Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (16)

Search Parameters:
Keywords = avocado powder

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2769 KiB  
Article
Microencapsulation of a Flaxseed and Avocado Oil Blend: Influence of Octenyl Succinic Anhydride (OSA)-Modified Starch and Rice and Pea Proteins on Powder Characterization and Oxidative Stability
by Paulo Cesar Gonçalves Junior, Caroline Bertagnolli, Carlos Alexandre Moreira da Silva and Matheus Boeira Braga
Processes 2024, 12(10), 2230; https://doi.org/10.3390/pr12102230 - 13 Oct 2024
Cited by 2 | Viewed by 1399
Abstract
This work investigated the influence of the OSA-modified starch, pea protein, and rice protein combination in the microencapsulation process of a blend of avocado and flaxseed oil (25–75%, w/w) by freeze-drying, focusing on emulsions and powders characteristics and oxidative stability. [...] Read more.
This work investigated the influence of the OSA-modified starch, pea protein, and rice protein combination in the microencapsulation process of a blend of avocado and flaxseed oil (25–75%, w/w) by freeze-drying, focusing on emulsions and powders characteristics and oxidative stability. Four different ratios between the mixture of vegetable proteins (1:1) and the OSA-modified starch were analyzed, using a fixed ratio between the oils blend and the combined encapsulant agents of 1:3. Based on the creaming index, the separation of hydrophilic and hydrophobic phases was not observed. The results demonstrated a tendency to increase the droplet mean diameter with increased protein content (4.71–19.36 μm). An increase in the encapsulation efficiency was verified with the increase in the OSA-modified starch content (51.33–60.32%). Powders presented low moisture content and hygroscopicity, and an oxidative induction time value varying from 0.86 to 1.18 h. The increase in the vegetable protein content increased the powders’ oxidative stability, which could be associated with the antioxidant capacity of rice and pea proteins. Full article
(This article belongs to the Special Issue Advanced Drying Technologies in Food Processing)
Show Figures

Figure 1

13 pages, 1204 KiB  
Article
Obesity Prevention Effects of Avocado (Persea americana) Seed Powder in High-Fat Diet-Induced Obesity in Rats
by Shoeshoe Mokhele, Oluwaseyi Aboyade and David R. Katerere
Nutraceuticals 2024, 4(3), 417-429; https://doi.org/10.3390/nutraceuticals4030025 - 9 Sep 2024
Cited by 1 | Viewed by 2388
Abstract
Avocado seed contains 64% of the phenolic compounds of the whole fruit. This makes avocado seed a potential candidate for the development of treatments for different illnesses, including obesity (the major risk factor for metabolic disorders). The aim of this study was to [...] Read more.
Avocado seed contains 64% of the phenolic compounds of the whole fruit. This makes avocado seed a potential candidate for the development of treatments for different illnesses, including obesity (the major risk factor for metabolic disorders). The aim of this study was to investigate the effects of avocado seed powder on high-fat diet-induced obesity in rats. Sprague Dawley rats (16 rats) were fed a high-fat diet for 10 weeks. After 10 weeks, the rats were assigned into two groups of eight animals each and were fed either a high-fat diet (HFD; control group) or a high-fat diet containing avocado seed powder (HFD-A; treatment group) for 6 weeks. Animals were weighed weekly, and weekly weight gain was determined. Animals in the treatment (avocado seed) group showed significantly lower body weight gain (7.8 ± 9.63 g) than animals in the control group (33.9 ± 10.84 g) at the end of this study. The treatment group presented with lower triglycerides than the control, with LDL and HDL comparable to the control group. Avocado seed powder showed potential to reduce obesity in rats fed a high-fat diet. Avocado seed can therefore be investigated further as a potential anti-obesity nutraceutical. Full article
(This article belongs to the Special Issue Functional Foods as a New Therapeutic Strategy 2.0)
Show Figures

Figure 1

12 pages, 1542 KiB  
Article
Effects of an Unripe Avocado Extract on Glycaemic Control in Individuals with Obesity: A Double-Blinded, Parallel, Randomised Clinical Trial
by Lijun Zhao, Donald K. Ingram, Eric Gumpricht, Trent De Paoli, Xiao Tong Teong, Bo Liu, Trevor A. Mori, Leonie K. Heilbronn and George S. Roth
Nutrients 2023, 15(22), 4812; https://doi.org/10.3390/nu15224812 - 17 Nov 2023
Cited by 1 | Viewed by 3399
Abstract
Background: Unripe avocados (Persea americana) are naturally enriched in mannoheptulose (MH), which is a candidate caloric restriction mimetic. Objectives: To evaluate the effects of a diet supplement made from unripe avocado on glucose tolerance, and cardiometabolic risk factors in free-living nondiabetic [...] Read more.
Background: Unripe avocados (Persea americana) are naturally enriched in mannoheptulose (MH), which is a candidate caloric restriction mimetic. Objectives: To evaluate the effects of a diet supplement made from unripe avocado on glucose tolerance, and cardiometabolic risk factors in free-living nondiabetic adults with obesity. Methods: In a double-blinded, randomised controlled trial, 60 adults (female n = 47, age 48 ± 13 years, BMI 34.0 ± 2.6 kg/m2) were stratified by sex and randomised to avocado extract (AvX, 10 g finely ground, freeze-dried unripe avocado) or placebo (10 g finely ground cornmeal plus 5% spinach powder) daily, for 12 weeks. The primary outcome was a change in glucose area under the curve (AUC) in response to a 75 g oral glucose tolerance test. A post-hoc analysis was subsequently performed in a subgroup with insulin AUC above the median of baseline values after removal of participants >2 SD from the mean. Results: There were no between-group differences in glucose AUC (p = 0.678), insulin AUC (p = 0.091), or cardiovascular outcomes. In the subgroup analysis, insulin AUC was lower in AxV versus placebo (p = 0.024). Conclusions: Daily consumption of unripe avocado extract enriched in MH did not alter glucose tolerance or insulin sensitivity in nondiabetic adults with obesity, but the data provided preliminary evidence for a benefit in insulin AUC in a subgroup of participants with elevated baseline postprandial insulin levels. Full article
(This article belongs to the Section Nutrition and Obesity)
Show Figures

Graphical abstract

15 pages, 988 KiB  
Article
A Functional End-Use of Avocado (cv. Hass) Waste through Traditional Semolina Sourdough Bread Production
by Enrico Viola, Carla Buzzanca, Ilenia Tinebra, Luca Settanni, Vittorio Farina, Raimondo Gaglio and Vita Di Stefano
Foods 2023, 12(20), 3743; https://doi.org/10.3390/foods12203743 - 11 Oct 2023
Cited by 14 | Viewed by 3080
Abstract
In recent years, a main goal of research has been to exploit waste from agribusiness industries as new sources of bioactive components, with a view to establishing a circular economy. Non-compliant avocado fruits, as well as avocado seeds and peels, are examples of [...] Read more.
In recent years, a main goal of research has been to exploit waste from agribusiness industries as new sources of bioactive components, with a view to establishing a circular economy. Non-compliant avocado fruits, as well as avocado seeds and peels, are examples of promising raw materials due to their high nutritional yield and antioxidant profiles. This study aimed to recycle avocado food waste and by-products through dehydration to produce functional bread. For this purpose, dehydrated avocado was reduced to powder form, and bread was prepared with different percentages of the powder (5% and 10%) and compared with a control bread prepared with only semolina. The avocado pulp and by-products did not alter organoleptically after dehydration, and the milling did not affect the products’ color and retained the avocado aroma. The firmness of the breads enriched with avocado powder increased due to the additional fat from the avocado, and alveolation decreased. The total phenolic content of the fortified breads was in the range of 2.408–2.656 mg GAE/g, and the antiradical activity was in the range of 35.75–38.235 mmol TEAC/100 g (p < 0.0001), depending on the percentage of fortification. Full article
Show Figures

Figure 1

10 pages, 14693 KiB  
Communication
Synthesis, Characterization, Cytotoxicity, and Antibacterial Studies of Persea americana Mill. (Avocado) Seed Husk Mediated Hydronium Jarosite Nanoparticles
by Nandipha L. Botha, Karen J. Cloete, Nolubabalo Matinise, Oladipupo M. David, Admire Dube and Malik Maaza
Appl. Sci. 2023, 13(15), 8963; https://doi.org/10.3390/app13158963 - 4 Aug 2023
Cited by 1 | Viewed by 1999
Abstract
The application of nanotechnology in antimicrobial and cytotoxicity studies has recently been receiving increased interest. This paper report on the use of Persea americana Mill. (avocado) seed husk to synthesize hydronium jarosite nanoparticles in a facile, economical, and eco-friendly manner. We describe firstly [...] Read more.
The application of nanotechnology in antimicrobial and cytotoxicity studies has recently been receiving increased interest. This paper report on the use of Persea americana Mill. (avocado) seed husk to synthesize hydronium jarosite nanoparticles in a facile, economical, and eco-friendly manner. We describe firstly the synthesis of hydronium jarosite nanoparticles using P. americana (avocado) seed husk aqueous extract as a reducing and chelating agent for the reduction of iron (II) sulfate heptahydrate. Secondly, we describe the characterization of the nanoproduct with scanning electron microscopy (SEM); energy dispersive X-ray spectroscopy (EDX); high-resolution transmission electron microscopy (HRTEM); X-ray powder diffraction (XRD) analysis; Fourier transform infrared spectroscopy (FT-IR); and, lastly, the cytotoxicity and antibacterial effect of hydronium jarosite nanoparticles using murine macrophage cells (Raw 264.7) cell lines, Gram-negative (Escherichia coli), Gram-positive (Staphylococcus aureus), and methicillin-resistant Staphylococcus aureus. These hydronium jarosite avocado seed husk-mediated nanoparticle-coated 2D sheets did not show any antibacterial activity against the bacteria tested but did show concentration-dependent cytotoxicity. Further research is required to optimize the antibacterial properties and reduce the cytotoxicity of this nanomaterial synthesized using green nanochemistry. Full article
Show Figures

Figure 1

13 pages, 2645 KiB  
Article
Chemical Composition, Physicochemical and Bioactive Properties of Avocado (Persea americana) Seed and Its Potential Use in Functional Food Design
by Marta Siol and Anna Sadowska
Agriculture 2023, 13(2), 316; https://doi.org/10.3390/agriculture13020316 - 28 Jan 2023
Cited by 20 | Viewed by 11200
Abstract
The appropriate use of avocado seed waste after industrial processing could reduce the problem of overconsumption and food waste in accordance with the “zero waste” concept. The presented study evaluates the physicochemical and bioactive properties of avocado seed and its possible use in [...] Read more.
The appropriate use of avocado seed waste after industrial processing could reduce the problem of overconsumption and food waste in accordance with the “zero waste” concept. The presented study evaluates the physicochemical and bioactive properties of avocado seed and its possible use in functional food design, for example, cereal snacks in the form of cookies. The profile of polyphenol and lutein content was determined by chromatographic methodology, and the phenolic compounds content and antioxidant properties of the avocado seed powder were determined using spectrophotometric methods. The chemical composition (content of protein, carbohydrates, fiber, fat) and physicochemical properties, i.e., water activity, water holding capacity, and solubility in water of avocado seed powder, were examined. According to the fiber content (21.6 g/100 g) and bioactive compounds present in the avocado seed powder (content of phenolic 62.1 mg GAE/1 g, antioxidant potential (122.4 mmol Trolox/100 g), and low solubility in water (16.2%), it could be considered a valuable additive to cereal snacks. Our designed cereal products with various amounts of added avocado seed powder (6%, 12%, and 18%) showed that 6% added powder promoted an almost five-fold increase in the polyphenol content and four-fold higher antioxidant potential of the snacks compared to the control samples. In addition, the lowest level addition of avocado seed powder increased the dietary fiber content of the product to 4%; hence, they adhered to the nutrition claim of “source of fiber” in accordance with Regulation (EC) No. 1924/2006. Full article
14 pages, 3038 KiB  
Article
Avocado Seeds-Mediated Alleviation of Cyclosporine A-Induced Hepatotoxicity Involves the Inhibition of Oxidative Stress and Proapoptotic Endoplasmic Reticulum Stress
by Mohammed A. El-Magd, Amina M. G. Zedan, Nahla S. Zidan, Mohamed I. Sakran, Omar Bahattab, Atif Abdulwahab A. Oyouni, Osama M. Al-Amer, Adel I. Alalawy and Amira M. Elmoslemany
Molecules 2022, 27(22), 7859; https://doi.org/10.3390/molecules27227859 - 14 Nov 2022
Cited by 15 | Viewed by 2459
Abstract
Previous studies reported disrupted hepatic function and structure following the administration of cyclosporine A (CsA) in humans and animals. Recently, we found that avocado seeds (AvS) ameliorated CsA-induced nephrotoxicity in rats. As a continuation, herein we checked whether AvS could also attenuate CsA-induced [...] Read more.
Previous studies reported disrupted hepatic function and structure following the administration of cyclosporine A (CsA) in humans and animals. Recently, we found that avocado seeds (AvS) ameliorated CsA-induced nephrotoxicity in rats. As a continuation, herein we checked whether AvS could also attenuate CsA-induced hepatotoxicity in rats. Subcutaneous injection of CsA (5 mg/kg) for 7 days triggered hepatotoxicity in rats, as indicated by liver dysfunction, redox imbalance, and histopathological changes. Oral administration of 5% AvS powder for 4 weeks ameliorated CsA-induced hepatotoxicity, as evidenced by (1) decreased levels of liver damage parameters (alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), and bilirubin), (2) resumed redox balance in the liver (reduced malondialdehyde (MDA) and increased superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx)), (3) downregulated hepatic expression of endoplasmic reticulum (ER) stress-related genes (X-box binding protein 1 (XBP1), binding immunoglobulin protein (BIP), C/EBP homologous protein (CHOP)), and apoptosis-related genes (Bax and Casp3), (4) upregulated expression of the anti-apoptotic gene Bcl2, (5) reduced DNA damage, and (6) improved liver histology. These results highlight the ability of AvS to ameliorate CsA-induced hepatotoxicity via the inhibition of oxidative stress and proapoptotic ER stress. Full article
Show Figures

Figure 1

11 pages, 1277 KiB  
Article
Evaluation of Ethanolic Powdered Extract of Magnolia tamaulipana Vazquez against Oligonychus punicae Hirst (Trombidiformes: Tetranychidae)
by Francisco Reyes-Zepeda, Rapucel Tonantzin Quetzalli Heinz-Castro, Fabian Eliseo Olazaran-Santibañez, Salvador Ordaz-Silva, José Guadalupe Pedro-Méndez and Julio César Chacón-Hernández
Plants 2022, 11(13), 1711; https://doi.org/10.3390/plants11131711 - 28 Jun 2022
Cited by 5 | Viewed by 2107
Abstract
Avocado bronze mite (ABM), Oligonychus punicae Hirst (Trombidiformes: Tetranychidae) has potential for development in several plant species of agricultural importance. ABM is one of the most economically important pests in avocado cultivars, causing major damage to fruit and defoliation. At present, the control [...] Read more.
Avocado bronze mite (ABM), Oligonychus punicae Hirst (Trombidiformes: Tetranychidae) has potential for development in several plant species of agricultural importance. ABM is one of the most economically important pests in avocado cultivars, causing major damage to fruit and defoliation. At present, the control of ABM depends mainly on agrochemicals. Therefore, it is necessary to find alternatives to agrochemicals that can help minimize environmental impact and health risks for humans and mammals. The aim of this research was to assess the effect of different concentrations (5, 10, 50, 100, 250, 500, 1000 µg/mL) of ethanolic powdered extract of M. tamaulipana leaves against adult ABM females. The different concentrations of M. tamaulipana extract did not cause mortality of O. punicae. Females treated with 5 and 1000 µg/mL of the extract showed a decrease in the number of eggs laid per female at 24 (5.17 and 1.27), 48 (5.07 and 1.17), and 72 h (4.97 and 0.80), compared to the control treatment (5.20, 6.60 and 6.87), respectively, which led to a reduction in the growth rate. Percentage of feeding damage decreased with the increasing concentration of the extract. The ethanolic powdered extract of M. tamaulipana leaf has potential to control O. punicae. Full article
(This article belongs to the Special Issue Plant Extracts as Biological Protective Agents)
Show Figures

Figure 1

13 pages, 1613 KiB  
Article
Cytotoxicity Evaluation and Antioxidant Activity of a Novel Drink Based on Roasted Avocado Seed Powder
by Andreea Pușcaș, Anda E. Tanislav, Romina A. Marc, Vlad Mureșan, Andruța E. Mureșan, Emoke Pall and Constantin Cerbu
Plants 2022, 11(8), 1083; https://doi.org/10.3390/plants11081083 - 15 Apr 2022
Cited by 15 | Viewed by 5629
Abstract
The avocado seed is an underused waste resulting from the processing of pulp. Polyphenols, fibers, and carotenoids are present in the seed, which also exhibits prophylactic, fungicidal, and larvicidal effects. Developing food products with avocado seed as an ingredient or spice is highly [...] Read more.
The avocado seed is an underused waste resulting from the processing of pulp. Polyphenols, fibers, and carotenoids are present in the seed, which also exhibits prophylactic, fungicidal, and larvicidal effects. Developing food products with avocado seed as an ingredient or spice is highly desired for nutritional, environmental, and economic reasons. The present study proposed its valorization in a hot drink, similar to already existing coffee alternatives, obtained by infusing the roasted and grinded avocado seed. The proximate composition of the raw or conditioned avocado seed and that of the novel drink were determined. The total phenolic content was assessed using the Folin-Ciocâlteu method. The total carotenoids were extracted and assessed spectrophotometrically. Starch determination was performed by the Ewers Polarimetric method. The highest content of polyphenols, 772.90 mg GAE/100 g, was determined in the crude seed, while in the drink was as low as 17.55 mg GAE/100 g. However, the proposed drink demonstrated high antioxidant capacity, evaluated through the DPPH method. This might be due to the high content of the total carotenoid compounds determined in the roasted seed (6534.48 µg/100 g). The proposed drink demonstrated high antiproliferative activity on Hs27 and DLD-1 cell lines. Full article
(This article belongs to the Special Issue Spicy and Aromatic Plants)
Show Figures

Figure 1

14 pages, 32944 KiB  
Article
Comparison of Phytochemical Contents, Antioxidant and Antibacterial Activities of Various Solvent Extracts Obtained from ‘Maluma’ Avocado Pulp Powder
by Thi-Van-Linh Nguyen, Quoc-Duy Nguyen, Nhu-Ngoc Nguyen and Thi-Thuy-Dung Nguyen
Molecules 2021, 26(24), 7693; https://doi.org/10.3390/molecules26247693 - 20 Dec 2021
Cited by 10 | Viewed by 5093
Abstract
Although avocado is a superfood rich in phytochemicals with high antioxidant activities, studies on the antibacterial properties of its pulp are limited, except for seed and peel portions. In this study, three types of solvent (acetone, methanol, and diethyl ether) were used to [...] Read more.
Although avocado is a superfood rich in phytochemicals with high antioxidant activities, studies on the antibacterial properties of its pulp are limited, except for seed and peel portions. In this study, three types of solvent (acetone, methanol, and diethyl ether) were used to obtain the extracts from “Maluma” avocado pulp powder prepared by infrared drying. The extracts were analyzed for total polyphenols, phytopigments (total chlorophylls and carotenoids), antioxidant activities (ferric-reducing antioxidant power (FRAP), 2,2-Diphenyl-1-picrylhydrazyl (DPPH), and 2,2-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid (ABTS) assays), and antibacterial activities against seven pathogens (Shigella sonnei ATCC 9290, Escherichia coli ATCC 8739, Salmonella typhi ATCC 6539, Vibrio parahaemolyticus ATCC 17802, Proteus mirabilis ATCC 25933, Staphylococcus aureus ATCC 6538, and Bacillus cereus ATCC 11778). The results showed that the acetone solvent could extract the highest polyphenols and chlorophylls with the highest antioxidant activity in terms of ABTS and DPPH assays. In contrast, diethyl ether exhibited the most significant content of carotenoids and FRAP values. However, the methanol extract was the best solvent, exerting the strongest antibacterial and meaningful antioxidant activities. For the bacterial activities, Gram-positive pathogens (Bacillus cereus and Staphylococcus aureus) were inhibited more efficiently by avocado extracts than Gram-negative bacteria. Therefore, the extracts from avocado powder showed great potential for applications in food processing and preservation, pharmaceuticals, and cosmetics. Full article
(This article belongs to the Special Issue Antibacterial Agents from Natural Source)
Show Figures

Figure 1

12 pages, 1356 KiB  
Article
Effects of Infrared Drying Conditions and Maltodextrin Addition on Some Physicochemical Characteristics of Avocado (Persea americana) Pulp Powder
by Thi-Van-Linh Nguyen, Quoc-Duy Nguyen, Thi-Thuy-Dung Nguyen and Phuoc-Bao-Duy Nguyen
Appl. Sci. 2021, 11(24), 11803; https://doi.org/10.3390/app112411803 - 12 Dec 2021
Cited by 12 | Viewed by 3892
Abstract
In this study, avocado pulp with a good nutritional profile and economic value was dehydrated using infrared drying to produce pulp powder, which shows potential application in nutritional supplements. An experimental design with two factors, namely maltodextrin level (0% and 9%) and infrared [...] Read more.
In this study, avocado pulp with a good nutritional profile and economic value was dehydrated using infrared drying to produce pulp powder, which shows potential application in nutritional supplements. An experimental design with two factors, namely maltodextrin level (0% and 9%) and infrared temperature (ranging from 65 to 80 °C), was used. Responses related to the physicochemical properties of the resulted powder were observed, including peroxide value, total polyphenols, total chlorophylls, antioxidant activity, and color parameters (L*, a*, and b* values). The quality of dried products may be harmed by drying either at a high temperature or for an extended period of time. The coating substance maltodextrin was found to be beneficial in limiting unexpected changes in avocado pulp subjected to infrared drying. The highest quality of dried avocado could be obtained via infrared drying of avocado pulp with 9% maltodextrin at 70 °C, as illustrated by the exceptional retention of total polyphenols, total chlorophylls, and antioxidant activity, being 95.1, 95.2, and 94.4%, respectively. Moreover, the short drying time (35–55 min) led to the minimization of lipid oxidation and the absence of peroxide compounds in all samples. Full article
(This article belongs to the Special Issue Drying Technologies in Food Processing)
Show Figures

Figure 1

20 pages, 2315 KiB  
Article
The In Vitro and In Vivo Synergistic Antimicrobial Activity Assessment of Vacuum Microwave Assisted Aqueous Extracts from Pomegranate and Avocado Fruit Peels and Avocado Seeds Based on a Mixtures Design Model
by Prodromos Skenderidis, Stefanos Leontopoulos, Konstantinos Petrotos, Chrysanthi Mitsagga and Ioannis Giavasis
Plants 2021, 10(9), 1757; https://doi.org/10.3390/plants10091757 - 24 Aug 2021
Cited by 12 | Viewed by 4658
Abstract
The present study aimed to assess the antimicrobial properties of encapsulated lyophilized powdered extracts of pomegranate peels (PP), avocado peels (AP) and avocado seeds (AS) in vitro and in vivo. Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) methods, optical density measurement, [...] Read more.
The present study aimed to assess the antimicrobial properties of encapsulated lyophilized powdered extracts of pomegranate peels (PP), avocado peels (AP) and avocado seeds (AS) in vitro and in vivo. Minimum Inhibitory Concentration (MIC) and Minimal Bactericidal Concentration (MBC) methods, optical density measurement, and well diffusion assay were used to determine antimicrobial activity against food borne bacteria (Gram− Escherichia coli, Salmonella typhimurium, Campylobacter jejuni, Pseudomonas putida), (Gram+ Staphylococcus aureus, Listeria monocytogenes, Clostridium perfringens, Lactobacillus plantarum), and fungi (Penicillium expansum and Aspergillus niger) based on a mixture design model. Additionally, the most effective powder was studied in vivo in yogurt, cream cheese, and minced meat burger. The samples that contained high polyphenol content also exhibited higher antioxidant, antimicrobial, and antifungal activity. From the results of the well diffusion, the MIC/MBC, and the cell optical density assays, the antimicrobial activity of the extracts was found to be correlated to the total phenolic content (TPC) of the samples and the type of the microorganism. The pomegranate peels extract presented the higher TPC and antioxidant activity and constitute the highest percentage in the most active antimicrobial mixture. The powders that were tested in vitro showed microbial type-dependent effects in each food model. The results presented here can be further studied in the large-scale industrial production of natural food preservatives. Full article
(This article belongs to the Special Issue Fruit Polyphenol Extract)
Show Figures

Graphical abstract

16 pages, 2276 KiB  
Article
Avocado Seeds Relieve Oxidative Stress-Dependent Nephrotoxicity but Enhance Immunosuppression Induced by Cyclosporine in Rats
by Amira M. Elmoslemany, Mohammed A. El-Magd, Heba I. Ghamry, Mohammad Y. Alshahrani, Nahla S. Zidan and Amina M. G. Zedan
Antioxidants 2021, 10(8), 1194; https://doi.org/10.3390/antiox10081194 - 27 Jul 2021
Cited by 16 | Viewed by 4371
Abstract
Cyclosporine A’s (CsA) immunosuppressive effect makes it an ideal drug for organ transplantation. However, CsA’s uses are restricted due to its side effects. We investigated the effects of avocado seed (AvS) powder on CsA-induced nephrotoxicity and immunosuppression in rats. The injection of CsA [...] Read more.
Cyclosporine A’s (CsA) immunosuppressive effect makes it an ideal drug for organ transplantation. However, CsA’s uses are restricted due to its side effects. We investigated the effects of avocado seed (AvS) powder on CsA-induced nephrotoxicity and immunosuppression in rats. The injection of CsA (5 mg/kg, subcutaneously, for 10 days) increased serum levels of creatinine, uric acid, and urea, and the renal levels of the malondialdehyde. It decreased creatinine clearance and the renal activity of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and Na+/K+ ATPase. The administration of CsA also significantly downregulated the renal expression of interferon-gamma, tumor necrosis factor-alpha, interleukin 1 beta, monocyte chemotactic protein 1, intercellular adhesion molecule-1, and vascular cell adhesion molecule 1 genes, and increased renal DNA damage. Histopathological examination confirmed the biochemical and molecular alterations that accompanied CsA nephrotoxicity. All CsA-induced deleterious effects, except immunosuppression, were ameliorated by feeding rats on a basal diet supplemented with 5% AvS powder for 4 weeks. Importantly, AvS also maximized CsA’s immunosuppressive effect. These findings suggest a potential ameliorative effect of AvS on CsA-induced nephrotoxicity, and AvS enhances CsA’s immunosuppressive effect. Therefore, AvS might be used in combination with CsA in transplantation treatment to relieve the CsA-induced nephrotoxicity. Full article
Show Figures

Figure 1

16 pages, 911 KiB  
Article
Optimising the Spray Drying of Avocado Wastewater and Use of the Powder as a Food Preservative for Preventing Lipid Peroxidation
by Rahul Permal, Wee Leong Chang, Tony Chen, Brent Seale, Nazimah Hamid and Rothman Kam
Foods 2020, 9(9), 1187; https://doi.org/10.3390/foods9091187 - 27 Aug 2020
Cited by 14 | Viewed by 4937
Abstract
Avocado wastewater (AWW) is the largest by-product of cold pressed avocado oil. The aim of this study was to valorise AWW by converting it into spray dried powder for use as a lipid peroxidation inhibiting food preservative. To increase the powder yield of [...] Read more.
Avocado wastewater (AWW) is the largest by-product of cold pressed avocado oil. The aim of this study was to valorise AWW by converting it into spray dried powder for use as a lipid peroxidation inhibiting food preservative. To increase the powder yield of AWW, addition of carriers and spray drying parameters (temperature and feed flow rate) were optimised. The highest AWW powder yield was 49%, and was obtained using 5% whey protein concentrate (WPC), with a feed flow rate of 5.8 g/min and an inlet drying temperature of 160 °C. The liquid chromatography mass spectrophotometry (LC-MS) analysis showed that AWW encapsulated with WPC had the highest retention of α-tocopherol (181.6 mg/kg powder). AWW with 5% WPC was tested as a preservative in pork fat cooked at 180 °C for 15 min. Thiobarbaturic acid reactive substances (TBARS) assay showed that the effectiveness of AWW powder was comparable to commercial additives such as butylated hydroxytoluene (BHT), butylated hydroxyanisole (BHA), and sodium erythorbate (E316). Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Graphical abstract

24 pages, 5872 KiB  
Article
Bioactive Self-Nanoemulsifying Drug Delivery Systems (Bio-SNEDDS) for Combined Oral Delivery of Curcumin and Piperine
by Mohsin Kazi, Ahmad A. Shahba, Saad Alrashoud, Majed Alwadei, Abdelrahman Y. Sherif and Fars K. Alanazi
Molecules 2020, 25(7), 1703; https://doi.org/10.3390/molecules25071703 - 8 Apr 2020
Cited by 69 | Viewed by 8178
Abstract
Background: Bioactive oils of natural origin have gained huge interests from health care professionals and patients. Objective: To design a bioactive self-nanoemulsifying drug delivery system (Bio-SNEDDS) comprising curcumin (CUR) and piperine (PP) by incorporating bioactive natural oils in the formulation. Methods [...] Read more.
Background: Bioactive oils of natural origin have gained huge interests from health care professionals and patients. Objective: To design a bioactive self-nanoemulsifying drug delivery system (Bio-SNEDDS) comprising curcumin (CUR) and piperine (PP) by incorporating bioactive natural oils in the formulation. Methods: The self-emulsifying properties of apricot, avocado, black seed and Zanthoxylum rhetsa seed oils were screened within various SNEDDS formulations. Each liquid SNEDDS formulation was loaded with both CUR and PP. The optimal liquid SNEDDS were solidified using Aeroperl® and Neusilin® at 1:1 w/w ratio. Liquid and solid SNEDDS were characterized by droplet size analysis, equilibrium solubility, scanning electron microscopy, X-ray powder diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopy. In-vitro dissolution studies were performed to evaluate the efficiency of CUR and PP release from solid Bio-SNEDDS. Results: The liquid SNEDDS comprised of black seed oil exhibited excellent self-emulsification performance, low droplet size along with transparent appearance. The inclusion of the cosolvent Transcutol P improved the solubilization capacity of both CUR and PP. The liquid SNEDDS were efficiently solidified using the two adsorbents and presented the drugs within amorphous state. In particular, SNEDDS comprised of black seed oil/Imwitor988/Transcutol P/Cremophor RH40 (20/20/10/50) and when solidified with Neusilin showed enhanced CUR and PP release (up to 60% and 77%, respectively). In addition, this formulation efficiently delivers the highly bioactive black seed oil to the patient. Conclusions: The optimized Bio-SNEDDS comprising black seed oil showed outstanding self-emulsification characteristics along with enhanced CUR/PP dissolution upon solidification. Full article
Show Figures

Graphical abstract

Back to TopTop