Optimising the Spray Drying of Avocado Wastewater and Use of the Powder as a Food Preservative for Preventing Lipid Peroxidation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Avocado Wastewater Samples and Fresh Avocado Fruits
2.2. Chemicals
2.3. Spray Drying
2.4. Scanning Electron Microscopy (SEM) Imaging of Spray Dried Powders
2.5. Extraction and Liquid Chromatography Mass Spectrophotometry (LC-MS) Analysis of Acid β-Carotene and α-Tocopherol
2.6. Preparation of Pork Fat for Lipid Peroxidation Tests
2.7. Cupric Ion Reducing Antioxidant Capacity (CUPRAC) Analysis for Equivalence of Antioxidant Activity amongst Selected Preservatives
2.8. Lipid Oxidation of Pork Fat Using TBARS
2.9. Statistical Analysis
3. Results and Discussion
3.1. Optimising Spray Drying Conditions
3.2. Powder Morphology for Spray Dried AWW Powder
3.3. Quantifying Total β-Carotene, α-Tocopherol Content in AWW Powder Using the LC-MS
3.4. Inhibition of Lipid Peroxidation Using AWW Powder
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- USDA. Avocados, Raw, California. Available online: https://fdc.nal.usda.gov/fdc-app.html#/food-details/171706/nutrients (accessed on 2 April 2020).
- FAO. Countries by Commodity. Available online: http://www.fao.org/faostat/en/#rankings/countries_by_commodity (accessed on 29 March 2020).
- Wong, M.; Eyres, L.; Ravetti, L. 2—Modern aqueous oil extraction—Centrifugation systems for olive and avocado oils. In Green Vegetable Oil Processing; Farr, W.E., Proctor, A., Eds.; AOCS Press: Urbana, IL, USA, 2014; pp. 19–51. [Google Scholar] [CrossRef]
- Woolf, A.; Wong, M.; Eyres, L.; McGhie, T.; Lund, C.; Olsson, S.; Wang, Y.; Bulley, C.; Wang, M.; Friel, E.; et al. 2—Avocado oil. In Gourmet and Health-Promoting Specialty Oils; Moreau, R.A., Kamal-Eldin, A., Eds.; AOCS Press: Urbana, IL, USA, 2009; pp. 73–125. [Google Scholar] [CrossRef]
- Wong, M.; Ashton, O.; Requejo-Jackman, C.; McGhie, T.; White, A.; Eyres, L.; Sherpa, N.; Woolf, A. Avocado oil: The color of quality. In Color Quality of Fresh and Processed Foods; American Chemical Society: Washington, DC, USA, 2008; Volume 983, pp. 328–349. [Google Scholar]
- Martínez-Padilla, L.P.; Franke, L.; Xu, X.-Q.; Juliano, P. Improved extraction of avocado oil by application of sono-physical processes. Ultrason. Sonochem. 2018, 40, 720–726. [Google Scholar] [CrossRef] [PubMed]
- Corzzini, S.C.S.; Barros, H.D.F.Q.; Grimaldi, R.; Cabral, F.A. Extraction of edible avocado oil using supercritical CO2 and a CO2/ethanol mixture as solvents. J. Food Eng. 2017, 194, 40–45. [Google Scholar] [CrossRef]
- Perdomo, L.; Beneit, N.; Otero, Y.F.; Escribano, Ó.; Díaz-Castroverde, S.; Gómez-Hernández, A.; Benito, M. Protective role of oleic acid against cardiovascular insulin resistance and in the early and late cellular atherosclerotic process. Cardiovasc. Diabetol. 2015, 14, 75. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Unlu, N.Z.; Bohn, T.; Clinton, S.K.; Schwartz, S.J. Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J. Nutr. 2005, 135, 431–436. [Google Scholar] [CrossRef]
- Permal, R.; Leong Chang, W.; Seale, B.; Hamid, N.; Kam, R. Converting industrial organic waste from the cold-pressed avocado oil production line into a potential food preservative. Food Chem. 2020, 306, 125635. [Google Scholar] [CrossRef]
- Saavedra, J.; Córdova, A.; Navarro, R.; Díaz-Calderón, P.; Fuentealba, C.; Astudillo-Castro, C.; Toledo, L.; Enrione, J.; Galvez, L. Industrial avocado waste: Functional compounds preservation by convective drying process. J. Food Eng. 2017, 198, 81–90. [Google Scholar] [CrossRef]
- Hatzakis, E.; Mazzola, E.P.; Shegog, R.M.; Ziegler, G.R.; Lambert, J.D. Perseorangin: A natural pigment from avocado (Persea americana) seed. Food Chem. 2019, 293, 15–22. [Google Scholar] [CrossRef]
- Perea-Moreno, A.-J.; Aguilera-Ureña, M.-J.; Manzano-Agugliaro, F. Fuel properties of avocado stone. Fuel 2016, 186, 358–364. [Google Scholar] [CrossRef]
- Chel-Guerrero, L.; Barbosa-Martín, E.; Martínez-Antonio, A.; González-Mondragón, E.; Betancur-Ancona, D. Some physicochemical and rheological properties of starch isolated from avocado seeds. Int. J. Biol. Macromol. 2016, 86, 302–308. [Google Scholar] [CrossRef]
- Bhandari, B.R.; Datta, N.; Howes, T. Problems associated with spray drying of sugar-rich foods. Dry. Technol. 1997, 15, 671–684. [Google Scholar] [CrossRef]
- Garofulić Ivona, E.; Zorić, Z.; Pedisić, S.; Dragović-Uzelac, V. Optimization of sour cherry juice spray drying as affected by carrier material and temperature. Food Technol. Biotechnol. 2016, 54, 441–449. [Google Scholar] [CrossRef]
- Bae, E.K.; Lee, S.J. Microencapsulation of avocado oil by spray drying using whey protein and maltodextrin. J. Microencapsul. 2008, 25, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Dantas, D.; Pasquali, M.A.; Cavalcanti-Mata, M.; Duarte, M.E.; Lisboa, H.M. Influence of spray drying conditions on the properties of avocado powder drink. Food Chem. 2018, 266, 284–291. [Google Scholar] [CrossRef] [PubMed]
- Evard, H.; Kruve, A.; Leito, I. Tutorial on estimating the limit of detection using LC-MS analysis, part I: Theoretical review. Anal. Chim. Acta 2016, 942, 23–39. [Google Scholar] [CrossRef] [PubMed]
- Papastergiadis, A.; Mubiru, E.; Van Langenhove, H.; De Meulenaer, B. Malondialdehyde Measurement in oxidized foods: Evaluation of the spectrophotometric Thiobarbituric Acid Reactive Substances (TBARS) test in various foods. J. Agric. Food Chem. 2012, 60, 9589–9594. [Google Scholar] [CrossRef]
- Dasgupta, A.; Klein, K. Chapter 2—Methods for measuring oxidative stress in the laboratory. In Antioxidants in Food, Vitamins and Supplements; Dasgupta, A., Klein, K., Eds.; Elsevier: San Diego, CA, USA, 2014; pp. 19–40. [Google Scholar] [CrossRef]
- Tsikas, D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges. Anal. Biochem. 2017, 524, 13–30. [Google Scholar] [CrossRef]
- FSANZ. Permitted Uses of Food Additives by Food Type. Available online: https://www.foodstandards.govt.nz/code/Documents/standard_1_3_1_additives_vol_2_v1321.pdf (accessed on 15 April 2020).
- Apak, R.; Guclu, K.; Ozyurek, M.; Karademir, S.E. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agric. Food Chem. 2004, 52, 7970–7981. [Google Scholar] [CrossRef]
- Jafari, S.M.; Assadpoor, E.; He, Y.; Bhandari, B. Encapsulation efficiency of food flavours and oils during spray drying. Dry. Technol. 2008, 26, 816–835. [Google Scholar] [CrossRef]
- Jimenez, M.; García, H.; Beristain, C. Spray-dried encapsulation of Conjugated Linoleic Acid (CLA) with polymeric matrices. J. Sci. Food Agric. 2006, 86, 2431–2437. [Google Scholar] [CrossRef]
- Du, J.; Ge, Z.-Z.; Xu, Z.; Zou, B.; Zhang, Y.; Li, C.-M. Comparison of the efficiency of five different drying carriers on the spray drying of persimmon pulp powders. Dry. Technol. 2014, 32, 1157–1166. [Google Scholar] [CrossRef]
- Fang, Z.; Bhandari, B. Comparing the efficiency of protein and maltodextrin on spray drying of bayberry juice. Food Res. Int. 2012, 48, 478–483. [Google Scholar] [CrossRef]
- Khalilian Movahhed, M.; Mohebbi, M. Spray drying and process optimization of carrot-celery juice. J. Food Process. Preserv. 2016, 40, 212–225. [Google Scholar] [CrossRef]
- Fazaeli, M.; Emam-Djomeh, Z.; Kalbasi Ashtari, A.; Omid, M. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food Bioprod. Process. 2012, 90, 667–675. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Influence of process conditions on the physicochemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng. 2008, 88, 411–418. [Google Scholar] [CrossRef]
- Tonon, R.V.; Brabet, C.; Hubinger, M.D. Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Res. Int. 2010, 43, 907–914. [Google Scholar] [CrossRef]
- Kim, E.H.J.; Chen, X.D.; Pearce, D. Surface composition of industrial spray-dried milk powders. 2. Effects of spray drying conditions on the surface composition. J. Food Eng. 2009, 94, 169–181. [Google Scholar] [CrossRef]
- Wong, M.; Requejo-Jackman, C.; Woolf, A. What is Unrefined, Extra Virgin Cold-Pressed Avocado Oil? Inform AOCS: Urbana, IL, USA, April 2010; pp. 189–260. [Google Scholar]
- Yang, S.; Hallett, I.; Rebstock, R.; Oh, H.E.; Kam, R.; Woolf, A.B.; Wong, M. Cellular changes in “Hass” avocado mesocarp during cold-pressed oil extraction. J. Am. Oil Chem. Soc. 2018, 95, 229–238. [Google Scholar] [CrossRef]
- Dian, N.L.H.M.; Sudin, N.A.; Yusoff, M.S.A. Characteristics of microencapsulated palm-based oil as affected by type of wall material. J. Sci. Food Agric. 1996, 70, 422–426. [Google Scholar] [CrossRef]
- Sabliov, C.M.; Fronczek, C.; Astete, C.E.; Khachaturyan, M.; Khachatryan, L.; Leonardi, C. Effects of temperature and UV light on degradation of α-tocopherol in free and dissolved form. J. Am. Oil Chem. Soc. 2009, 86, 895–902. [Google Scholar] [CrossRef]
- Ottaway, B.P. 6—The stability of vitamins in fortified foods and supplements. In Food Fortification and Supplementation; Ottaway, P.B., Ed.; Woodhead Publishing: Cambridge, UK, 2008; pp. 88–107. [Google Scholar] [CrossRef]
Active Component | Initial Concentration (µg/g) | 1 Amount Spiked (µg) | Expected LC-MS Reading (µg/g) | Actual LC-MS Reading (µg/g) | 2 Recovery (%) |
---|---|---|---|---|---|
α-Tocopherol | 1.0 | 0.5 | 1.5 | 1.4 | 93.5 ± 3.1 |
β-Carotene | 0.2 | 0.5 | 0.7 | 0.1 | 18.0 ± 8.5 |
Samples | mg α-Tocopherol/kg Powder | 3 mg β-Carotene/kg Powder |
---|---|---|
Freeze-dried samples | ||
1 Flesh | 278.7 ± 11.76 a | 8.6 ± 1.02 b |
1 AWW | 99.7 ± 16.81 c | 2.5 ± NAc |
Spray dried AWW | ||
2 Carrier Material | ||
WPC | 181.6 ± 32.24 b | 15.1 ± 0.23 a |
Lactose | 131.4 ± 21.67 b,c | 0.0 c |
Acacia gum | 108.1 ± 4.02 c | 0.7 ± NAc |
MD 10–12 DE | 95.5 ± 9.72 c | 0.0 c |
MD 17–19 DE | 115.4 ± 13.39 c | 1.5 ± NA c |
Samples | mg α-Tocopherol/kg Powder | mg β-Carotene/kg Powder |
---|---|---|
110 °C | 187.9 ± 23.09 a, b | 5.0 ± NA a |
120 °C | 226.8 ± 23.44 a, b | 8.6 ± 4.83 a |
130 °C | 201.0 ± 33.57 a, b | 3.4 ± 6.19 a |
140 °C | 186.3 ± 44.77 b | 4.3 ± 3.81 a |
150 °C | 196.9 ± 23.7 b | 0.4 ± 0.14 a |
160 °C | 320.2 ± 51.09 a | 5.0 ± 3.83 a |
Additives | mg Trolox eq./100 g Powder | % w/w in Pork Fat |
---|---|---|
1 E316 | 83724 b | 0.04 |
2 AWW | 2233 e | 1.50 |
BHT | 35095 c | 0.10 |
BHA | 330787 a | 0.01 |
α-Tocopherol | 16745 d | 0.20 |
β-Carotene | 1803 e | 1.86 |
3 WPC | 0 f | 0.10 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Permal, R.; Chang, W.L.; Chen, T.; Seale, B.; Hamid, N.; Kam, R. Optimising the Spray Drying of Avocado Wastewater and Use of the Powder as a Food Preservative for Preventing Lipid Peroxidation. Foods 2020, 9, 1187. https://doi.org/10.3390/foods9091187
Permal R, Chang WL, Chen T, Seale B, Hamid N, Kam R. Optimising the Spray Drying of Avocado Wastewater and Use of the Powder as a Food Preservative for Preventing Lipid Peroxidation. Foods. 2020; 9(9):1187. https://doi.org/10.3390/foods9091187
Chicago/Turabian StylePermal, Rahul, Wee Leong Chang, Tony Chen, Brent Seale, Nazimah Hamid, and Rothman Kam. 2020. "Optimising the Spray Drying of Avocado Wastewater and Use of the Powder as a Food Preservative for Preventing Lipid Peroxidation" Foods 9, no. 9: 1187. https://doi.org/10.3390/foods9091187
APA StylePermal, R., Chang, W. L., Chen, T., Seale, B., Hamid, N., & Kam, R. (2020). Optimising the Spray Drying of Avocado Wastewater and Use of the Powder as a Food Preservative for Preventing Lipid Peroxidation. Foods, 9(9), 1187. https://doi.org/10.3390/foods9091187