electricity6020024 - 1 May 2025
Viewed by 1158
Abstract
This study focuses on the experimental determination of the lumped parameters of a Spoke-Type Axial-Flux Permanent Magnet (STAFPM) motor. This type of motor offers high specific torque and is well-suited for transportation applications. The studied STAFPM motor uses Ferrite magnets, which are more [...] Read more.
This study focuses on the experimental determination of the lumped parameters of a Spoke-Type Axial-Flux Permanent Magnet (STAFPM) motor. This type of motor offers high specific torque and is well-suited for transportation applications. The studied STAFPM motor uses Ferrite magnets, which are more environmentally friendly and economical than rare earth magnets. The identification of the lumped electromechanical model parameters is carried out using static torque measurements on a dedicated test bench. The torque measurements are performed in two stages: with and without magnets mounted in the rotor. The no-load flux is determined separately by no-load tests. Together, these tests identify the key parameters of the lumped parameter model, such as self- and mutual inductances, cogging torque, and no-load flux. These parameters are then used to complement the DQ model, commonly used in electric motor analysis. While the DQ model predicts average torque well, it cannot reproduce torque ripples. The lumped parameter model, validated by three-phase DC testing, provides an accurate representation of the motor’s behavior, including torque ripples. This study also applies Maximum Torque Per Ampere (MTPA) control strategies and offers a practical alternative to 3D Finite Element Analysis (FEA), thus aiding the design of STAFPM motors. Full article
(This article belongs to the Special Issue Feature Papers to Celebrate the ESCI Coverage)
Show Figures

Figure 1

15 pages, 4289 KiB  
Article
Advanced 3D Nonlinear Magnetic Equivalent Circuit Model for Overhang-Type WRSM Design
by Hyun-Soo Seol
Electronics 2025, 14(7), 1304; https://doi.org/10.3390/electronics14071304 - 26 Mar 2025
Cited by 1 | Viewed by 408
Abstract
The instability in rare-earth material supply and rising costs have driven research into rare-earth-free electric motors. Among various alternatives, wound rotor synchronous motors (WRSMs) stand out due to their adjustable excitation, enabling high torque at low speeds, and efficient field weakening at high [...] Read more.
The instability in rare-earth material supply and rising costs have driven research into rare-earth-free electric motors. Among various alternatives, wound rotor synchronous motors (WRSMs) stand out due to their adjustable excitation, enabling high torque at low speeds, and efficient field weakening at high speeds. Unlike permanent magnet synchronous motors (PMSMs), WRSMs offer greater operational flexibility and eliminate the risk of demagnetization. However, accurately modeling WRSMs remains challenging, especially when considering axial fringing flux and leakage components, which significantly affect motor performance. To address this challenge, this paper proposes a 3D nonlinear magnetic equivalent circuit (MEC) model that explicitly incorporates axial flux components and leakage paths in WRSMs with overhang rotor structures. Unlike conventional 2D MEC models, which fail to capture axial flux interactions, the proposed approach improves prediction accuracy while significantly reducing computational costs compared to full 3D finite element analysis (FEA). The model was validated through comparisons with 3D FEA simulations and experimental back-EMF measurements, demonstrating its accuracy and computational efficiency. The results confirm that the 3D nonlinear MEC model effectively captures axial flux paths and leakage components, making it a valuable tool for WRSM design and analysis. Future research will focus on further refining the model, incorporating hysteresis loss modeling, and developing hybrid MEC–FEA simulation techniques to enhance its applicability. Full article
Show Figures

Figure 1

25 pages, 19035 KiB  
Article
The Design, Analysis, and Verification of an Axial Flux Permanent Magnet Motor with High Torque Density
by Dapeng Quan, Caiting He, Chenyuan Li, Zeming Zhao, Xiaoze Yang, Limei Ma, Mingyang Li, Yong Zhao and Hongtao Wu
Appl. Sci. 2025, 15(6), 3327; https://doi.org/10.3390/app15063327 - 18 Mar 2025
Viewed by 1594
Abstract
Aiming at the defects of long axial size and low torque density of the existing radial flux permanent magnet motor, this paper proposes an axial flux permanent magnet synchronous motor (AFPMM) with a double-stator and single-rotor structure based on the design requirements of [...] Read more.
Aiming at the defects of long axial size and low torque density of the existing radial flux permanent magnet motor, this paper proposes an axial flux permanent magnet synchronous motor (AFPMM) with a double-stator and single-rotor structure based on the design requirements of the motor for mechanical dogs’ electric drive joints. The finite element method is employed to evaluate the static magnetic field, load characteristics, and associated losses. The analysis indicates that the average magnetic flux density in the air gap reaches approximately 0.95 T, with a rated torque of around 2.72 N.m, a peak torque of 7.6 N.m, and an efficiency of approximately 87.73%. The electromagnetic torque model is developed using the Maxwell tensor method, allowing for the effects of critical structural parameters on torque to be investigated. By optimizing the design for torque density, an improvement of nearly 20% is achieved. A prototype was fabricated and tested, demonstrating good agreement between simulation and experimental results. This research introduces a novel approach for designing axial flux motors with high torque and power densities. Full article
Show Figures

Figure 1

13 pages, 2066 KiB  
Proceeding Paper
Development of Procedures for Disassembly of Industrial Products in Python Environment
by Maurizio Guadagno, Eleonora Innocenti, Lorenzo Berzi, Saverio Corsi and Massimo Delogu
Eng. Proc. 2025, 85(1), 6; https://doi.org/10.3390/engproc2025085006 - 13 Feb 2025
Viewed by 639
Abstract
Circular Design methodology is essential for sustainable industrial practices. This study provides a methodology with a Python-based computational tool that optimizes industrial products’ disassembly sequences, focusing on Design for End of Life (DfEoL) and Design for Disassembly (DfD) to promote Circular Design. The [...] Read more.
Circular Design methodology is essential for sustainable industrial practices. This study provides a methodology with a Python-based computational tool that optimizes industrial products’ disassembly sequences, focusing on Design for End of Life (DfEoL) and Design for Disassembly (DfD) to promote Circular Design. The tool creates disassembly precedence graphs and shows the best disassembly path for target components, facilitating material recovery and environmental sustainability. The tool was applied to a case study on an Axial Flux Permanent Magnet (AFPM) electric motor. The approach provides a flexible and open access solution for optimizing product design within a Circular Design framework. Full article
Show Figures

Figure 1

15 pages, 8029 KiB  
Article
Study on Length–Diameter Ratio of Axial–Radial Flux Hybrid Excitation Machine
by Mingyu Guo, Jiakuan Xia, Qimin Wu, Wenhao Gao and Hongbo Qiu
Processes 2024, 12(12), 2942; https://doi.org/10.3390/pr12122942 - 23 Dec 2024
Cited by 1 | Viewed by 743
Abstract
To improve the flux regulation range of the Axial–Radial Flux Hybrid Excitation Machine (ARFHEM) and the utilization rate of permanent magnets (PMs), the effects of different length–diameter ratios (LDRs) on the ARFHEM performance are studied. Firstly, the principle of the flux regulation of [...] Read more.
To improve the flux regulation range of the Axial–Radial Flux Hybrid Excitation Machine (ARFHEM) and the utilization rate of permanent magnets (PMs), the effects of different length–diameter ratios (LDRs) on the ARFHEM performance are studied. Firstly, the principle of the flux regulation of the ARFHEM is introduced by means of the structure and equivalent magnetic circuit method. Then, based on the principle of the bypass effect, the analytical formulas of LDRs, the number of pole-pairs, and the flux regulation ability are derived, and then the restrictive relationship between the air-gap magnetic field, LDR, and the number of pole-pairs is revealed. On this basis, the influence of an electric LDR on motor performance is studied. By comparing and analyzing the air-gap magnetic density and no-load back electromotive force (EMF) of motors with different LDRs, the variation in the magnetic flux regulation ability of motors with different LDRs is obtained and its influence mechanism is revealed. In addition, the torque regulation ability and loss of motors with different LDRs are compared and analyzed, and the influence mechanism of the LDR on torque and loss is determined. Finally, the above analysis is verified by experiments. Full article
(This article belongs to the Section Manufacturing Processes and Systems)
Show Figures

Figure 1

23 pages, 17209 KiB  
Article
Application of Soft Magnetic Composite in XEV Motor Core Manufacturing: Process Effects and Performance Analysis
by Seongsu Kang and Seonbong Lee
Metals 2024, 14(10), 1163; https://doi.org/10.3390/met14101163 - 11 Oct 2024
Viewed by 1532
Abstract
This study explores the application of AncorLam HR (Höganäs, Sweden), a soft magnetic composite material, in the stator core of an axial flux permanent magnet drive motor. Building on previous research that provided mechanical and thermal properties of the material, the focus is [...] Read more.
This study explores the application of AncorLam HR (Höganäs, Sweden), a soft magnetic composite material, in the stator core of an axial flux permanent magnet drive motor. Building on previous research that provided mechanical and thermal properties of the material, the focus is on analyzing how the manufacturing process affects the motor core’s shape. A bulk prototype was created based on case 3, which demonstrated the least deviation in density and internal stress. The prototypes were produced under the conditions of SPM 7 and 90 °C, and a heat treatment in a nitrogen atmosphere for 1 h, resulting in an average density error of 0.54%, confirming process effectiveness. A microstructural analysis using scanning electron microscopy (SEM) on Sample 2, with the highest density, confirmed consistency between simulation and prototype trends. Electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) analyses revealed that the internal phase structure remained unchanged. Energy-dispersive spectroscopy (EDS) and transmission electron microscopy (TEM) identified the elimination of phosphorus (P) during molding, affecting the insulating layer, a critical factor for SMC materials. In motor simulations and actual measurements, the average torque was recorded as 37.7 N·m and 34.7 N·m at 1500 rpm and 27.7 N·m and 25.1 N·m at 2000 rpm, respectively. The torque comparison observed in the actual measurements compared to the simulation results indicates that the output loss increases in the actual measurements due to the deterioration of the insulation performance judged based on the microstructure evaluation. This study confirms the viability of using AncorLam HR in motor cores for electric vehicles and provides key data for improving the performance. Full article
(This article belongs to the Section Powder Metallurgy)
Show Figures

Figure 1

15 pages, 6494 KiB  
Article
Design and Construction of a Multipole Electric Motor Using an Axial Flux Configuration
by Adrián González-Parada, Francisco Moreno Del Valle and Ricard Bosch-Tous
World Electr. Veh. J. 2024, 15(6), 256; https://doi.org/10.3390/wevj15060256 - 12 Jun 2024
Cited by 3 | Viewed by 2326
Abstract
In the transportation industry, the use of renewable energies has been implemented in conjunction with the development of higher-power electric motors and, consequently, the development of intelligent control systems for torque and speed control. Currently, the coupling between both systems is being developed [...] Read more.
In the transportation industry, the use of renewable energies has been implemented in conjunction with the development of higher-power electric motors and, consequently, the development of intelligent control systems for torque and speed control. Currently, the coupling between both systems is being developed through mechanical systems, affecting the efficient transmission of energy and the useful life of the components. On the other hand, new configurations of electric motors are being developed, such as axial flux motors (AFM), because these can be coupled directly without a mechanical coupling, given their characteristics of high torque at low speeds. In the present work, an innovative design of a multipole axial flux motor (MAFM) is introduced. General criteria for the design and construction are presented considering the geometry in axial flux and permanent magnets. The performance of the system is evaluated through finite element magnetic simulations (FEMM) and compared with experimental measurements of the developed prototype; confirming the effectiveness of the design, obtaining torques of up to 1.784 Nm without extra mechanical couplings and maximum speed regulation errors of 8.43%. The motor was controlled by a digital pole switching system whit six control mode, applied to a permanent magnet MFA for speed and torque control at constant speed. This control can be extended to conventional radial flux electric motor configurations and intelligent traction applications, based on torque demand. Full article
(This article belongs to the Topic Advanced Electrical Machine Design and Optimization Ⅱ)
Show Figures

Figure 1

12 pages, 7352 KiB  
Communication
Study on Performance Improvement through Reducing Axial Force of Ferrite Double-Layer Spoke-Type Permanent Magnet Synchronous Motor with Core Skew
by Dong-Woo Nam, Kangbeen Lee, Si-Woo Song, Won-Ho Kim and Jae-Jun Lee
Machines 2024, 12(4), 280; https://doi.org/10.3390/machines12040280 - 22 Apr 2024
Cited by 1 | Viewed by 2207
Abstract
Recently, due to the price fluctuation and supply instability of rare earth mineral resources, there has been a lot of development of electric motors using non-rare-earth permanent magnets. As a result, motors using Dy-free permanent magnets and ferrite permanent magnets are being researched, [...] Read more.
Recently, due to the price fluctuation and supply instability of rare earth mineral resources, there has been a lot of development of electric motors using non-rare-earth permanent magnets. As a result, motors using Dy-free permanent magnets and ferrite permanent magnets are being researched, and, in particular, ferrite permanent magnets often utilize spoke-type structures, which are magnetic flux concentrators, to compensate for their low coercivity and residual flux density. However, in general, spoke-type PMSMs do not use much reluctance torque, so double-layer spoke-type PMSMs have been studied for their more efficient design. Unlike general spoke-type PMSMs, double-layer spoke-type PMSMs can utilize high reluctance torque by increasing the difference between d-axis and q-axis reluctance. However, as the difference in magnetic resistance increases, vibration and noise are generated, which adversely affects the mechanical part and shortens the life of the motor. Although this problem seemed to be solved by applying core skew in the previous study, it was confirmed that the axial force caused by the axial leakage flux occurred in the maximum torque per ampere (MTPA) control section and the torque ripple was increased. Therefore, in this paper, a model that can apply symmetrical core skew and reduce axial force is proposed. First, the causes of the axial force generated in previous studies were analyzed. Based on the analysis of these causes, a new symmetrical core skew structure was proposed, and its justification was verified through FEA. Full article
(This article belongs to the Special Issue Advances and Trends in PM-Free or Rare-Earth-Free PM Motors)
Show Figures

Figure 1

24 pages, 11849 KiB  
Article
Design, Analysis, and Comparison of Permanent Magnet Claw Pole Motor with Concentrated Winding and Double Stator
by Chengcheng Liu, Hongming Zhang, Shaoheng Wang, Shiwei Zhang and Youhua Wang
World Electr. Veh. J. 2023, 14(9), 237; https://doi.org/10.3390/wevj14090237 - 1 Sep 2023
Cited by 3 | Viewed by 3025
Abstract
Permanent magnet motors have become an important component of industrial production, transportation, and aerospace due to their advantages of high torque density, high power density, high reliability, low losses, and high efficiency. Permanent magnet claw pole motor (PMCPM) is a special type of [...] Read more.
Permanent magnet motors have become an important component of industrial production, transportation, and aerospace due to their advantages of high torque density, high power density, high reliability, low losses, and high efficiency. Permanent magnet claw pole motor (PMCPM) is a special type of transverse flux motor which has a higher torque density compared to traditional permanent magnet motors. Due to the absence of winding ends, its axial space utilization is high, and the usage of windings is greatly reduced, reducing the cost and weight of the motor. PMCPM has the advantages of small space, a light weight, a high torque density, a high efficiency, and simple production, which have potential for use in the field of electric vehicles. The double-stator structure design can improve the torque density, efficiency, and radial space utilization of PMCPM, which helps to expand their applications in the field of electric vehicles. This article designs two PMCPM with concentrated winding while different rotor structures (PMCPM1 and PMCPM2) and a three-dimensional finite element method is employed to compare and analyze the performance of PMCPM1 and PMCPM2 and the traditional PMCPM (TPMCPM). Multiphysics analysis is carried out for PMCPM1 and PMCPM2. The stress of the inner and outer stators during interference assembly are analyzed. In this paper, a hybrid material core design is proposed, in which the stator yoke is rolled by silicon steel material and the stator claw pole is pressed by the SMC die method. The multiphysics simulation performance of the PMCPM1 and PMCPM2 with hybrid cores is analyzed. Full article
Show Figures

Figure 1

17 pages, 9896 KiB  
Article
Electromagnetic Performance Investigation of Rectangular-Structured Linear Actuator with End Ferromagnetic Poles
by Zahoor Ahmad, Basharat Ullah, Faisal Khan, Shafaat Ullah and Irfan Sami
Energies 2023, 16(15), 5758; https://doi.org/10.3390/en16155758 - 2 Aug 2023
Cited by 1 | Viewed by 1896
Abstract
Saving energy from domestic appliances is a focus in the effort to combat energy challenges. Linear compressors are a more efficient alternative to the traditional compressors used in refrigerators, which account for 20–40% of all residential electricity use. This article investigates the new [...] Read more.
Saving energy from domestic appliances is a focus in the effort to combat energy challenges. Linear compressors are a more efficient alternative to the traditional compressors used in refrigerators, which account for 20–40% of all residential electricity use. This article investigates the new topology of the moving magnet (MM), dual-stator single-mover linear oscillating actuator (DSSM-LOA) for linear compressor application. Both the stators were C-shaped, with coils looped across their end sides. Two permanent magnets (PMs) that were axially magnetized were housed on the mover. The PM structural shape significantly affected its fabrication cost and magnitude of magnetic flux density (B). The DSSM-LOA makes use of axially magnetized rectangular-shaped PMs because they are inexpensive and generate high electromagnetic (EM) force density. End ferromagnetic core materials were used to improve the magnetic flux, linking from the stator to the mover. All the design parameters were optimized through parametric analysis using the finite parametric sweep method. Parameters present within the three primary parameters (length, height, and depth) that were assumed constants were optimized, and the optimal dimensions were selected based on the EM force. The investigated DSSM-LOA was contrasted with traditional LOA designs, and they showed significant improvement in EM force per ampere, generally named motor constant (MC), MC per PM mass, MC density, cogging force, and stroke. Additionally, the proposed DSSM-LOA had a simple structure and low cost, and it operated in a feasible range of strokes for linear compressor application. Full article
Show Figures

Figure 1

22 pages, 1861 KiB  
Review
Noise in Electric Motors: A Comprehensive Review
by Patxi Gonzalez, Garikoitz Buigues and Angel Javier Mazon
Energies 2023, 16(14), 5311; https://doi.org/10.3390/en16145311 - 11 Jul 2023
Cited by 18 | Viewed by 18809
Abstract
Electric machines are important devices that convert electrical energy into mechanical energy and are extensively used in a wide range of applications. Recent years have seen an increase in applications where electric motors are used. The frequent use of electric motors in noise-sensitive [...] Read more.
Electric machines are important devices that convert electrical energy into mechanical energy and are extensively used in a wide range of applications. Recent years have seen an increase in applications where electric motors are used. The frequent use of electric motors in noise-sensitive environments increases the requirements placed on electric motors intended for these applications, especially when compared to electric motors commonly used in industrial applications. This paper provides a comprehensive review of electric motor noise. Firstly, a brief introduction to noise is given. Then, the sources of electromagnetic noise and vibration in electric machines, including mechanical, aerodynamic and electromagnetic factors, are presented. Different methods such as analytical, numerical and semi-analytical for calculating electromagnetic force, natural frequencies and noise are also analyzed. Various methods for noise reduction are presented, including skewing, stator and rotor notching and slot opening width. Finally, noise measurement standards and procedures are described. Full article
(This article belongs to the Topic Future Generation Electric Machines and Drives)
Show Figures

Figure 1

24 pages, 16743 KiB  
Article
Stall Torque Performance Analysis of a YASA Axial Flux Permanent Magnet Synchronous Machine
by Jordi Van Damme, Hendrik Vansompel and Guillaume Crevecoeur
Machines 2023, 11(4), 487; https://doi.org/10.3390/machines11040487 - 18 Apr 2023
Cited by 1 | Viewed by 5652
Abstract
There is a trend to go towards low gear-ratio or even direct-drive actuators in novel robotic applications in which high-torque density electric motors are required. The Yokeless and Segmented Armature Axial Flux Permanent Magnet Synchronous Machine is therefore considered in this work. In [...] Read more.
There is a trend to go towards low gear-ratio or even direct-drive actuators in novel robotic applications in which high-torque density electric motors are required. The Yokeless and Segmented Armature Axial Flux Permanent Magnet Synchronous Machine is therefore considered in this work. In these applications, the motors should be capable to deliver high torque at standstill for long periods of time. This can cause overheating of the motors due to a concentration of the losses in a single phase; hence, it becomes necessary to derate the motor torque. In this work the influence of the slot/pole combination, the addition of a thermal end-winding interconnection and the equivalent thermal conductivity of the winding body on the torque performance at standstill will be studied both experimentally via temperature measurements on a prototype stator, and via a calibrated 3D thermal Finite Element model. It was found that both a good choice of the slot/pole combination and the addition of a thermal end-winding interconnection have a significant influence on the torque performance at standstill, and allow up to 8% increase in torque at standstill in comparison to a reference design. Full article
(This article belongs to the Topic Advanced Electrical Machines and Drives Technologies)
Show Figures

Figure 1

23 pages, 1232 KiB  
Article
Optimal Design of Axial Flux Permanent Magnet Motors for Ship RIM-Driven Thruster
by Hichem Ouldhamrane, Jean-Frédéric Charpentier, Farid Khoucha, Abdelhalim Zaoui, Yahia Achour and Mohamed Benbouzid
Machines 2022, 10(10), 932; https://doi.org/10.3390/machines10100932 - 13 Oct 2022
Cited by 9 | Viewed by 7121
Abstract
This paper deals with the design and optimization of a 2.1 MW rim-driven electric thruster for ship propulsion. For this purpose, a double stator ironless rotor axial flux permanent magnet (AFPM) motor is considered as the propulsion motor. The analytical model of the [...] Read more.
This paper deals with the design and optimization of a 2.1 MW rim-driven electric thruster for ship propulsion. For this purpose, a double stator ironless rotor axial flux permanent magnet (AFPM) motor is considered as the propulsion motor. The analytical model of the selected AFPM motor is presented. The magnetic field in the AFPM machine is calculated using the 3D magnetic charge concept in combination with image theory and permeance functions to take into account the stator slotting effects, and a simple thermal model is used to evaluate the heat dissipation capabilities of the machine and the thermal dependence of the main electromagnetic losses. To optimally design the AFPM, an optimization process based on genetic algorithms is applied to minimize the cost of the active motor materials. An appropriate objective function has been constructed, and different constraints related to the main electrical, geometrical, and mechanical parameters have been taken into account. The achieved results are compared with the performance of a podded radial flux permanent magnet (RFPM) motor, which is considered a reference propulsion motor. The obtained results show a fairly satisfactory improvement in the cost and masses of the active motor materials. Finally, the accuracy of the obtained optimum solution is validated by performing 3D finite element analysis (3D-FEA) simulations. Full article
Show Figures

Figure 1

Back to TopTop