Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses
Abstract
1. Introduction
2. Materials and Methods
2.1. Fusion Sequence Database Generation and Curation
2.2. Screening Using the Currently Approved USDA Fusion Gene rRT-PCR Assay
2.3. Primer Design and In Silico Analyses
2.4. Real-Time Reverse Transcription Polymerase Chain Reaction (rRT-PCR)
2.5. Assay Verification
3. Results
3.1. Database Curation
3.2. rRT-PCR Assay Development and In Silico Analysis
3.3. rRT-PCR Assay Verification
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APMV-1 | Avian paramyxovirus 1 |
ND | Newcastle disease |
rRT-PCR | Real-time reverse transcriptase PCR |
LD | Linear dichroism |
NP | Nucleoprotein |
M | Matrix |
F | Fusion |
L | Large RNA polymerase |
NAHLN | National Animal Health Laboratory Network |
XIPC | Exogenous internal positive control |
MAFFT | Multiple Alignment with Fast Fourier Transformation |
SEPRL | Southeast Poultry Research Laboratory |
SNP | Single nucleotide polymorphism |
ViPR | Virus Pathogen Resource |
25X PPM | 25X primers–probes mix |
LOD | Limit of detection |
IBV | Infectious bronchitis virus |
IAV | Influenza A virus |
TVMDL | Texas A&M Veterinary Medical Diagnostic Laboratory |
NTC | No template control |
PAC | Positive amplification control |
References
- Dimitrov, K.M.; Ramey, A.M.; Qiu, X.; Bahl, J.; Afonso, C.L. Temporal, Geographic, and Host Distribution of Avian Paramyxovirus 1 (Newcastle Disease Virus). Infect. Genet. Evol. 2016, 39, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.X.; Brown, I.H.; Choi, K.S.; Chvala, I.; et al. Updated Unified Phylogenetic Classification System and Revised Nomenclature for Newcastle Disease Virus. Infect. Genet. Evol. 2019, 74, 103917. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus Taxonomy: The Database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717. [Google Scholar] [CrossRef]
- Alexander, D.J.; Aldous, E.W.; Fuller, C.M. The Long View: A Selective Review of 40 Years of Newcastle Disease Research. Avian Pathol. 2012, 41, 329–335. [Google Scholar] [CrossRef]
- Miller, P.J.; Kim, L.M.; Ip, H.S.; Afonso, C.L. Evolutionary Dynamics of Newcastle Disease Virus. Virology 2009, 391, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Afonso, C.L.; El Attrache, J.; Dorsey, K.M.; Courtney, S.C.; Guo, Z.; Kapczynski, D.R. Effects of Newcastle Disease Virus Vaccine Antibodies on the Shedding and Transmission of Challenge Viruses. Dev. Comp. Immunol. 2013, 41, 505–513. [Google Scholar] [CrossRef]
- Nooruzzaman, M.; Hossain, I.; Begum, J.A.; Moula, M.; Khaled, S.A.; Parvin, R.; Chowdhury, E.H.; Islam, M.R.; Diel, D.G.; Dimitrov, K.M. The First Report of a Virulent Newcastle Disease Virus of Genotype VII.2 Causing Outbreaks in Chickens in Bangladesh. Viruses 2022, 14, 2627. [Google Scholar] [CrossRef]
- Amoia, C.F.; Hakizimana, J.N.; Chengula, A.A.; Munir, M.; Misinzo, G.; Weger-Lucarelli, J. Genomic Diversity and Geographic Distribution of Newcastle Disease Virus Genotypes in Africa: Implications for Diagnosis, Vaccination, and Regional Collaboration. Viruses 2024, 16, 795. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Ferreira, H.L.; Pantin-Jackwood, M.J.; Taylor, T.L.; Goraichuk, I.V.; Crossley, B.M.; Killian, M.L.; Bergeson, N.H.; Torchetti, M.K.; Afonso, C.L.; et al. Pathogenicity and Transmission of Virulent Newcastle Disease Virus from the 2018–2019 California Outbreak and Related Viruses in Young and Adult Chickens. Virology 2019, 531, 203–218. [Google Scholar] [CrossRef]
- Suarez, D.L.; Miller, P.J.; Koch, G.; Mundt, E.; Rautenschlein, S. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. In Diseases of Poultry; Wiley: Hoboken, NJ, USA, 2019; pp. 111–166. ISBN 9781119371199. [Google Scholar]
- Wise, M.G.; Suarez, D.L.; Seal, B.S.; Pedersen, J.C.; Senne, D.A.; King, D.J.; Kapczynski, D.R.; Spackman, E. Development of a Real-Time Reverse-Transcription PCR for Detection of Newcastle Disease Virus RNA in Clinical Samples. J. Clin. Microbiol. 2004, 42, 329–338. [Google Scholar] [CrossRef]
- Ferreira, H.L.; Suarez, D.L. Single-Nucleotide Polymorphism Analysis to Select Conserved Regions for an Improved Real-Time Reverse Transcription-PCR Test Specific for Newcastle Disease Virus. Avian Dis. 2019, 63, 625–633. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Y.; Zheng, D.; Lv, Y.; Zhang, W.; Xu, T.; Li, J.; Wang, Z. Multiplex RT-PCR for Rapid Detection and Differentiation of Class I and Class II Newcastle Disease Viruses. J. Virol. Methods 2011, 171, 149–155. [Google Scholar] [CrossRef]
- Nidzworski, D.; Smietanka, K.; Minta, Z.; Szewczyk, B. Detection of Avian Influenza Virus and Newcastle Disease Virus by Duplex One Step RT PCR. Cent. Eur. J. Biol. 2013, 8, 520–526. [Google Scholar] [CrossRef]
- Kong, L.-C.; Ao, Y.-H.; Xi, R.-Z.; Liao, M. Multiplex Rt-PCR for Virulence Detection and Differentiation Between Newcastle Disease Virus and Goose-Origin APVM-1. Avian Dis. 2007, 51, 668–673. [Google Scholar] [CrossRef]
- Bhande, P.; Sigrist, B.; Balke, L.; Albini, S.; Wolfrum, N. Improvement of a Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for the Sensitive Detection of the F Gene of Avian Orthoavulavirus-1 (AOAV-1). Vet. Sci. 2023, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yao, M.; Tang, Z.; Xu, D.; Luo, Y.; Gao, Y.; Yan, L. Development and Application of a Triplex Real-Time PCR Assay for Simultaneous Detection of Avian Influenza Virus, Newcastle Disease Virus, and Duck Tembusu Virus. BMC Vet. Res. 2020, 16, 203. [Google Scholar] [CrossRef] [PubMed]
- Fratnik Steyer, A.; Rojs, O.Z.; Krapež, U.; Slavec, B.; Barlič-Maganja, D. A Diagnostic Method Based on MGB Probes for Rapid Detection and Simultaneous Differentiation between Virulent and Vaccine Strains of Avian Paramyxovirus Type 1. J. Virol. Methods 2010, 166, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Farkas, T.; Székely, É.; Belák, S.; Kiss, I. Real-Time PCR-Based Pathotyping of Newcastle Disease Virus by Use of TaqMan Minor Groove Binder Probes. J. Clin. Microbiol. 2009, 47, 2114–2123. [Google Scholar] [CrossRef]
- Moharam, I.; el Razik, A.A.; Sultan, H.; Ghezlan, M.; Meseko, C.; Franzke, K.; Harder, T.; Beer, M.; Grund, C. Investigation of Suspected Newcastle Disease (ND) Outbreaks in Egypt Uncovers a High Virus Velogenic ND Virus Burden in Small-Scale Holdings and the Presence of Multiple Pathogens. Avian Pathol. 2019, 48, 406–415. [Google Scholar] [CrossRef]
- Sutton, D.A.; Allen, D.P.; Fuller, C.M.; Mayers, J.; Mollett, B.C.; Londt, B.Z.; Reid, S.M.; Mansfield, K.L.; Brown, I.H. Development of an Avian Avulavirus 1 (AAvV-1) L-Gene Real-Time RT-PCR Assay Using Minor Groove Binding Probes for Application as a Routine Diagnostic Tool. J. Virol. Methods 2019, 265, 9–14. [Google Scholar] [CrossRef]
- Sabra, M.; Dimitrov, K.M.; Goraichuk, I.V.; Wajid, A.; Sharma, P.; Williams-Coplin, D.; Basharat, A.; Rehmani, S.F.; Muzyka, D.V.; Miller, P.J.; et al. Phylogenetic Assessment Reveals Continuous Evolution and Circulation of Pigeon-Derived Virulent Avian Avulaviruses 1 in Eastern Europe, Asia, and Africa. BMC Vet. Res. 2017, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- Creelan, J.L.; Graham, D.A.; McCullough, S.J. Detection and Differentiation of Pathogenicity of Avian Paramyxovirus Serotype 1 from Field Cases Using One-Step Reverse Transcriptase-Polymerase Chain Reaction. Avian Pathol. 2002, 31, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Nidzworski, D.; Rabalski, L.; Gromadzka, B. Detection and Differentiation of Virulent and Avirulent Strains of Newcastle Disease Virus by Real-Time PCR. J. Virol. Methods 2011, 173, 144–149. [Google Scholar] [CrossRef]
- Miller, P.J.; Decanini, E.L.; Afonso, C.L. Newcastle Disease: Evolution of Genotypes and the Related Diagnostic Challenges. Infect. Genet. Evol. 2010, 10, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Haddas, R.; Simanov, L.; Lublin, A.; Rehmani, S.F.; Wajid, A.; Bibi, T.; Khan, T.A.; Yaqub, T.; Setiyaningsih, S.; et al. Identification of New Sub-Genotypes of Virulent Newcastle Disease Virus with Potential Panzootic Features. Infect. Genet. Evol. 2015, 29, 216–229. [Google Scholar] [CrossRef]
- Gauthier, N.P.G.; Chorlton, S.D.; Krajden, M.; Manges, A.R. Agnostic Sequencing for Detection of Viral Pathogens. Clin. Microbiol. Rev. 2023, 36, e0011922. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Sharma, P.; Volkening, J.D.; Goraichuk, I.V.; Wajid, A.; Rehmani, S.F.; Basharat, A.; Shittu, I.; Joannis, T.M.; Miller, P.J.; et al. A Robust and Cost-Effective Approach to Sequence and Analyze Complete Genomes of Small RNA Viruses. Virol. J. 2017, 14, 72. [Google Scholar] [CrossRef]
- Schroeder, M.E.; Bounpheng, M.A.; Rodgers, S.; Baker, R.J.; Black, W.; Naikare, H.; Velayudhan, B.; Sneed, L.; Szonyi, B.; Clavijo, A. Development and Performance Evaluation of Calf Diarrhea Pathogen Nucleic Acid Purification and Detection Workflow. J. Vet. Diagn. Investig. 2012, 24, 945–953. [Google Scholar] [CrossRef]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, D67–D72. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.-I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- OIE. Newcastle Disease Virus. In Biological Standards Commission, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals: Mammals, Birds and Bees; World Organisation for Animal Health: Paris, France, 2012; Volume 1, Part 2; pp. 555–574. [Google Scholar]
- Pickett, B.E.; Greer, D.S.; Zhang, Y.; Stewart, L.; Zhou, L.; Sun, G.; Gu, Z.; Kumar, S.; Zaremba, S.; Larsen, C.N.; et al. Virus Pathogen Database and Analysis Resource (ViPR): A Comprehensive Bioinformatics Database and Analysis Resource for the Coronavirus Research Community. Viruses 2012, 4, 3209–3226. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3-New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Khan, T.A.; Rue, C.A.; Rehmani, S.F.; Ahmed, A.; Wasilenko, J.L.; Miller, P.J.; Afonso, C.L. Phylogenetic and Biological Characterization of Newcastle Disease Virus Isolates from Pakistan. J. Clin. Microbiol. 2010, 48, 1892–1894. [Google Scholar] [CrossRef]
- Ramey, A.M.; Reeves, A.B.; Ogawa, H.; Ip, H.S.; Imai, K.; Bui, V.N.; Yamaguchi, E.; Silko, N.Y.; Afonso, C.L. Genetic Diversity and Mutation of Avian Paramyxovirus Serotype 1 (Newcastle Disease Virus) in Wild Birds and Evidence for Intercontinental Spread. Arch. Virol. 2013, 158, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Maminiaina, O.F.; Gil, P.; Briand, F.X.; Albina, E.; Keita, D.; Andriamanivo, H.R.; Chevalier, V.; Lancelot, R.; Martinez, D.; Rakotondravao, R.; et al. Newcastle Disease Virus in Madagascar: Identification of an Original Genotype Possibly Deriving from a Died out Ancestor of Genotype IV. PLoS ONE 2010, 5, e0013987. [Google Scholar] [CrossRef] [PubMed]
- Fortin, A.; Laconi, A.; Monne, I.; Zohari, S.; Andersson, K.; Grund, C.; Cecchinato, M.; Crimaudo, M.; Valastro, V.; D’Amico, V.; et al. A Novel Array of Real-Time RT-PCR Assays for the Rapid Pathotyping of Type I Avian Paramyxovirus (APMV-1). J. Virol. Methods 2023, 322, 114813. [Google Scholar] [CrossRef]
- Bass, C.; Williamson, M.S.; Field, L.M. Development of a Multiplex Real-Time PCR Assay for Identification of Members of the Anopheles Gambiae Species Complex. Acta Trop. 2008, 107, 50–53. [Google Scholar] [CrossRef]
- Wang, X.; Theodore, M.J.; Mair, R.; Trujillo-Lopez, E.; Du Plessis, M.; Wolter, N.; Baughman, A.L.; Hatcher, C.; Vuong, J.; Lott, L.; et al. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens. J. Clin. Microbiol. 2012, 50, 702–708. [Google Scholar] [CrossRef]
Study ID | Isolate ID | Genotype | Old Genotype | Species | Country | Year | Cleavage Site Motif | Virulence |
---|---|---|---|---|---|---|---|---|
1 | BS/350 (N35) | I.1.1 | I a | Chicken | Bassa, Nigeria | 2009 | RKQGRL | Low |
2 | APMV-t-AN-3201110 (K4) | I.2 | I b | Ruddy Shelduck | Askania-Nova, Ukraine | 2010 | GKQGRL | Low |
3 | Askania-Nova/72-28-03 | I.2 | I b | White-Fronted Goose | Askania-Nova Reserve, Ukraine | 2013 | GKQGRL | Low |
4 | P/AV/FL/475985/07 | I.2 | I b | Avian | Florida, USA | 2007 | GKQGRF | Low |
5 | ZOOMAT-10-08 | I.1.2.1 | I c | Plain Chachalaca | Mexico | 2009 | GKQGRL | Low |
6 | TK 80136 | II | II | Chicken | Georgia, USA | 2009 | GRQGRL | Low |
7 | LaSota | II | II | Chicken | USA | 1946 | GRQGRL | Low |
8 | NDV/pigeon/NovoSelo/1995 | III | III | Pigeon | Novo Selo, Bulgaria | 1995 | RRQRRF | Virulent |
9 | SPVC/Karachi/NDV/1 | III | III | MukteswarVvaccine (SPVC) | Karachi, Pakistan | 1974 | RRQRRF | Virulent |
10 | NDV/chicken/Haskovo/1968 | IV | IV | Chicken | Haskovo, Bulgaria | 1968 | RRQRRF | Virulent |
11 | Kano/1973 (N52) | IV | IV | Chicken | Nigeria | 1973 | RRQRRF | Virulent |
12 | A00520441/442 (MN1) | XIX | V a | Double-Crested Cormorant | Minnesota Lake, MN, USA | 2008 | KRQKRF | Variant |
13 | A00841381 | XIX | V a | Double-Crested Cormorant | Portland, ME, USA | 2010 | KRQKRF | Variant |
14 | A00874288 | XIX | V a | Double-Crested Cormorant | Barnstable County, MA, USA | 2010 | KRQKRF | Variant |
15 | NDV/chicken/Furen/1988 | V.1 | V b | Chicken | Furen, Bulgaria | 1988 | RRQKRF | Virulent |
16 | P/CK/Belize/4224-3/08 | V.1 | V b | Chicken | Spanish Lookout, Cayo, Belize | 2008 | RRQKRF | Virulent |
17 | 00-448-13 | V.1 | V b | Chicken | Honduras | 2000 | RRQKRF | Virulent |
18 | NC/23/11 | V.2 | V c | Chicken | Aguascalientes, Mexico | 2011 | RRQKRF | Virulent |
19 | Mbeya/MT15 | V.3 | V d | Chicken | Tanzania | 2012 | RRQKRF | Virulent |
20 | TX 3988 (D1548) | VI.2.1.1.1 | VI a | Eurasion Collared Dove | Houston, TX, USA | 2004 | RRKKRF | Variant |
21 | ND0007187 | VI.2.1.1.1 | VI a | Rock Pigeon | Allegheny, PA, USA | 2013 | RRKKRF | Variant |
22 | TX 6295 (D0729) | VI.2.1.1.1 | VI a | Eurasion Collared Dove | Houston, TX, USA | 2006 | RRKKRF | Variant |
23 | NDV/fowl/DolnoLinevo/1992 | XX | VI c | Chicken | Dolno Linevo, Bulgaria | 1992 | RRQKRF | Virulent |
24 | APMV-p-Kh-230113 (K13) | XXI.1.1 | VI g | Pigeon | Kharkiv, Ukraine | 2013 | KRQKRF | Variant |
25 | VRD08/385 (N23) | XXI.2.1.2 | VI h | Quail | Nigeria | 2008 | RRRKRF | Variant |
26 | Pk25 | XXI.1.2 | VI m | Pigeon | Lahore, Punjab, Pakistan | 2015 | RRQKRF | Variant |
27 | PKR/CK/15 | VII.2 | VII i | Chicken | Sheikhupura, Punjab, Pakistan | 2015 | RRQKRF | Virulent |
28 | sample 120 | VII.2 | VII i | Chicken (Broiler Breeders) | Beer-Tuvia, Israel | 2013 | RRQKRF | Virulent |
29 | NDV/EG/CK/104/12 | VII.1.1 | VII j | Chicken (Broiler) | Qena, Egypt | 2012 | RRQKRF | Virulent |
30 | NDV/EG/CK/136/12 | VII.1.1 | VII b | Chicken (Broiler) | Qena, Egypt | 2012 | RRQKRF | Virulent |
31 | ZJ1 | VII.1.1 | VII d | Goose | China | 2000 | RRQKRF | Virulent |
32 | Kardam | VII.1.1 | VII d | Chicken | Bulgaria | 2008 | RRQKRF | Virulent |
33 | 78 | VII.1.1 | VII e | Duck | Long Bien, Vietnam | 2002 | RRQKRF | Virulent |
34 | NDV04-23 (C12) | IX | IX | Chicken | China | 2004 | RRQRRF | Virulent |
35 | P/TY/MN/77/08 | X.1 | X a | Turkey | Minnesota, USA | 2008 | RKQGRF | Low |
36 | MN00-39 | X.2 | X b | Juvenile Mallard | Minnesota, USA | 2000 | EKQGRL | Low |
37 | P/TY/MN/4661/09 | X.1 | X a | Turkey | Minnesota, USA | 2009 | RKQGRF | Low |
38 | TX01-130 | X.1 | X a | Mottled Duck | Brazoria County, TX, USA | 2001 | GKQGRL | Low |
39 | P\avian\peru\1918-03\08 | XII.1 | XII a | Chicken | Peru | 2008 | RRQKRF | Virulent |
40 | Tanga/N38 | XIII.1.1 | XIII a | Chicken | Tanzania | 2012 | RRQKRF | Virulent |
41 | Tanga/N1 | XIII.1.1 | XIII a | Chicken | Tanzania | 2012 | RRQKRF | Virulent |
42 | SPVC/Karachi/NDV/27 | XIII.2.1 | XIII b | Chicken | Karachi, Pakistan | 2006 | RRQKRF | Virulent |
43 | KT/MSH/15C (N2) | XIV | XIV b | Pigeon | Katsina, Nigeria | 2009 | RRRKRF | Virulent |
44 | VRD09/546 (N4) | XIV | XIV b | Golden Eagle | Taraba, Nigeria | 2009 | RRRKRF | Virulent |
45 | P/Chicken/FO-DR/499-31/08 | XVI | XVI | Chicken | Dominican Republic | 2008 | RRQKRF | Virulent |
46 | Kudu-113/1992 (N56) | XVII | XVII anc | Duck | Nigeria | 1992 | RRQKRF | Virulent |
47 | ZM/KN/GF01bC (N6) | XVII.1 | XVII a | Guinea Fowl | Zamfara, Nigeria | 2009 | RRQKRF | Virulent |
48 | VRD17/04 (N2) | XVII.1 | XVII a | Quail | Nigeria | 2004 | RRQKRF | Virulent |
49 | 228-7 | XVII.2 | XVII b | Chicken | Nigeria | 2006 | RRQRRF | Virulent |
50 | OOT/4/1 (N69) | XVIII.2 | XVIII b | Chicken | Ota, Nigeria | 2009 | RRQKRF | Virulent |
Oligos | Type | 5′-3′ Sequence | bp | Concentration (μM) | Source |
---|---|---|---|---|---|
F+4829 | Fwd Primer | GGTGAGTCTATCCGGARGATACAAG | 25 | 0.384 | Creelan et al., 2002 [23] |
F-4939 | Rev Primer | AGCTGTTGCAACCCCAAG | 18 | 0.192 | Wise et al., 2004 [11] |
F (VFP-1)-4894_FAM | Probe | AAGCGTTTCTGTCTCCTTCCTCCA | 24 | 0.0624 | |
F+4870_XIV_FAM | Probe | TGGAGGAAGACGACGGAAACGTTT | 24 | 0.0624 | THIS STUDY -MULTIPLEX ASSAY |
F+4835_48F | Fwd Primer | TCCATCCGCAAGATCCAAGG | 20 | 0.192 | |
F-4894_VII_FAM | Probe | AARCGTTTTTGTCTCCTTCCTCCG | 24 | 0.0672 |
Study ID | Genotype (Old Genotype) | M-Gene Assay Ct Value | Original F-Gene Assay Ct Value | Multiplex F-Gene Assay Ct Value (Average) | Multiplex Assay F-Gene Ct Value (Median) | XIPC Ct Value (Average) | XIPC Ct Value (Median) |
---|---|---|---|---|---|---|---|
1 | I.1.1 (Ia) | 13.0 | 40.0 | 37.7 | 40.0 | 31.4 | 31.0 |
2 | I.2 (Ib) | 11.9 | 40.0 | 34.7 | 40.0 | 34.1 | 31.2 |
3 | I.2 (Ib) | 14.8 | 40.0 | 40.0 | 40.0 | 31.1 | 31.2 |
4 | I.2 (Ib) | 17.9 | 40.0 | 40.0 | 40.0 | 34.3 | 33.9 |
5 | I.1.2.1 (Ic) | 15.7 | 40.0 | 40.0 | 40.0 | 30.8 | 30.9 |
6 | II (II) | 10.3 | 40.0 | 40.0 | 40.0 | 31.9 | 32.0 |
7 | II (II) | 9.9 | 40.0 | 40.0 | 40.0 | 31.6 | 31.3 |
8 | III (III) | 18.3 | 20.9 | 21.2 | 21.3 | 31.8 | 31.0 |
9 | III (III) | 19.2 | 21.9 | 24.0 | 24.5 | 30.9 | 31.0 |
10 | IV (IV) | 16.5 | 21.6 | 24.3 | 24.1 | 31.2 | 31.2 |
11 | IV (IV) | 10.3 | 15.1 | 19.5 | 17.5 | 35.3 | 35.2 |
12 | XIX (Va) | 20.0 | 40.0 | 40.0 | 40.0 | 31.2 | 31.2 |
13 | XIX (Va) | 21.2 | 40.0 | 38.9 | 40.0 | 30.9 | 30.9 |
14 | XIX (Va) | 19.8 | 40.0 | 38.8 | 40.0 | 30.8 | 30.8 |
15 | V.1 (Vb) | 14.6 | 17.6 | 21.8 | 23.0 | 30.7 | 30.9 |
16 | V.1 (Vb) | 12.8 | 12.8 | 14.7 | 14.8 | 31.4 | 31.1 |
17 | V.1 (Vb) | 12.6 | 27.1 | 28.1 | 29.6 | 30.8 | 30.9 |
18 | XX (Vc) | 11.8 | 15.3 | 17.0 | 16.8 | 30.5 | 30.4 |
19 | V.3 (Vd) | 12.2 | 20.4 | 22.9 | 23.1 | 30.3 | 30.4 |
20 | VI.2.1.1.1 (VIa) | 20.3 | 40.0 | 40.0 | 40.0 | 31.9 | 32.2 |
21 | VI.2.1.1.1 (VIa) | 25.3 | 40.0 | 40.0 | 40.0 | 32.7 | 31.1 |
22 | VI.2.1.1.1 (VIa) | 17.6 | 40.0 | 39.6 | 40.0 | 31.3 | 31.2 |
23 | XX (VIc) | 12.5 | 14.9 | 18.2 | 17.2 | 31.5 | 30.9 |
24 | XXI.1.1 (VIg) | 18.5 | 40.0 | 40.0 | 40.0 | 31.4 | 31.4 |
25 | XXI.2.1.2 (VIh) | 16.8 | 40.0 | 40.0 | 40.0 | 31.8 | 32.1 |
26 | XXI.1.2 (VIm) | 17.4 | 23.2 | 30.8 | 26.7 | 33.6 | 30.5 |
27 | VII.2 (VIIi) | 11.4 | 22.3 | 22.1 | 22.4 | 30.7 | 30.7 |
28 | VII.2 (VIIi) | 12.1 | 25.2 | 22.7 | 22.4 | 30.8 | 31.1 |
29 | VII.1.1 (VIIj) | 9.8 | 25.9 | 22.0 | 19.6 | 30.9 | 31.1 |
30 | VII.1.1 (VIIb) | 14.1 | 30.5 | 25.2 | 22.4 | 31.3 | 31.4 |
31 | VII.1.1 (VIId) | 9.8 | 19.0 | 16.9 | 16.0 | 31.7 | 32.1 |
32 | VII.1.1 (VIId) | 12.6 | 18.9 | 17.6 | 17.3 | 30.4 | 30.7 |
33 | VII.1.1 (VIIe) | 10.0 | 17.2 | 15.5 | 14.0 | 30.7 | 30.7 |
34 | IX (IX) | 13.8 | 18.6 | 17.5 | 17.4 | 31.4 | 32.1 |
35 | X.1 (Xa) | 14.9 | 40.0 | 40.0 | 40.0 | 33.9 | 33.2 |
36 | X.2 (Xb) | 13.9 | 40.0 | 40.0 | 40.0 | 38.1 | 38.2 |
37 | X.1 (Xa) | 14.4 | 40.0 | 37.7 | 40.0 | 33.1 | 33.2 |
38 | X.1 (Xa) | 12.2 | 40.0 | 40.0 | 40.0 | 35.7 | 34.0 |
39 | XII.1 (XIIa) | 11.3 | 17.0 | 18.1 | 18.6 | 30.8 | 31.0 |
40 | XIII.1.1 (XIIIa) | 17.0 | 15.8 | 20.5 | 22.0 | 31.5 | 31.6 |
41 | XIII.1.1 (XIIIa) | 16.4 | 15.2 | 18.0 | 18.6 | 30.6 | 30.7 |
42 | XIII.2.1 (XIIIb) | 26.1 | 19.8 | 22.5 | 22.7 | 29.9 | 30.1 |
43 | XIV (XIVb) | 15.1 | 40.0 | 24.2 | 17.1 | 30.5 | 30.3 |
44 | XIV (XIVb) | 17.4 | 40.0 | 24.4 | 17.8 | 31.2 | 30.9 |
45 | XVI (XVI) | 11.6 | 15.0 | 18.2 | 17.5 | 31.1 | 31.1 |
46 | XVII (XVIIanc) | 13.3 | 17.2 | 20.5 | 19.5 | 31.2 | 30.4 |
47 | XVII.1 (XVIIa) | 13.5 | 14.8 | 17.9 | 17.3 | 30.9 | 30.6 |
48 | XVII.1 (XVIIa) | 12.3 | 15.1 | 18.4 | 17.6 | 30.8 | 30.6 |
49 | XVII.2 (XVIIb) | 15.7 | 17.6 | 20.8 | 20.0 | 30.8 | 30.8 |
50 | XVIII.2 (XVIIIb) | 15.2 | 22.6 | 26.6 | 27.3 | 30.7 | 31.0 |
NTC | 40.0 | 40.0 | 40.0 | 40.0 | NA | NA | |
PAC (no XIPC added) | 23.5 | 24.2 | 25.7 | 25.7 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexander Morris, E.R.; Schroeder, M.E.; Anderson, P.N.; Schroeder, L.J.; Monday, N.; Senties-Cue, G.; Ficken, M.; Ferro, P.J.; Suarez, D.L.; Dimitrov, K.M. Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses. Viruses 2025, 17, 670. https://doi.org/10.3390/v17050670
Alexander Morris ER, Schroeder ME, Anderson PN, Schroeder LJ, Monday N, Senties-Cue G, Ficken M, Ferro PJ, Suarez DL, Dimitrov KM. Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses. Viruses. 2025; 17(5):670. https://doi.org/10.3390/v17050670
Chicago/Turabian StyleAlexander Morris, Ellen Ruth, Megan E. Schroeder, Phelue N. Anderson, Lisa J. Schroeder, Nicholas Monday, Gabriel Senties-Cue, Martin Ficken, Pamela J. Ferro, David L. Suarez, and Kiril M. Dimitrov. 2025. "Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses" Viruses 17, no. 5: 670. https://doi.org/10.3390/v17050670
APA StyleAlexander Morris, E. R., Schroeder, M. E., Anderson, P. N., Schroeder, L. J., Monday, N., Senties-Cue, G., Ficken, M., Ferro, P. J., Suarez, D. L., & Dimitrov, K. M. (2025). Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses. Viruses, 17(5), 670. https://doi.org/10.3390/v17050670