Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses
Abstract
:1. Introduction
2. Materials and Methods
2.1. Fusion Sequence Database Generation and Curation
2.2. Screening Using the Currently Approved USDA Fusion Gene rRT-PCR Assay
2.3. Primer Design and In Silico Analyses
2.4. Real-Time Reverse Transcription Polymerase Chain Reaction (rRT-PCR)
2.5. Assay Verification
3. Results
3.1. Database Curation
3.2. rRT-PCR Assay Development and In Silico Analysis
3.3. rRT-PCR Assay Verification
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
APMV-1 | Avian paramyxovirus 1 |
ND | Newcastle disease |
rRT-PCR | Real-time reverse transcriptase PCR |
LD | Linear dichroism |
NP | Nucleoprotein |
M | Matrix |
F | Fusion |
L | Large RNA polymerase |
NAHLN | National Animal Health Laboratory Network |
XIPC | Exogenous internal positive control |
MAFFT | Multiple Alignment with Fast Fourier Transformation |
SEPRL | Southeast Poultry Research Laboratory |
SNP | Single nucleotide polymorphism |
ViPR | Virus Pathogen Resource |
25X PPM | 25X primers–probes mix |
LOD | Limit of detection |
IBV | Infectious bronchitis virus |
IAV | Influenza A virus |
TVMDL | Texas A&M Veterinary Medical Diagnostic Laboratory |
NTC | No template control |
PAC | Positive amplification control |
References
- Dimitrov, K.M.; Ramey, A.M.; Qiu, X.; Bahl, J.; Afonso, C.L. Temporal, Geographic, and Host Distribution of Avian Paramyxovirus 1 (Newcastle Disease Virus). Infect. Genet. Evol. 2016, 39, 22–34. [Google Scholar] [CrossRef] [PubMed]
- Dimitrov, K.M.; Abolnik, C.; Afonso, C.L.; Albina, E.; Bahl, J.; Berg, M.; Briand, F.X.; Brown, I.H.; Choi, K.S.; Chvala, I.; et al. Updated Unified Phylogenetic Classification System and Revised Nomenclature for Newcastle Disease Virus. Infect. Genet. Evol. 2019, 74, 103917. [Google Scholar] [CrossRef] [PubMed]
- Lefkowitz, E.J.; Dempsey, D.M.; Hendrickson, R.C.; Orton, R.J.; Siddell, S.G.; Smith, D.B. Virus Taxonomy: The Database of the International Committee on Taxonomy of Viruses (ICTV). Nucleic Acids Res. 2018, 46, D708–D717. [Google Scholar] [CrossRef]
- Alexander, D.J.; Aldous, E.W.; Fuller, C.M. The Long View: A Selective Review of 40 Years of Newcastle Disease Research. Avian Pathol. 2012, 41, 329–335. [Google Scholar] [CrossRef]
- Miller, P.J.; Kim, L.M.; Ip, H.S.; Afonso, C.L. Evolutionary Dynamics of Newcastle Disease Virus. Virology 2009, 391, 64–72. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Afonso, C.L.; El Attrache, J.; Dorsey, K.M.; Courtney, S.C.; Guo, Z.; Kapczynski, D.R. Effects of Newcastle Disease Virus Vaccine Antibodies on the Shedding and Transmission of Challenge Viruses. Dev. Comp. Immunol. 2013, 41, 505–513. [Google Scholar] [CrossRef]
- Nooruzzaman, M.; Hossain, I.; Begum, J.A.; Moula, M.; Khaled, S.A.; Parvin, R.; Chowdhury, E.H.; Islam, M.R.; Diel, D.G.; Dimitrov, K.M. The First Report of a Virulent Newcastle Disease Virus of Genotype VII.2 Causing Outbreaks in Chickens in Bangladesh. Viruses 2022, 14, 2627. [Google Scholar] [CrossRef]
- Amoia, C.F.; Hakizimana, J.N.; Chengula, A.A.; Munir, M.; Misinzo, G.; Weger-Lucarelli, J. Genomic Diversity and Geographic Distribution of Newcastle Disease Virus Genotypes in Africa: Implications for Diagnosis, Vaccination, and Regional Collaboration. Viruses 2024, 16, 795. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Ferreira, H.L.; Pantin-Jackwood, M.J.; Taylor, T.L.; Goraichuk, I.V.; Crossley, B.M.; Killian, M.L.; Bergeson, N.H.; Torchetti, M.K.; Afonso, C.L.; et al. Pathogenicity and Transmission of Virulent Newcastle Disease Virus from the 2018–2019 California Outbreak and Related Viruses in Young and Adult Chickens. Virology 2019, 531, 203–218. [Google Scholar] [CrossRef]
- Suarez, D.L.; Miller, P.J.; Koch, G.; Mundt, E.; Rautenschlein, S. Newcastle Disease, Other Avian Paramyxoviruses, and Avian Metapneumovirus Infections. In Diseases of Poultry; Wiley: Hoboken, NJ, USA, 2019; pp. 111–166. ISBN 9781119371199. [Google Scholar]
- Wise, M.G.; Suarez, D.L.; Seal, B.S.; Pedersen, J.C.; Senne, D.A.; King, D.J.; Kapczynski, D.R.; Spackman, E. Development of a Real-Time Reverse-Transcription PCR for Detection of Newcastle Disease Virus RNA in Clinical Samples. J. Clin. Microbiol. 2004, 42, 329–338. [Google Scholar] [CrossRef]
- Ferreira, H.L.; Suarez, D.L. Single-Nucleotide Polymorphism Analysis to Select Conserved Regions for an Improved Real-Time Reverse Transcription-PCR Test Specific for Newcastle Disease Virus. Avian Dis. 2019, 63, 625–633. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, Y.; Zheng, D.; Lv, Y.; Zhang, W.; Xu, T.; Li, J.; Wang, Z. Multiplex RT-PCR for Rapid Detection and Differentiation of Class I and Class II Newcastle Disease Viruses. J. Virol. Methods 2011, 171, 149–155. [Google Scholar] [CrossRef]
- Nidzworski, D.; Smietanka, K.; Minta, Z.; Szewczyk, B. Detection of Avian Influenza Virus and Newcastle Disease Virus by Duplex One Step RT PCR. Cent. Eur. J. Biol. 2013, 8, 520–526. [Google Scholar] [CrossRef]
- Kong, L.-C.; Ao, Y.-H.; Xi, R.-Z.; Liao, M. Multiplex Rt-PCR for Virulence Detection and Differentiation Between Newcastle Disease Virus and Goose-Origin APVM-1. Avian Dis. 2007, 51, 668–673. [Google Scholar] [CrossRef]
- Bhande, P.; Sigrist, B.; Balke, L.; Albini, S.; Wolfrum, N. Improvement of a Real-Time Reverse Transcription–Polymerase Chain Reaction Assay for the Sensitive Detection of the F Gene of Avian Orthoavulavirus-1 (AOAV-1). Vet. Sci. 2023, 10, 223. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Yao, M.; Tang, Z.; Xu, D.; Luo, Y.; Gao, Y.; Yan, L. Development and Application of a Triplex Real-Time PCR Assay for Simultaneous Detection of Avian Influenza Virus, Newcastle Disease Virus, and Duck Tembusu Virus. BMC Vet. Res. 2020, 16, 203. [Google Scholar] [CrossRef] [PubMed]
- Fratnik Steyer, A.; Rojs, O.Z.; Krapež, U.; Slavec, B.; Barlič-Maganja, D. A Diagnostic Method Based on MGB Probes for Rapid Detection and Simultaneous Differentiation between Virulent and Vaccine Strains of Avian Paramyxovirus Type 1. J. Virol. Methods 2010, 166, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Farkas, T.; Székely, É.; Belák, S.; Kiss, I. Real-Time PCR-Based Pathotyping of Newcastle Disease Virus by Use of TaqMan Minor Groove Binder Probes. J. Clin. Microbiol. 2009, 47, 2114–2123. [Google Scholar] [CrossRef]
- Moharam, I.; el Razik, A.A.; Sultan, H.; Ghezlan, M.; Meseko, C.; Franzke, K.; Harder, T.; Beer, M.; Grund, C. Investigation of Suspected Newcastle Disease (ND) Outbreaks in Egypt Uncovers a High Virus Velogenic ND Virus Burden in Small-Scale Holdings and the Presence of Multiple Pathogens. Avian Pathol. 2019, 48, 406–415. [Google Scholar] [CrossRef]
- Sutton, D.A.; Allen, D.P.; Fuller, C.M.; Mayers, J.; Mollett, B.C.; Londt, B.Z.; Reid, S.M.; Mansfield, K.L.; Brown, I.H. Development of an Avian Avulavirus 1 (AAvV-1) L-Gene Real-Time RT-PCR Assay Using Minor Groove Binding Probes for Application as a Routine Diagnostic Tool. J. Virol. Methods 2019, 265, 9–14. [Google Scholar] [CrossRef]
- Sabra, M.; Dimitrov, K.M.; Goraichuk, I.V.; Wajid, A.; Sharma, P.; Williams-Coplin, D.; Basharat, A.; Rehmani, S.F.; Muzyka, D.V.; Miller, P.J.; et al. Phylogenetic Assessment Reveals Continuous Evolution and Circulation of Pigeon-Derived Virulent Avian Avulaviruses 1 in Eastern Europe, Asia, and Africa. BMC Vet. Res. 2017, 13, 291. [Google Scholar] [CrossRef] [PubMed]
- Creelan, J.L.; Graham, D.A.; McCullough, S.J. Detection and Differentiation of Pathogenicity of Avian Paramyxovirus Serotype 1 from Field Cases Using One-Step Reverse Transcriptase-Polymerase Chain Reaction. Avian Pathol. 2002, 31, 493–499. [Google Scholar] [CrossRef] [PubMed]
- Nidzworski, D.; Rabalski, L.; Gromadzka, B. Detection and Differentiation of Virulent and Avirulent Strains of Newcastle Disease Virus by Real-Time PCR. J. Virol. Methods 2011, 173, 144–149. [Google Scholar] [CrossRef]
- Miller, P.J.; Decanini, E.L.; Afonso, C.L. Newcastle Disease: Evolution of Genotypes and the Related Diagnostic Challenges. Infect. Genet. Evol. 2010, 10, 26–35. [Google Scholar] [CrossRef] [PubMed]
- Miller, P.J.; Haddas, R.; Simanov, L.; Lublin, A.; Rehmani, S.F.; Wajid, A.; Bibi, T.; Khan, T.A.; Yaqub, T.; Setiyaningsih, S.; et al. Identification of New Sub-Genotypes of Virulent Newcastle Disease Virus with Potential Panzootic Features. Infect. Genet. Evol. 2015, 29, 216–229. [Google Scholar] [CrossRef]
- Gauthier, N.P.G.; Chorlton, S.D.; Krajden, M.; Manges, A.R. Agnostic Sequencing for Detection of Viral Pathogens. Clin. Microbiol. Rev. 2023, 36, e0011922. [Google Scholar] [CrossRef]
- Dimitrov, K.M.; Sharma, P.; Volkening, J.D.; Goraichuk, I.V.; Wajid, A.; Rehmani, S.F.; Basharat, A.; Shittu, I.; Joannis, T.M.; Miller, P.J.; et al. A Robust and Cost-Effective Approach to Sequence and Analyze Complete Genomes of Small RNA Viruses. Virol. J. 2017, 14, 72. [Google Scholar] [CrossRef]
- Schroeder, M.E.; Bounpheng, M.A.; Rodgers, S.; Baker, R.J.; Black, W.; Naikare, H.; Velayudhan, B.; Sneed, L.; Szonyi, B.; Clavijo, A. Development and Performance Evaluation of Calf Diarrhea Pathogen Nucleic Acid Purification and Detection Workflow. J. Vet. Diagn. Investig. 2012, 24, 945–953. [Google Scholar] [CrossRef]
- Clark, K.; Karsch-Mizrachi, I.; Lipman, D.J.; Ostell, J.; Sayers, E.W. GenBank. Nucleic Acids Res. 2016, 44, D67–D72. [Google Scholar] [CrossRef]
- Katoh, K.; Misawa, K.; Kuma, K.-I.; Miyata, T. MAFFT: A Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier Transform. Nucleic Acids Res. 2002, 30, 3059–3066. [Google Scholar] [CrossRef]
- OIE. Newcastle Disease Virus. In Biological Standards Commission, Manual of Diagnostic Tests and Vaccines for Terrestrial Animals: Mammals, Birds and Bees; World Organisation for Animal Health: Paris, France, 2012; Volume 1, Part 2; pp. 555–574. [Google Scholar]
- Pickett, B.E.; Greer, D.S.; Zhang, Y.; Stewart, L.; Zhou, L.; Sun, G.; Gu, Z.; Kumar, S.; Zaremba, S.; Larsen, C.N.; et al. Virus Pathogen Database and Analysis Resource (ViPR): A Comprehensive Bioinformatics Database and Analysis Resource for the Coronavirus Research Community. Viruses 2012, 4, 3209–3226. [Google Scholar] [CrossRef] [PubMed]
- Untergasser, A.; Cutcutache, I.; Koressaar, T.; Ye, J.; Faircloth, B.C.; Remm, M.; Rozen, S.G. Primer3-New Capabilities and Interfaces. Nucleic Acids Res. 2012, 40, e115. [Google Scholar] [CrossRef]
- Khan, T.A.; Rue, C.A.; Rehmani, S.F.; Ahmed, A.; Wasilenko, J.L.; Miller, P.J.; Afonso, C.L. Phylogenetic and Biological Characterization of Newcastle Disease Virus Isolates from Pakistan. J. Clin. Microbiol. 2010, 48, 1892–1894. [Google Scholar] [CrossRef]
- Ramey, A.M.; Reeves, A.B.; Ogawa, H.; Ip, H.S.; Imai, K.; Bui, V.N.; Yamaguchi, E.; Silko, N.Y.; Afonso, C.L. Genetic Diversity and Mutation of Avian Paramyxovirus Serotype 1 (Newcastle Disease Virus) in Wild Birds and Evidence for Intercontinental Spread. Arch. Virol. 2013, 158, 2495–2503. [Google Scholar] [CrossRef] [PubMed]
- Maminiaina, O.F.; Gil, P.; Briand, F.X.; Albina, E.; Keita, D.; Andriamanivo, H.R.; Chevalier, V.; Lancelot, R.; Martinez, D.; Rakotondravao, R.; et al. Newcastle Disease Virus in Madagascar: Identification of an Original Genotype Possibly Deriving from a Died out Ancestor of Genotype IV. PLoS ONE 2010, 5, e0013987. [Google Scholar] [CrossRef] [PubMed]
- Fortin, A.; Laconi, A.; Monne, I.; Zohari, S.; Andersson, K.; Grund, C.; Cecchinato, M.; Crimaudo, M.; Valastro, V.; D’Amico, V.; et al. A Novel Array of Real-Time RT-PCR Assays for the Rapid Pathotyping of Type I Avian Paramyxovirus (APMV-1). J. Virol. Methods 2023, 322, 114813. [Google Scholar] [CrossRef]
- Bass, C.; Williamson, M.S.; Field, L.M. Development of a Multiplex Real-Time PCR Assay for Identification of Members of the Anopheles Gambiae Species Complex. Acta Trop. 2008, 107, 50–53. [Google Scholar] [CrossRef]
- Wang, X.; Theodore, M.J.; Mair, R.; Trujillo-Lopez, E.; Du Plessis, M.; Wolter, N.; Baughman, A.L.; Hatcher, C.; Vuong, J.; Lott, L.; et al. Clinical Validation of Multiplex Real-Time PCR Assays for Detection of Bacterial Meningitis Pathogens. J. Clin. Microbiol. 2012, 50, 702–708. [Google Scholar] [CrossRef]
Study ID | Isolate ID | Genotype | Old Genotype | Species | Country | Year | Cleavage Site Motif | Virulence |
---|---|---|---|---|---|---|---|---|
1 | BS/350 (N35) | I.1.1 | I a | Chicken | Bassa, Nigeria | 2009 | RKQGRL | Low |
2 | APMV-t-AN-3201110 (K4) | I.2 | I b | Ruddy Shelduck | Askania-Nova, Ukraine | 2010 | GKQGRL | Low |
3 | Askania-Nova/72-28-03 | I.2 | I b | White-Fronted Goose | Askania-Nova Reserve, Ukraine | 2013 | GKQGRL | Low |
4 | P/AV/FL/475985/07 | I.2 | I b | Avian | Florida, USA | 2007 | GKQGRF | Low |
5 | ZOOMAT-10-08 | I.1.2.1 | I c | Plain Chachalaca | Mexico | 2009 | GKQGRL | Low |
6 | TK 80136 | II | II | Chicken | Georgia, USA | 2009 | GRQGRL | Low |
7 | LaSota | II | II | Chicken | USA | 1946 | GRQGRL | Low |
8 | NDV/pigeon/NovoSelo/1995 | III | III | Pigeon | Novo Selo, Bulgaria | 1995 | RRQRRF | Virulent |
9 | SPVC/Karachi/NDV/1 | III | III | MukteswarVvaccine (SPVC) | Karachi, Pakistan | 1974 | RRQRRF | Virulent |
10 | NDV/chicken/Haskovo/1968 | IV | IV | Chicken | Haskovo, Bulgaria | 1968 | RRQRRF | Virulent |
11 | Kano/1973 (N52) | IV | IV | Chicken | Nigeria | 1973 | RRQRRF | Virulent |
12 | A00520441/442 (MN1) | XIX | V a | Double-Crested Cormorant | Minnesota Lake, MN, USA | 2008 | KRQKRF | Variant |
13 | A00841381 | XIX | V a | Double-Crested Cormorant | Portland, ME, USA | 2010 | KRQKRF | Variant |
14 | A00874288 | XIX | V a | Double-Crested Cormorant | Barnstable County, MA, USA | 2010 | KRQKRF | Variant |
15 | NDV/chicken/Furen/1988 | V.1 | V b | Chicken | Furen, Bulgaria | 1988 | RRQKRF | Virulent |
16 | P/CK/Belize/4224-3/08 | V.1 | V b | Chicken | Spanish Lookout, Cayo, Belize | 2008 | RRQKRF | Virulent |
17 | 00-448-13 | V.1 | V b | Chicken | Honduras | 2000 | RRQKRF | Virulent |
18 | NC/23/11 | V.2 | V c | Chicken | Aguascalientes, Mexico | 2011 | RRQKRF | Virulent |
19 | Mbeya/MT15 | V.3 | V d | Chicken | Tanzania | 2012 | RRQKRF | Virulent |
20 | TX 3988 (D1548) | VI.2.1.1.1 | VI a | Eurasion Collared Dove | Houston, TX, USA | 2004 | RRKKRF | Variant |
21 | ND0007187 | VI.2.1.1.1 | VI a | Rock Pigeon | Allegheny, PA, USA | 2013 | RRKKRF | Variant |
22 | TX 6295 (D0729) | VI.2.1.1.1 | VI a | Eurasion Collared Dove | Houston, TX, USA | 2006 | RRKKRF | Variant |
23 | NDV/fowl/DolnoLinevo/1992 | XX | VI c | Chicken | Dolno Linevo, Bulgaria | 1992 | RRQKRF | Virulent |
24 | APMV-p-Kh-230113 (K13) | XXI.1.1 | VI g | Pigeon | Kharkiv, Ukraine | 2013 | KRQKRF | Variant |
25 | VRD08/385 (N23) | XXI.2.1.2 | VI h | Quail | Nigeria | 2008 | RRRKRF | Variant |
26 | Pk25 | XXI.1.2 | VI m | Pigeon | Lahore, Punjab, Pakistan | 2015 | RRQKRF | Variant |
27 | PKR/CK/15 | VII.2 | VII i | Chicken | Sheikhupura, Punjab, Pakistan | 2015 | RRQKRF | Virulent |
28 | sample 120 | VII.2 | VII i | Chicken (Broiler Breeders) | Beer-Tuvia, Israel | 2013 | RRQKRF | Virulent |
29 | NDV/EG/CK/104/12 | VII.1.1 | VII j | Chicken (Broiler) | Qena, Egypt | 2012 | RRQKRF | Virulent |
30 | NDV/EG/CK/136/12 | VII.1.1 | VII b | Chicken (Broiler) | Qena, Egypt | 2012 | RRQKRF | Virulent |
31 | ZJ1 | VII.1.1 | VII d | Goose | China | 2000 | RRQKRF | Virulent |
32 | Kardam | VII.1.1 | VII d | Chicken | Bulgaria | 2008 | RRQKRF | Virulent |
33 | 78 | VII.1.1 | VII e | Duck | Long Bien, Vietnam | 2002 | RRQKRF | Virulent |
34 | NDV04-23 (C12) | IX | IX | Chicken | China | 2004 | RRQRRF | Virulent |
35 | P/TY/MN/77/08 | X.1 | X a | Turkey | Minnesota, USA | 2008 | RKQGRF | Low |
36 | MN00-39 | X.2 | X b | Juvenile Mallard | Minnesota, USA | 2000 | EKQGRL | Low |
37 | P/TY/MN/4661/09 | X.1 | X a | Turkey | Minnesota, USA | 2009 | RKQGRF | Low |
38 | TX01-130 | X.1 | X a | Mottled Duck | Brazoria County, TX, USA | 2001 | GKQGRL | Low |
39 | P\avian\peru\1918-03\08 | XII.1 | XII a | Chicken | Peru | 2008 | RRQKRF | Virulent |
40 | Tanga/N38 | XIII.1.1 | XIII a | Chicken | Tanzania | 2012 | RRQKRF | Virulent |
41 | Tanga/N1 | XIII.1.1 | XIII a | Chicken | Tanzania | 2012 | RRQKRF | Virulent |
42 | SPVC/Karachi/NDV/27 | XIII.2.1 | XIII b | Chicken | Karachi, Pakistan | 2006 | RRQKRF | Virulent |
43 | KT/MSH/15C (N2) | XIV | XIV b | Pigeon | Katsina, Nigeria | 2009 | RRRKRF | Virulent |
44 | VRD09/546 (N4) | XIV | XIV b | Golden Eagle | Taraba, Nigeria | 2009 | RRRKRF | Virulent |
45 | P/Chicken/FO-DR/499-31/08 | XVI | XVI | Chicken | Dominican Republic | 2008 | RRQKRF | Virulent |
46 | Kudu-113/1992 (N56) | XVII | XVII anc | Duck | Nigeria | 1992 | RRQKRF | Virulent |
47 | ZM/KN/GF01bC (N6) | XVII.1 | XVII a | Guinea Fowl | Zamfara, Nigeria | 2009 | RRQKRF | Virulent |
48 | VRD17/04 (N2) | XVII.1 | XVII a | Quail | Nigeria | 2004 | RRQKRF | Virulent |
49 | 228-7 | XVII.2 | XVII b | Chicken | Nigeria | 2006 | RRQRRF | Virulent |
50 | OOT/4/1 (N69) | XVIII.2 | XVIII b | Chicken | Ota, Nigeria | 2009 | RRQKRF | Virulent |
Oligos | Type | 5′-3′ Sequence | bp | Concentration (μM) | Source |
---|---|---|---|---|---|
F+4829 | Fwd Primer | GGTGAGTCTATCCGGARGATACAAG | 25 | 0.384 | Creelan et al., 2002 [23] |
F-4939 | Rev Primer | AGCTGTTGCAACCCCAAG | 18 | 0.192 | Wise et al., 2004 [11] |
F (VFP-1)-4894_FAM | Probe | AAGCGTTTCTGTCTCCTTCCTCCA | 24 | 0.0624 | |
F+4870_XIV_FAM | Probe | TGGAGGAAGACGACGGAAACGTTT | 24 | 0.0624 | THIS STUDY -MULTIPLEX ASSAY |
F+4835_48F | Fwd Primer | TCCATCCGCAAGATCCAAGG | 20 | 0.192 | |
F-4894_VII_FAM | Probe | AARCGTTTTTGTCTCCTTCCTCCG | 24 | 0.0672 |
Study ID | Genotype (Old Genotype) | M-Gene Assay Ct Value | Original F-Gene Assay Ct Value | Multiplex F-Gene Assay Ct Value (Average) | Multiplex Assay F-Gene Ct Value (Median) | XIPC Ct Value (Average) | XIPC Ct Value (Median) |
---|---|---|---|---|---|---|---|
1 | I.1.1 (Ia) | 13.0 | 40.0 | 37.7 | 40.0 | 31.4 | 31.0 |
2 | I.2 (Ib) | 11.9 | 40.0 | 34.7 | 40.0 | 34.1 | 31.2 |
3 | I.2 (Ib) | 14.8 | 40.0 | 40.0 | 40.0 | 31.1 | 31.2 |
4 | I.2 (Ib) | 17.9 | 40.0 | 40.0 | 40.0 | 34.3 | 33.9 |
5 | I.1.2.1 (Ic) | 15.7 | 40.0 | 40.0 | 40.0 | 30.8 | 30.9 |
6 | II (II) | 10.3 | 40.0 | 40.0 | 40.0 | 31.9 | 32.0 |
7 | II (II) | 9.9 | 40.0 | 40.0 | 40.0 | 31.6 | 31.3 |
8 | III (III) | 18.3 | 20.9 | 21.2 | 21.3 | 31.8 | 31.0 |
9 | III (III) | 19.2 | 21.9 | 24.0 | 24.5 | 30.9 | 31.0 |
10 | IV (IV) | 16.5 | 21.6 | 24.3 | 24.1 | 31.2 | 31.2 |
11 | IV (IV) | 10.3 | 15.1 | 19.5 | 17.5 | 35.3 | 35.2 |
12 | XIX (Va) | 20.0 | 40.0 | 40.0 | 40.0 | 31.2 | 31.2 |
13 | XIX (Va) | 21.2 | 40.0 | 38.9 | 40.0 | 30.9 | 30.9 |
14 | XIX (Va) | 19.8 | 40.0 | 38.8 | 40.0 | 30.8 | 30.8 |
15 | V.1 (Vb) | 14.6 | 17.6 | 21.8 | 23.0 | 30.7 | 30.9 |
16 | V.1 (Vb) | 12.8 | 12.8 | 14.7 | 14.8 | 31.4 | 31.1 |
17 | V.1 (Vb) | 12.6 | 27.1 | 28.1 | 29.6 | 30.8 | 30.9 |
18 | XX (Vc) | 11.8 | 15.3 | 17.0 | 16.8 | 30.5 | 30.4 |
19 | V.3 (Vd) | 12.2 | 20.4 | 22.9 | 23.1 | 30.3 | 30.4 |
20 | VI.2.1.1.1 (VIa) | 20.3 | 40.0 | 40.0 | 40.0 | 31.9 | 32.2 |
21 | VI.2.1.1.1 (VIa) | 25.3 | 40.0 | 40.0 | 40.0 | 32.7 | 31.1 |
22 | VI.2.1.1.1 (VIa) | 17.6 | 40.0 | 39.6 | 40.0 | 31.3 | 31.2 |
23 | XX (VIc) | 12.5 | 14.9 | 18.2 | 17.2 | 31.5 | 30.9 |
24 | XXI.1.1 (VIg) | 18.5 | 40.0 | 40.0 | 40.0 | 31.4 | 31.4 |
25 | XXI.2.1.2 (VIh) | 16.8 | 40.0 | 40.0 | 40.0 | 31.8 | 32.1 |
26 | XXI.1.2 (VIm) | 17.4 | 23.2 | 30.8 | 26.7 | 33.6 | 30.5 |
27 | VII.2 (VIIi) | 11.4 | 22.3 | 22.1 | 22.4 | 30.7 | 30.7 |
28 | VII.2 (VIIi) | 12.1 | 25.2 | 22.7 | 22.4 | 30.8 | 31.1 |
29 | VII.1.1 (VIIj) | 9.8 | 25.9 | 22.0 | 19.6 | 30.9 | 31.1 |
30 | VII.1.1 (VIIb) | 14.1 | 30.5 | 25.2 | 22.4 | 31.3 | 31.4 |
31 | VII.1.1 (VIId) | 9.8 | 19.0 | 16.9 | 16.0 | 31.7 | 32.1 |
32 | VII.1.1 (VIId) | 12.6 | 18.9 | 17.6 | 17.3 | 30.4 | 30.7 |
33 | VII.1.1 (VIIe) | 10.0 | 17.2 | 15.5 | 14.0 | 30.7 | 30.7 |
34 | IX (IX) | 13.8 | 18.6 | 17.5 | 17.4 | 31.4 | 32.1 |
35 | X.1 (Xa) | 14.9 | 40.0 | 40.0 | 40.0 | 33.9 | 33.2 |
36 | X.2 (Xb) | 13.9 | 40.0 | 40.0 | 40.0 | 38.1 | 38.2 |
37 | X.1 (Xa) | 14.4 | 40.0 | 37.7 | 40.0 | 33.1 | 33.2 |
38 | X.1 (Xa) | 12.2 | 40.0 | 40.0 | 40.0 | 35.7 | 34.0 |
39 | XII.1 (XIIa) | 11.3 | 17.0 | 18.1 | 18.6 | 30.8 | 31.0 |
40 | XIII.1.1 (XIIIa) | 17.0 | 15.8 | 20.5 | 22.0 | 31.5 | 31.6 |
41 | XIII.1.1 (XIIIa) | 16.4 | 15.2 | 18.0 | 18.6 | 30.6 | 30.7 |
42 | XIII.2.1 (XIIIb) | 26.1 | 19.8 | 22.5 | 22.7 | 29.9 | 30.1 |
43 | XIV (XIVb) | 15.1 | 40.0 | 24.2 | 17.1 | 30.5 | 30.3 |
44 | XIV (XIVb) | 17.4 | 40.0 | 24.4 | 17.8 | 31.2 | 30.9 |
45 | XVI (XVI) | 11.6 | 15.0 | 18.2 | 17.5 | 31.1 | 31.1 |
46 | XVII (XVIIanc) | 13.3 | 17.2 | 20.5 | 19.5 | 31.2 | 30.4 |
47 | XVII.1 (XVIIa) | 13.5 | 14.8 | 17.9 | 17.3 | 30.9 | 30.6 |
48 | XVII.1 (XVIIa) | 12.3 | 15.1 | 18.4 | 17.6 | 30.8 | 30.6 |
49 | XVII.2 (XVIIb) | 15.7 | 17.6 | 20.8 | 20.0 | 30.8 | 30.8 |
50 | XVIII.2 (XVIIIb) | 15.2 | 22.6 | 26.6 | 27.3 | 30.7 | 31.0 |
NTC | 40.0 | 40.0 | 40.0 | 40.0 | NA | NA | |
PAC (no XIPC added) | 23.5 | 24.2 | 25.7 | 25.7 | NA | NA |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alexander Morris, E.R.; Schroeder, M.E.; Anderson, P.N.; Schroeder, L.J.; Monday, N.; Senties-Cue, G.; Ficken, M.; Ferro, P.J.; Suarez, D.L.; Dimitrov, K.M. Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses. Viruses 2025, 17, 670. https://doi.org/10.3390/v17050670
Alexander Morris ER, Schroeder ME, Anderson PN, Schroeder LJ, Monday N, Senties-Cue G, Ficken M, Ferro PJ, Suarez DL, Dimitrov KM. Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses. Viruses. 2025; 17(5):670. https://doi.org/10.3390/v17050670
Chicago/Turabian StyleAlexander Morris, Ellen Ruth, Megan E. Schroeder, Phelue N. Anderson, Lisa J. Schroeder, Nicholas Monday, Gabriel Senties-Cue, Martin Ficken, Pamela J. Ferro, David L. Suarez, and Kiril M. Dimitrov. 2025. "Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses" Viruses 17, no. 5: 670. https://doi.org/10.3390/v17050670
APA StyleAlexander Morris, E. R., Schroeder, M. E., Anderson, P. N., Schroeder, L. J., Monday, N., Senties-Cue, G., Ficken, M., Ferro, P. J., Suarez, D. L., & Dimitrov, K. M. (2025). Optimization and Validation of Universal Real-Time RT-PCR Assay to Detect Virulent Newcastle Disease Viruses. Viruses, 17(5), 670. https://doi.org/10.3390/v17050670