Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (28)

Search Parameters:
Keywords = avian paramyxovirus-1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2243 KiB  
Article
Detection of a Novel Gull-like Clade of Newcastle Disease Virus and H3N8 Avian Influenza Virus in the Arctic Region of Russia (Taimyr Peninsula)
by Anastasiya Derko, Nikita Dubovitskiy, Alexander Prokudin, Junki Mine, Ryota Tsunekuni, Yuko Uchida, Takehiko Saito, Nikita Kasianov, Arina Loginova, Ivan Sobolev, Sachin Kumar, Alexander Shestopalov and Kirill Sharshov
Viruses 2025, 17(7), 955; https://doi.org/10.3390/v17070955 - 7 Jul 2025
Viewed by 628
Abstract
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into [...] Read more.
Wild waterbirds are circulating important RNA viruses, such as avian coronaviruses, avian astroviruses, avian influenza viruses, and avian paramyxoviruses. Waterbird migration routes cover vast territories both within and between continents. The breeding grounds of many species are in the Arctic, but research into this region is rare. This study reports the first Newcastle disease virus (NDV) detection in Arctic Russia. As a result of a five-year study (from 2019 to 2023) of avian paramyxoviruses and avian influenza viruses in wild waterbirds of the Taimyr Peninsula, whole-genome sequences of NDV and H3N8 were obtained. The resulting influenza virus isolate was phylogenetically related to viruses that circulated between 2021 and 2023 in Eurasia, Siberia, and Asia. All NDV sequences were obtained from the Herring gull, and other gull sequences formed a separate gull-like clade in the sub-genotype I.1.2.1, Class II. This may indirectly indicate that different NDV variants adapt to more host species than is commonly believed. Further surveillance of other gull species may help to test the hypothesis of putative gull-specific NDV lineage and better understand their role in the evolution and global spread of NDV. Full article
(This article belongs to the Special Issue Evolution and Adaptation of Avian Viruses)
Show Figures

Figure 1

16 pages, 255 KiB  
Article
Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses
by Ellen Ruth Alexander Morris, Megan E. Schroeder, Phelue N. Anderson, Lisa J. Schroeder, Nicholas Monday, Gabriel Senties-Cue, Martin Ficken, Pamela J. Ferro, David L. Suarez and Kiril M. Dimitrov
Viruses 2025, 17(5), 670; https://doi.org/10.3390/v17050670 - 3 May 2025
Viewed by 996
Abstract
Newcastle disease, caused by virulent strains of avian paramyxovirus 1 (APMV-1), occurs globally and has significant social and economic impact. APMV-1 is a rapidly evolving RNA virus and is genetically divided into class I and class II with almost all virulent viruses being [...] Read more.
Newcastle disease, caused by virulent strains of avian paramyxovirus 1 (APMV-1), occurs globally and has significant social and economic impact. APMV-1 is a rapidly evolving RNA virus and is genetically divided into class I and class II with almost all virulent viruses being of class II. The considerable genetic diversity of the virus adds complexity to maintaining the high sensitivity and specificity of molecular detection assays. The current USDA’s fusion gene rRT-PCR assay was designed for class II APMV-1 isolates with an emphasis on early-2000s US strains. Assessment with globally circulating genotypes confirmed previously described lower sensitivity (sub-genotypes VII.1.1, VII.2) and identified absence of detection (genotype XIV). An additional forward primer and two probes were designed using a comprehensive complete fusion gene sequence database. The optimized multiplex assay detected genotype XIV and improved sensitivity for sub-genotypes VII.1.1 and VII.2, with maintained sensitivity for the remaining genotypes. No near-neighbors or APMV-1 of low virulence were detected. Using field and experimental clinical samples, both the specificity and sensitivity were determined to be 100%, compared to the current assay with 100% and 93%, respectively. The new assay identifies all known chicken virulent APMV-1 genotypes with the benefit of using an exogenous internal positive control, which monitors extraction efficiency and inhibitors. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
17 pages, 2130 KiB  
Article
Genotype I Newcastle Disease Virus, Isolated from Wild Duck, Can Protect Chickens Against Newcastle Disease Caused by Genotype VII
by Elizaveta Boravleva, Anastasia Treshchalina, Daria Gordeeva, Alexandra Gambaryan, Alla Belyakova, Irina Gafarova, Alexey Prilipov, Galina Sadykova, Simone Adams, Tatiana Timofeeva and Natalia Lomakina
Pathogens 2025, 14(4), 380; https://doi.org/10.3390/pathogens14040380 - 14 Apr 2025
Viewed by 1403
Abstract
Newcastle disease viruses (NDVs) circulating among wild birds and poultry may differ in virulence. Some NDVs cause devastating outbreaks in chickens. The NDV/duck/Moscow/3639/2008 (d3639) strain was isolated from a wild duck. Its genome was sequenced (PP795281, GenBank) and the biological properties, specifically for [...] Read more.
Newcastle disease viruses (NDVs) circulating among wild birds and poultry may differ in virulence. Some NDVs cause devastating outbreaks in chickens. The NDV/duck/Moscow/3639/2008 (d3639) strain was isolated from a wild duck. Its genome was sequenced (PP795281, GenBank) and the biological properties, specifically for infection in chicken and mice, were studied. Strain d3639 of genotype I.2 has an F protein cleavage site (112-GKQGRL-117) and a HN protein length (616 a.a.) of the lentogenic pathotype. It was tested, in comparison with the genotype II LaSota vaccine strain, for its immunogenicity and protective efficacy against a challenge with the velogenic NDV strain NDV/chicken/Moscow/6081/2022 (ch6081) of sub-genotype VII.1.1, the complete genome of which was also sequenced in this study (PP766718, GenBank). Both the d3639 and LaSota viruses did not induce clinical signs in chickens or mice. Single immunization was performed by inoculation through drinking water with the live virus. Inoculation protected the chickens during a subsequent challenge with velogenic ch6081 and significantly reduced shedding in feces. Double immunization was sufficient to achieve prolonged immunity and prevented the shedding of the velogenic virus after the challenge. Thus, this natural lentogenic d3639 virus possesses properties similar to the LaSota vaccine strain and can protect against sub-genotype VII.1.1 NDV. Full article
(This article belongs to the Section Viral Pathogens)
Show Figures

Figure 1

19 pages, 19488 KiB  
Article
RNA-Seq Profiling in Chicken Spleen and Thymus Infected with Newcastle Disease Virus of Varying Virulence
by Xiaoquan Wang, Xiaolong Lu, Mingzhu Wang, Qiwen Zhou, Xiyue Wang, Wenhao Yang, Kaituo Liu, Ruyi Gao, Tianxing Liao, Yu Chen, Jiao Hu, Min Gu, Shunlin Hu, Xiufan Liu and Xiaowen Liu
Vet. Sci. 2024, 11(11), 569; https://doi.org/10.3390/vetsci11110569 - 15 Nov 2024
Cited by 2 | Viewed by 1507
Abstract
Newcastle disease virus (NDV), known as avian paramyxovirus-1, poses a significant threat to poultry production worldwide. Vaccination currently stands as the most effective strategy for Newcastle disease control. However, the mesogenic vaccine strain Mukteswar has been observed to evolve into a velogenic variant [...] Read more.
Newcastle disease virus (NDV), known as avian paramyxovirus-1, poses a significant threat to poultry production worldwide. Vaccination currently stands as the most effective strategy for Newcastle disease control. However, the mesogenic vaccine strain Mukteswar has been observed to evolve into a velogenic variant JS/7/05/Ch during poultry immunization. Here, we aimed to explore the mechanisms underlying virulence enhancement of the two viruses. Pathogenically, JS/7/05/Ch mediated stronger virulence and pathogenicity in vivo compared to Mukteswar. Comparative transcriptome analysis revealed 834 differentially expressed genes (DEGs), comprising 339 up-regulated and 495 down-regulated genes, in the spleen, and 716 DEGs, with 313 up-regulated and 403 down-regulated genes, in the thymus. Gene Ontology (GO) analysis indicated that these candidate targets primarily participated in cell and biological development, extracellular part and membrane composition, as well as receptor and binding activity. Furthermore, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis unveiled a substantial portion of candidate genes predominantly involved in cellular processes, environmental information processing, metabolism, and organismal systems. Additionally, five DEGs (TRAT1, JUP, LPAR4, CYB561A3, and CXCR5) were randomly identified through RNA-seq analysis and subsequently confirmed via quantitative real-time polymerase chain reaction (qRT-PCR). The findings revealed a marked up-regulation in the expression levels of these DEGs induced by JS/7/05/Ch compared to Mukteswar, with CYB561A3 and CXCR5 exhibiting significant increases. The findings corroborated the sequencing accuracy, offering promising research directions. Taken together, we comprehensively evaluated transcriptomic alterations in chicken immune organs infected by NDV strains of diverse virulence. This study establishes a basis and direction for NDV virulence research. Full article
(This article belongs to the Section Veterinary Microbiology, Parasitology and Immunology)
Show Figures

Figure 1

12 pages, 1262 KiB  
Article
Evaluation of the Efficacy of Three Newcastle Disease Vaccines Produced at the National Veterinary Institute, Bishoftu, Ethiopia, at Different Temperature Storage Conditions
by Teferi Degefa, Mahlet Birehanu, Demise Mulugeta, Henok Ferede, Endalkachew Girma, Anberber Alemu, Dassalegn Muleta, Abebe Mengesha Aga, Debebe Shimeket, Dereje Nigussie Woldemichael, Mirtneh Akalu and Fanos Tadesse Woldemariyam
Acta Microbiol. Hell. 2024, 69(4), 212-223; https://doi.org/10.3390/amh69040020 - 15 Oct 2024
Cited by 1 | Viewed by 2192
Abstract
Newcastle disease, which affects poultry and is endemic in many nations across the world, is caused by Avian Paramyxovirus-1 (APMV-1). This experimental study was conducted from January to June 2021 at the National Veterinary Institute (NVI) to evaluate the virus viability and antibody [...] Read more.
Newcastle disease, which affects poultry and is endemic in many nations across the world, is caused by Avian Paramyxovirus-1 (APMV-1). This experimental study was conducted from January to June 2021 at the National Veterinary Institute (NVI) to evaluate the virus viability and antibody titer of Newcastle disease vaccines (Hichner’s B1, Lasota, and ThermostableI2) stored at different temperature storage conditions. Chickens (12 treatment groups and 1 control group) were vaccinated and challenged with the virulent ND virus (0.5 × 106.5 embryonic lethal dose fifty (ELD50)). The immune responses (antibody titers) of chickens were evaluated using hemagglutination (HA) and hemagglutination inhibition (HI) assays. The Newcastle disease vaccines (Hachiner’s B1 (ND-HB1), ND-Lasota, and ND-Thermostable I2) stored at +4 °C HI-induced antibody titers of 151 (±103.3), 136 (±53.4), and 145 (±91) on day 14, respectively, whereas on day 21, they increased to 160 (±82) for ND-HB1 and 144 (±74.5) for ND-Lasota. ND-Thermostable I2 showed a decrement to 133 (±44.8). All three vaccines stored at different temperature storage conditions (+4, +23, and +30 °C) used in this experiment induced antibody titers greater than 128 on day 28 post-vaccination, except the Newcastle disease vaccine Thermostable I2 stored at +30 °C. The vaccines collected from private veterinary drugstores (customer vaccines Hachiner’s B1 and ND-Thermostable I2) used in this experiment induced very low antibody titers, less than 128 antibody titers, from days 14 to 21. Statistically significant induced mean antibody titers were observed for chickens that received vaccines stored at different temperature storage conditions for 72 h (p < 0.05), except for the ND-HB1 mean HI-induced antibody titer at days 7 and 28. Further, vaccine protection was confirmed by inoculation of both the vaccinated (treatment groups) and control groups by the virulent ND virus, where the control group started dying three days post-challenge but all chicks that received the vaccines survived. Overall, this study showed the impact of temperature storage conditions on the antibody titer and their effect on the titer of the viable virus in the vaccine, and thereby its protective capacity, warranting appropriate cold chain management of the vaccines along the value chain. Full article
(This article belongs to the Special Issue Feature Papers in Medical Microbiology in 2024)
Show Figures

Figure 1

21 pages, 4834 KiB  
Article
Assessment of PPMV-1 Genotype VI Virulence in Pigeons and Chickens and Protective Effectiveness of Paramyxovirus Vaccines in Pigeons
by Esraa E. Hamouda, Amal A. M. Eid, Hagar F. Gouda, Amina A. Dessouki, Ayman H. El-Deeb, Rebecca Daines, Munir Iqbal and Reham M. ElBakrey
Viruses 2024, 16(10), 1585; https://doi.org/10.3390/v16101585 - 9 Oct 2024
Cited by 2 | Viewed by 2599
Abstract
Pigeon paramyxovirus serotype 1 (PPMV-1), an antigenic and host variant of avian paramyxovirus Newcastle disease virus (NDV), primarily originating from racing pigeons, has become a global panzootic. Egypt uses both inactivated PPMV-1 and conventional NDV vaccines to protect pigeons from disease and mortality. [...] Read more.
Pigeon paramyxovirus serotype 1 (PPMV-1), an antigenic and host variant of avian paramyxovirus Newcastle disease virus (NDV), primarily originating from racing pigeons, has become a global panzootic. Egypt uses both inactivated PPMV-1 and conventional NDV vaccines to protect pigeons from disease and mortality. However, the impact of prevalent strains and the effectiveness of available vaccines in pigeons in Egypt are unclear. This study investigates the virulence of PPMV-1 (Pigeon/Egypt/Sharkia-19/2015/KX580988) and evaluates available paramyxovirus vaccines in protecting pigeons against a PPMV-1 challenge. Ten-day-old specific-pathogen-free (SPF) embryonated chicken eggs infected with this strain exhibited a mean death time (MDT) of 86.4 ± 5.88 h. The intracerebral pathogenicity index (ICPI) in day-old chickens was 0.8, while pigeons experienced an ICPI of 0.96 and an intravenous pathogenicity index (IVPI) of 2.11. These findings classify the strain as virulent and velogenic. Experimental infection of pigeons with this PPMV-1 strain at 106 EID50/0.1 mL resulted in a 62.5% mortality rate, displaying nervous and enteric distress. The virus caused extensive lesions in visceral organs, with strong immunohistochemistry signals in all examined organs, indicating the systemic spread of the virus concurrent to its neurotropic and viscerotropic tropism. Furthermore, vaccination using an inactivated PPMV-1 and live NDV LaSota vaccine regimen protected 100% of pigeons against mortality, while with a single NDV LaSota vaccine, it was 62.5%. The PPMV alone or combined with NDV LaSota induced protective levels of haemagglutination inhibition (HI) antibody titres and reduced virus shedding from buccal and cloacal cavities. Based on generalised linear gamma model analysis, both PPMV-1 and NDV LaSota are antigenically comparable by HI. These findings suggest that using both inactivated PPMV-1 (G-VI) and live attenuated NDV (LaSota) vaccines is an effective prophylactic regimen for preventing and controlling PPMV-1 and NDV in pigeons, thereby reducing the risk of interspecies transmission. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

16 pages, 1603 KiB  
Article
Genomic Diversity and Evolutionary Insights of Avian Paramyxovirus-1 in Avian Populations in Pakistan
by Muhammad Zubair Shabbir, Sahar Mahmood, Aziz Ul-Rahman, Ashley C. Banyard and Craig S. Ross
Viruses 2024, 16(9), 1414; https://doi.org/10.3390/v16091414 - 5 Sep 2024
Cited by 1 | Viewed by 1560
Abstract
The virulent form of Avian paramyxovirus-1 (APMV-1), commonly known as Newcastle Disease Virus (NDV), is a pathogen with global implications for avian health, affecting both wild and domestic bird populations. In Pakistan, recurrent Newcastle Disease (caused by NDV) outbreaks have posed significant challenges [...] Read more.
The virulent form of Avian paramyxovirus-1 (APMV-1), commonly known as Newcastle Disease Virus (NDV), is a pathogen with global implications for avian health, affecting both wild and domestic bird populations. In Pakistan, recurrent Newcastle Disease (caused by NDV) outbreaks have posed significant challenges to the poultry industry. Extensive surveillance in Pakistan over 20 years has demonstrated a dynamic genetic diversity among circulating APMV-1 strains, emphasizing the potential necessity for customized vaccination strategies and continuous surveillance. In this study, 13 APMV-1-positive isolates harboring four different APMV-1 genotypes circulating throughout Pakistan were identified. These included the highly virulent genotypes VII and XIII, genotype XXI, commonly associated with Columbiformes, and genotype II, hypothesized to have been detected following vaccination. These findings underscore the intricate interplay of mutational events and host-immune interactions shaping the evolving NDV landscape. This study advances our understanding of the evolutionary dynamics of APMV-1 in Pakistan, highlighting the need for tailored vaccination strategies and continuous surveillance to enable effective APMV-1 management in avian populations, further emphasizing the importance of globally coordinated strategies to tackle APMV-1, given its profound impact on wild and domestic birds. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

11 pages, 2951 KiB  
Article
Clinicopathological and Molecular Investigation of Newcastle Disease Outbreaks in Vaccinated and Non-Vaccinated Broiler Chicken Flocks in Nepal
by Subash Regmi, Rajesh Bhatta, Pushkar Pal, Arvindra Shrestha, Tamás Mató, Bikash Puri and Surya Paudel
Animals 2024, 14(16), 2423; https://doi.org/10.3390/ani14162423 - 21 Aug 2024
Viewed by 2522
Abstract
Newcastle disease (ND) is a highly contagious viral disease caused by the paramyxovirus, which is a single-stranded ribonucleic acid (RNA) virus. This study was conducted to investigate ND outbreaks in 10 vaccinated or non-vaccinated broiler farms, collectively housing 9840 birds of various ages [...] Read more.
Newcastle disease (ND) is a highly contagious viral disease caused by the paramyxovirus, which is a single-stranded ribonucleic acid (RNA) virus. This study was conducted to investigate ND outbreaks in 10 vaccinated or non-vaccinated broiler farms, collectively housing 9840 birds of various ages in the Chitwan and Nawalpur districts of Nepal from July to December 2021. Clinically, the affected birds exhibited symptoms such as limb paralysis, greenish diarrhea (seven out of ten flocks), torticollis (two out of ten flocks), inappetence, and drowsiness (ten out of ten flocks). Birds that succumbed during the clinical course underwent a necropsy for gross pathology and samples were collected for the histopathology and molecular diagnosis. The gross and microscopic examination revealed hemorrhages in the proventriculus, erosions and ulcers in the small intestine, congestion, as well as sero-mucosal hemorrhages in the trachea of affected birds, which are typical of ND. Rapid test kits further confirmed the presence of the ND virus antigen while excluding the avian influenza virus. Furthermore, M gene-based real time polymerase chain reaction (RT-PCR) was performed in the pooled samples from the affected birds and the presence of a velogenic strain of the ND virus was identified. The phylogenetic analysis of the RT-PCR positive strain based on the partial F gene nucleotide sequence revealed these strains as genotype VII.2 (formerly VIIi). The findings highlight the occurrence of clinical ND outbreaks in farms despite adherence to recommended vaccination protocols in broiler flocks, underscoring the need for a regular comprehensive investigation involving in-depth examinations of available vaccines and genetic analyses. Full article
(This article belongs to the Special Issue Common Infectious Diseases in Poultry)
Show Figures

Figure 1

16 pages, 2561 KiB  
Article
Isolation and Genetic Characterization of Genotype VII Velogenic Pathotype Newcastle Disease Virus from Commercial Chicken Farms in Central Ethiopia, Distinct from the Local Vaccine Strains
by Waktole Yadeta, Elizabeth Amosun, Hawa Mohammed, Wubet Woldemedhin, Kedir Sherefa, Abinet Legesse, Getaw Deresse, Kenaw Birhanu, Takele Abayneh, Belayneh Getachew, Omar Farnós, Amine A. Kamen and Esayas Gelaye
Viruses 2024, 16(8), 1249; https://doi.org/10.3390/v16081249 - 3 Aug 2024
Cited by 1 | Viewed by 3922
Abstract
Newcastle disease (ND) is caused by virulent strains of avian paramyxovirus type 1, also known as Newcastle disease virus (NDV). Despite vaccination, the frequency of reported outbreaks in Ethiopia has increased. From January to June 2022, an active outbreak investigation was conducted in [...] Read more.
Newcastle disease (ND) is caused by virulent strains of avian paramyxovirus type 1, also known as Newcastle disease virus (NDV). Despite vaccination, the frequency of reported outbreaks in Ethiopia has increased. From January to June 2022, an active outbreak investigation was conducted in six commercial chicken farms across areas of central Ethiopia to identify the circulating NDV strains. Thirty pooled tissue specimens were collected from chickens suspected of being infected with NDV. A questionnaire survey of farm owners and veterinarians was also carried out to collect information on the farms and the outbreak status. NDV was isolated using specific-pathogen-free (SPF)-embryonated chicken eggs and detected using haemagglutination and the reverse transcriptase–polymerase chain reaction (RT–PCR). The genotype and virulence of field NDV isolates were determined using phylogenetic analysis of fusion (F) protein gene sequences and the mean death time (MDT) test in SPF-embryonated chicken eggs. The questionnaire results revealed that ND caused morbidity (23.1%), mortality (16.3%), case fatality (70.8%), and significant economic losses. Eleven of thirty tissue specimens tested positive for NDV using haemagglutination and RT–PCR. The MDT testing and sequence analysis revealed the presence of virulent NDV classified as genotype VII of class II velogenic pathotype and distinct from locally used vaccine strains (genotype II). The amino acid sequences of the current virulent NDV fusion protein cleavage site motif revealed 112RRQKR↓F117, unlike the locally used avirulent vaccine strains (112GRQGR↓L117). The epidemiological data, MDT results, cleavage site sequence, and phylogenetic analysis all indicated that the present NDV isolates were virulent. The four NDV sequences were deposited in GenBank with accession numbers F gene (PP726912-15) and M gene (PP726916-19). The genetic difference between avirulent vaccine strains and circulating virulent NDV could explain the low level of protection provided by locally used vaccines. Further studies are needed to better understand the circulating NDV genotypes in different production systems. Full article
(This article belongs to the Special Issue Newcastle Disease and Other Avian Orthoavulaviruses 1)
Show Figures

Figure 1

24 pages, 25327 KiB  
Article
Avian Influenza Virus and Avian Paramyxoviruses in Wild Waterfowl of the Western Coast of the Caspian Sea (2017–2020)
by Tatyana Murashkina, Kirill Sharshov, Alimurad Gadzhiev, Guy Petherbridge, Anastasiya Derko, Ivan Sobolev, Nikita Dubovitskiy, Arina Loginova, Olga Kurskaya, Nikita Kasianov, Marsel Kabilov, Junki Mine, Yuko Uchida, Ryota Tsunekuni, Takehiko Saito, Alexander Alekseev and Alexander Shestopalov
Viruses 2024, 16(4), 598; https://doi.org/10.3390/v16040598 - 12 Apr 2024
Cited by 4 | Viewed by 3283
Abstract
The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl [...] Read more.
The flyways of many different wild waterfowl pass through the Caspian Sea region. The western coast of the middle Caspian Sea is an area with many wetlands, where wintering grounds with large concentrations of birds are located. It is known that wild waterfowl are a natural reservoir of the influenza A virus. In the mid-2000s, in the north of this region, the mass deaths of swans, gulls, and pelicans from high pathogenicity avian influenza virus (HPAIV) were noted. At present, there is still little known about the presence of avian influenza virus (AIVs) and different avian paramyxoviruses (APMVs) in the region’s waterfowl bird populations. Here, we report the results of monitoring these viruses in the wild waterfowl of the western coast of the middle Caspian Sea from 2017 to 2020. Samples from 1438 individuals of 26 bird species of 7 orders were collected, from which 21 strains of AIV were isolated, amounting to a 1.46% isolation rate of the total number of samples analyzed (none of these birds exhibited external signs of disease). The following subtypes were determined and whole-genome nucleotide sequences of the isolated strains were obtained: H1N1 (n = 2), H3N8 (n = 8), H4N6 (n = 2), H7N3 (n = 2), H8N4 (n = 1), H10N5 (n = 1), and H12N5 (n = 1). No high pathogenicity influenza virus H5 subtype was detected. Phylogenetic analysis of AIV genomes did not reveal any specific pattern for viruses in the Caspian Sea region, showing that all segments belong to the Eurasian clades of classic avian-like influenza viruses. We also did not find the amino acid substitutions in the polymerase complex (PA, PB1, and PB2) that are critical for the increase in virulence or adaptation to mammals. In total, 23 hemagglutinating viruses not related to influenza A virus were also isolated, of which 15 belonged to avian paramyxoviruses. We were able to sequence 12 avian paramyxoviruses of three species, as follows: Newcastle disease virus (n = 4); Avian paramyxovirus 4 (n = 5); and Avian paramyxovirus 6 (n = 3). In the Russian Federation, the Newcastle disease virus of the VII.1.1 sub-genotype was first isolated from a wild bird (common pheasant) in the Caspian Sea region. The five avian paramyxovirus 4 isolates obtained belonged to the common clade in Genotype I, whereas phylogenetic analysis of three isolates of Avian paramyxovirus 6 showed that two isolates, isolated in 2017, belonged to Genotype I and that an isolate identified in 2020 belonged to Genotype II. The continued regular monitoring of AIVs and APMVs, the obtaining of data on the biological properties of isolated strains, and the accumulation of information on virus host species will allow for the adequate planning of epidemiological measures, suggest the most likely routes of spread of the virus, and assist in the prediction of the introduction of the viruses in the western coastal region of the middle Caspian Sea. Full article
Show Figures

Figure 1

14 pages, 1497 KiB  
Article
Genetic Characterization of Avian Paramyxovirus Isolated from Wild Waterfowl in Korea between 2015 and 2021
by Yea-Jin Lee, Jong-Yeol Park, Ke Shang, Jun-Feng Zhang, Yu-Ri Choi, Sang-Won Kim, Se-Yeoun Cha, Min Kang, Bai Wei and Hyung-Kwan Jang
Animals 2024, 14(5), 780; https://doi.org/10.3390/ani14050780 - 1 Mar 2024
Viewed by 1966
Abstract
Avian paramyxoviruses (APMVs) are often carried by wild waterfowl, and the wild waterfowl may play an important role in the maintenance and spread of these viruses. In this study, we investigated APMVs in the population of migratory wild waterfowl from 2015 to 2021 [...] Read more.
Avian paramyxoviruses (APMVs) are often carried by wild waterfowl, and the wild waterfowl may play an important role in the maintenance and spread of these viruses. In this study, we investigated APMVs in the population of migratory wild waterfowl from 2015 to 2021 in Korea and analyzed their genetic characteristics. Fourteen viruses were isolated and subsequently identified as APMV-1 (n = 13) and APMV-13 (n = 1). Phylogenetic analysis of the full fusion gene of 13 APMV-1 isolates showed that 10 APMV-1 isolates belonged to the class II sub-genotype I.2, which was epidemiologically linked to viruses from the Eurasian continent, and 3 viruses belonged to class I, which linked to viruses from the USA. The APMV-13 isolates from wild geese in this study were highly homology to the virus isolated from China. Sequence analysis of 14 isolates showed that all isolates had a typical lentogenic motif at the cleavage site. In summary, we identified the wild species likely to be infected with APMV and our data suggest possible intercontinental transmission of APMV by wild waterfowl. Our current study also provides the first evidence for the presence of class I of APMV-1 and APMV-13 in wild waterfowl surveyed in Korea. Full article
(This article belongs to the Section Wildlife)
Show Figures

Figure 1

12 pages, 1962 KiB  
Article
Does Avian Coronavirus Co-Circulate with Avian Paramyxovirus and Avian Influenza Virus in Wild Ducks in Siberia?
by Kirill Sharshov, Nikita Dubovitskiy, Anastasiya Derko, Arina Loginova, Ilya Kolotygin, Dmitry Zhirov, Ivan Sobolev, Olga Kurskaya, Alexander Alekseev, Alexey Druzyaka, Pavel Ktitorov, Olga Kulikova, Guimei He, Zhenghuan Wang, Yuhai Bi and Alexander Shestopalov
Viruses 2023, 15(5), 1121; https://doi.org/10.3390/v15051121 - 7 May 2023
Cited by 2 | Viewed by 3092
Abstract
Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae [...] Read more.
Avian coronaviruses (ACoV) have been shown to be highly prevalent in wild bird populations. More work on avian coronavirus detection and diversity estimation is needed for the breeding territories of migrating birds, where the high diversity and high prevalence of Orthomyxoviridae and Paramyxoviridae have already been shown in wild birds. In order to detect ACoV RNA, we conducted PCR diagnostics of cloacal swab samples from birds, which we monitored during avian influenza A virus surveillance activities. Samples from two distant Asian regions of Russia (Sakhalin region and Novosibirsk region) were tested. Amplified fragments of the RNA-dependent RNA-polymerase (RdRp) of positive samples were partially sequenced to determine the species of Coronaviridae represented. The study revealed a high presence of ACoV among wild birds in Russia. Moreover, there was a high presence of birds co-infected with avian coronavirus, avian influenza virus, and avian paramyxovirus. We found one case of triple co-infection in a Northern Pintail (Anas acuta). Phylogenetic analysis revealed the circulation of a Gammacoronavirus species. A Deltacoronavirus species was not detected, which supports the data regarding the low prevalence of deltacoronaviruses among surveyed bird species. Full article
(This article belongs to the Special Issue Avian Respiratory Viruses, Volume III)
Show Figures

Figure 1

8 pages, 957 KiB  
Communication
Improvement of a Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for the Sensitive Detection of the F Gene of Avian Orthoavulavirus-1 (AOAV-1)
by Prerana Bhande, Brigitte Sigrist, Linard Balke, Sarah Albini and Nina Wolfrum
Vet. Sci. 2023, 10(3), 223; https://doi.org/10.3390/vetsci10030223 - 14 Mar 2023
Cited by 2 | Viewed by 2697
Abstract
Avian orthoavulavirus-1 (AOAV-1) is the causative agent of Newcastle disease in poultry. This highly infectious disease causes large economic losses annually and worldwide. AOAV-1 does not only infect poultry, but it has a very broad host range and has been detected in over [...] Read more.
Avian orthoavulavirus-1 (AOAV-1) is the causative agent of Newcastle disease in poultry. This highly infectious disease causes large economic losses annually and worldwide. AOAV-1 does not only infect poultry, but it has a very broad host range and has been detected in over 230 bird species to date. A distinct group of viral strains within AOAV-1 are pigeon-adapted strains, also named pigeon paramyxovirus-1 (PPMV-1). AOAV-1 is transmitted through the feces of infected birds and secretions from the nasal and oral cavities and eyes. It is worth mentioning that wild birds can transmit the virus to captive birds, especially feral pigeons to poultry. Therefore, early and sensitive detection of this virus—including the monitoring of pigeons—is of utmost importance. A variety of molecular methods for the detection of AOAV-1 already exist, but the detection of the F gene cleavage site of currently circulating PPMV-1 strains has not proven to be particularly sensitive or suitable. As presented here, by modifying the primers and probe of an already established real-time reverse-transcription PCR, the sensitivity could be increased, allowing for a more reliable detection of the AOAV-1 F gene cleavage site. Furthermore, it becomes clear how important it is to constantly monitor and, if necessary, adapt existing diagnostic procedures. Full article
(This article belongs to the Special Issue Diagnosis, Pathogenesis and Pathology of Virus Infection in Poultry)
Show Figures

Figure 1

14 pages, 1057 KiB  
Article
Screening of Healthy Feral Pigeons (Columba livia domestica) in the City of Zurich Reveals Continuous Circulation of Pigeon Paramyxovirus-1 and a Serious Threat of Transmission to Domestic Poultry
by Désirée Annaheim, Barbara Renate Vogler, Brigitte Sigrist, Andrea Vögtlin, Daniela Hüssy, Christian Breitler, Sonja Hartnack, Christian Grund, Jacqueline King, Nina Wolfrum and Sarah Albini
Microorganisms 2022, 10(8), 1656; https://doi.org/10.3390/microorganisms10081656 - 17 Aug 2022
Cited by 5 | Viewed by 3604
Abstract
Pigeon paramyxovirus-1 (PPMV-1) is predominantly isolated from pigeons or doves and forms a separate group of viral strains within Avian Orthoavulavirus-1, the causative agent of Newcastle disease in poultry. Since the introduction of PPMV-1 into Europe in 1981, these strains have rapidly spread [...] Read more.
Pigeon paramyxovirus-1 (PPMV-1) is predominantly isolated from pigeons or doves and forms a separate group of viral strains within Avian Orthoavulavirus-1, the causative agent of Newcastle disease in poultry. Since the introduction of PPMV-1 into Europe in 1981, these strains have rapidly spread all over Europe, and are nowadays considered to be enzootic in feral and hobby pigeons (Columba livia domestica). Infections with PPMV-1 can range from asymptomatic to fatal. To assess whether PPMV-1 continuously circulates in healthy feral pigeons, 396 tissue samples of pigeons from the city of Zurich were tested by reverse transcriptase real-time PCR over the period of one year. PPMV-1-RNA was detected in 41 feral pigeons (10.35%), determined as the dominant European genotype VI.2.1.1.2.2. In 38 of the 41 pigeons where organ samples tested positive, PPMV-1-RNA was also detected in either choana or cloaca swabs. There were no significant differences in positivity rates between seasons, age, and sex. The current study shows that feral pigeons without clinical signs of disease can harbour and most likely excrete PPMV-1. Spill-over into free-range holdings of chickens are therefore possible, as observed in a recent outbreak of Newcastle disease in laying hens due to PPMV-1 genotype VI.2.1.1.2.2. in the canton of Zurich in January 2022. Full article
(This article belongs to the Special Issue Avian Pathogens 2.0)
Show Figures

Figure 1

12 pages, 1800 KiB  
Case Report
Identification of a Virulent Newcastle Disease Virus Strain Isolated from Pigeons (Columbia livia) in Northeastern Brazil Using Next-Generation Genome Sequencing
by Mylena Ribeiro Pereira, Lais Ceschini Machado, Rodrigo Dias de Oliveira Carvalho, Thaise Yasmine Vasconcelos de Lima Cavalcanti, Givaldo Bom da Silva Filho, Telma de Sousa Lima, Silvio Miguel Castillo Fonseca, Francisco de Assis Leite Souza, Gabriel da Luz Wallau, Fábio de Souza Mendonça and Rafael Freitas de Oliveira Franca
Viruses 2022, 14(7), 1579; https://doi.org/10.3390/v14071579 - 21 Jul 2022
Cited by 5 | Viewed by 5432
Abstract
Newcastle disease virus (NDV), also known as avian paramyxoviruses 1 (APMV-1) is among the most important viruses infecting avian species. Given its widespread circulation, there is a high risk for the reintroduction of virulent strains into the domestic poultry industry, making the surveillance [...] Read more.
Newcastle disease virus (NDV), also known as avian paramyxoviruses 1 (APMV-1) is among the most important viruses infecting avian species. Given its widespread circulation, there is a high risk for the reintroduction of virulent strains into the domestic poultry industry, making the surveillance of wild and domestic birds a crucial process to appropriately respond to novel outbreaks. In the present study, we investigated an outbreak characterized by the identification of sick pigeons in a large municipality in Northeastern Brazil in 2018. The affected pigeons presented neurological signs, including motor incoordination, torticollis, and lethargy. Moribund birds were collected, and through a detailed histopathological analysis we identified severe lymphoplasmacytic meningoencephalitis with perivascular cuffs and gliosis in the central nervous system, and lymphoplasmacytic inflammation in the liver, kidney, and intestine. A total of five pigeons tested positive for NDV, as assessed by rRT-PCR targeted to the M gene. Laboratory virus isolation on Vero E6 cells confirmed infection, after the recovery of infectious NVD from brain and kidney tissues. We next characterized the isolated NDV/pigeon/PE-Brazil/MP003/2018 by next-generation sequencing (NGS). Phylogenetic analysis grouped the virus with other NDV class II isolates from subgenotype VI.2.1.2, including two previous NDV isolates from Brazil in 2014 and 2019. The diversity of aminoacid residues at the fusion F protein cleavage site was analyzed identifying the motif RRQKR↓F, typical of virulent strains. Our results all highlight the importance of virus surveillance in wild and domestic birds, especially given the risk of zoonotic NDV. Full article
(This article belongs to the Special Issue Newcastle Disease Virus and Other Avian Paramyxoviruses)
Show Figures

Figure 1

Back to TopTop