Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (37,986)

Search Parameters:
Keywords = attractants

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
54 pages, 2957 KB  
Review
Mamba for Remote Sensing: Architectures, Hybrid Paradigms, and Future Directions
by Zefeng Li, Long Zhao, Yihang Lu, Yue Ma and Guoqing Li
Remote Sens. 2026, 18(2), 243; https://doi.org/10.3390/rs18020243 - 12 Jan 2026
Abstract
Modern Earth observation combines high spatial resolution, wide swath, and dense temporal sampling, producing image grids and sequences far beyond the regime of standard vision benchmarks. Convolutional networks remain strong baselines but struggle to aggregate kilometre-scale context and long temporal dependencies without heavy [...] Read more.
Modern Earth observation combines high spatial resolution, wide swath, and dense temporal sampling, producing image grids and sequences far beyond the regime of standard vision benchmarks. Convolutional networks remain strong baselines but struggle to aggregate kilometre-scale context and long temporal dependencies without heavy tiling and downsampling, while Transformers incur quadratic costs in token count and often rely on aggressive patching or windowing. Recently proposed visual state-space models, typified by Mamba, offer linear-time sequence processing with selective recurrence and have therefore attracted rapid interest in remote sensing. This survey analyses how far that promise is realised in practice. We first review the theoretical substrates of state-space models and the role of scanning and serialization when mapping two- and three-dimensional EO data onto one-dimensional sequences. A taxonomy of scan paths and architectural hybrids is then developed, covering centre-focused and geometry-aware trajectories, CNN– and Transformer–Mamba backbones, and multimodal designs for hyperspectral, multisource fusion, segmentation, detection, restoration, and domain-specific scientific applications. Building on this evidence, we delineate the task regimes in which Mamba is empirically warranted—very long sequences, large tiles, or complex degradations—and those in which simpler operators or conventional attention remain competitive. Finally, we discuss green computing, numerical stability, and reproducibility, and outline directions for physics-informed state-space models and remote-sensing-specific foundation architectures. Overall, the survey argues that Mamba should be used as a targeted, scan-aware component in EO pipelines rather than a drop-in replacement for existing backbones, and aims to provide concrete design principles for future remote sensing research and operational practice. Full article
(This article belongs to the Section AI Remote Sensing)
19 pages, 28388 KB  
Article
Finite Element Analysis of Stress and Displacement in the Distal Femur: A Comparative Study of Normal and Osteoarthritic Bone Under Knee Flexion
by Kamonchat Trachoo, Inthira Chaiya and Din Prathumwan
Computation 2026, 14(1), 18; https://doi.org/10.3390/computation14010018 - 12 Jan 2026
Abstract
Osteoarthritis (OA) is a progressive degenerative joint disease that fundamentally alters the mechanical environment of the knee. This study utilizes a finite element framework to evaluate the biomechanical response of the distal femur in healthy and osteoarthritic conditions across critical functional postures. To [...] Read more.
Osteoarthritis (OA) is a progressive degenerative joint disease that fundamentally alters the mechanical environment of the knee. This study utilizes a finite element framework to evaluate the biomechanical response of the distal femur in healthy and osteoarthritic conditions across critical functional postures. To isolate the bone’s inherent structural stiffness and avoid numerical artifacts, a free-body computational approach was implemented, omitting external surface fixations. The distal femur was modeled as a linearly elastic domain with material properties representing healthy tissue and OA-induced degradation. Simulations were performed under passive gravitational loading at knee flexion angles of 0,60, and 90. The results demonstrate that the mechanical response is highly sensitive to postural orientation, with peak von Mises stress consistently occurring at 60 of flexion for both models. Quantitative analysis revealed that the stiffer Normal bone attracted significantly higher internal stress, with a reduction of over 30% in peak stress magnitude observed in the OA model at the most critical flexion angle. Total displacement magnitudes remained relatively stable across conditions, suggesting that OA-induced material softening primarily influences internal stress redistribution rather than global structural sag under passive loads. These findings provide a quantitative index of skeletal vulnerability, supporting the development of patient-specific orthopedic treatments and rehabilitation strategies. Full article
(This article belongs to the Section Computational Biology)
Show Figures

Figure 1

22 pages, 2143 KB  
Article
Coarse-Grained Drift Fields and Attractor-Basin Entropy in Kaprekar’s Routine
by Christoph D. Dahl
Entropy 2026, 28(1), 92; https://doi.org/10.3390/e28010092 - 12 Jan 2026
Abstract
Kaprekar’s routine, i.e., sorting the digits of an integer in ascending and descending order and subtracting the two, defines a finite deterministic map on the state space of fixed-length digit strings. While its attractors (such as 495 for D=3 and 6174 [...] Read more.
Kaprekar’s routine, i.e., sorting the digits of an integer in ascending and descending order and subtracting the two, defines a finite deterministic map on the state space of fixed-length digit strings. While its attractors (such as 495 for D=3 and 6174 for D=4) are classical, the global information-theoretic structure of the induced dynamics and its dependence on the digit length D have received little attention. Here an exhaustive analysis is carried out for D{3,4,5,6}. For each D, all states are enumerated and the transition structure is computed numerically; attractors and convergence distances are obtained, and the induced distribution over attractors across iterations is used to construct “entropy funnels”. Despite the combinatorial growth of the state space, average distances remain small and entropy decays rapidly before entering a slow tail. Permutation symmetry is then exploited by grouping states into digit multisets and, in a further reduction, into low-dimensional digit-gap features. On this gap space, a first-order Markov approximation is empirically estimated by counting one-step transitions induced by the exhaustively enumerated deterministic map. From the resulting empirical transition matrix, drift fields and the stationary distribution are computed numerically. These quantities serve as descriptive summaries of the projected dynamics and are not derived in closed form. Full article
(This article belongs to the Section Complexity)
Show Figures

Figure 1

20 pages, 5363 KB  
Article
Bovine Muscle Satellite Cell-Derived Exosomes Modulate Preadipocyte Adipogenesis via bta-miR-2904
by Mengxia Sun, Mengdi Chen, Yang Yi, Binru Li, Tianyu Zhang, Ziqi Liu, Wenyu Jiao, Tianqi Si, Yunkai He and Guangjun Xia
Animals 2026, 16(2), 218; https://doi.org/10.3390/ani16020218 - 12 Jan 2026
Abstract
Intramuscular fat (IMF) significantly impacts meat quality. Exosomes have attracted increasing attention for their regulatory roles in muscle-adipose tissue crosstalk; however, their precise mechanisms remain largely unclear. Based on this, this study aimed to establish a muscle-adipose co-culture system to better simulate the [...] Read more.
Intramuscular fat (IMF) significantly impacts meat quality. Exosomes have attracted increasing attention for their regulatory roles in muscle-adipose tissue crosstalk; however, their precise mechanisms remain largely unclear. Based on this, this study aimed to establish a muscle-adipose co-culture system to better simulate the in vivo physiological environment. Using exosomal miRNAs as molecular links, we investigated how bovine muscle satellite cells influence lipid accumulation and adipogenesis in preadipocytes. We established a co-culture system of bovine muscle satellite cells and preadipocytes and found that co-culture significantly inhibited lipid droplet accumulation and adipogenesis in preadipocytes. Therefore, we hypothesized that exosomes derived from bovine muscle satellite cells regulate the adipogenic differentiation of bovine preadipocytes through intercellular communication and that specific exosomal miRNAs play pivotal roles in this regulatory process. We successfully isolated and identified muscle-derived (Mu-EXO), adipose-derived (Ad-EXO), and co-culture exosomes (Co-EXO). High-throughput sequencing revealed the differential expression profiles of miRNAs. Notably, the bovine-specific miRNA bta-miR-2904, annotated in miRBase v22 with limited cross-species conservation, was significantly enriched in Mu-EXO and Co-EXO compared with Ad-EXO. Further functional experiments demonstrated that overexpression of bta-miR-2904 markedly inhibited lipid droplet accumulation, triglyceride content, and the expression of adipogenesis-related genes in preadipocytes; inhibition had opposite effects. Our results demonstrate that bovine muscle-derived exosomal miR-2904 inhibits lipid accumulation and adipogenesis in preadipocytes. These results establish a theoretical basis for understanding skeletal muscle-adipose crosstalk and offer a novel molecular target for regulating intramuscular fat deposition in beef cattle. Full article
(This article belongs to the Section Cattle)
Show Figures

Figure 1

16 pages, 3808 KB  
Article
Flexible Copper-Based TEM Grid for Microscopic Characterization of Aged Magnetotactic Bacteria MS-1 and Their Magnetosome Crystals in Air-Dried Droplet
by Natalia Lorela Paul, Regis Deturche, Jeremie Beal, Catalin Ovidiu Popa and Rodica Elena Ionescu
Molecules 2026, 31(2), 253; https://doi.org/10.3390/molecules31020253 - 12 Jan 2026
Abstract
Magnetotactic bacteria (MTB) have attracted interest in recent years, mainly due to their natural ability to form intracellular magnetic nanocrystals with potential for biomedical and environmental applications. In this study, we focused on the morphological analysis of the Paramagnetospirillum magnetotacticum MS-1 strain, trying [...] Read more.
Magnetotactic bacteria (MTB) have attracted interest in recent years, mainly due to their natural ability to form intracellular magnetic nanocrystals with potential for biomedical and environmental applications. In this study, we focused on the morphological analysis of the Paramagnetospirillum magnetotacticum MS-1 strain, trying to keep the bacteria as close to their natural state as possible. An important element of this work is the use of untreated bacterial cells, without conductive coating or chemical fixation, using a simple and low-cost support. This choice was made intentionally to avoid changes induced by metallization and to allow direct observation of characteristics that may be relevant in applications where the interaction of the bacteria with the environment plays an important role, such as biosensors. In addition, the analysis was performed on a bacterial suspension stored for approximately 10 months at 4 °C to assess whether the morphology specific to the MS-1 strain is maintained over time. The obtained results show that the general cell morphology and magnetosome organization can be clearly and reproducibly observed even after long-term storage. Without attempting to replace studies based on conventional sample preparation methods, this work provides a complementary perspective and suggests that magnetotactic bacteria may represent a natural and effective alternative to synthetic magnetic nanoparticles, with potential applications in the biomedical and environmental fields. Full article
(This article belongs to the Special Issue Functional Nanomaterials for Biosensors and Biomedicine Application)
Show Figures

Graphical abstract

16 pages, 947 KB  
Article
Depression Detection Method Based on Multi-Modal Multi-Layer Collaborative Perception Attention Mechanism of Symmetric Structure
by Shaorong Jiang, Chengjun Xu and Xiuya Fang
Informatics 2026, 13(1), 8; https://doi.org/10.3390/informatics13010008 - 12 Jan 2026
Abstract
Depression is a mental illness with hidden characteristics that affects human physical and mental health. In severe cases, it may lead to suicidal behavior (for example, among college students and social groups). Therefore, it has attracted widespread attention. Scholars have developed numerous models [...] Read more.
Depression is a mental illness with hidden characteristics that affects human physical and mental health. In severe cases, it may lead to suicidal behavior (for example, among college students and social groups). Therefore, it has attracted widespread attention. Scholars have developed numerous models and methods for depression detection. However, most of these methods focus on a single modality and do not consider the influence of gender on depression, while the existing models have limitations such as complex structures. To solve this problem, we propose a symmetric-structured, multi-modal, multi-layer cooperative perception model for depression detection that dynamically focuses on critical features. First, the double-branch symmetric structure of the proposed model is designed to account for gender-based variations in emotional factors. Second, we introduce a stacked multi-head attention (MHA) module and an interactive cross-attention module to comprehensively extract key features while suppressing irrelevant information. A bidirectional long short-term memory network (BiLSTM) module enhances depression detection accuracy. To verify the effectiveness and feasibility of the model, we conducted a series of experiments using the proposed method on the AVEC 2014 dataset. Compared with the most advanced HMTL-IMHAFF model, our model improves the accuracy by 0.0308. The results indicate that the proposed framework demonstrates superior performance. Full article
Show Figures

Figure 1

34 pages, 5835 KB  
Review
RIS-UAV Cooperative ISAC Technology for 6G: Architecture, Optimization, and Challenges
by Yuanfei Zhang, Zhongqiang Luo, Wenjie Wu and Wencheng Tian
Algorithms 2026, 19(1), 65; https://doi.org/10.3390/a19010065 - 12 Jan 2026
Abstract
With the development of 6G technology, conventional wireless communication systems are increasingly unable to meet stringent performance requirements in complex and dynamic environments. Therefore, integrated sensing and communication (ISAC), which enables efficient spectrum sharing, has attracted growing attention as a promising solution. This [...] Read more.
With the development of 6G technology, conventional wireless communication systems are increasingly unable to meet stringent performance requirements in complex and dynamic environments. Therefore, integrated sensing and communication (ISAC), which enables efficient spectrum sharing, has attracted growing attention as a promising solution. This paper provides a comprehensive survey of reconfigurable intelligent surface (RIS)-unmanned aerial vehicle (UAV)-assisted ISAC systems. It first introduces a four-dimensional quantitative evaluation framework grounded in information theory. Then, we provide a structured overview of coordination mechanisms between different types of RIS and UAV platforms within ISAC architectures. Furthermore, we analyze the application characteristics of various multiple access schemes in these systems. Finally, the main technical challenges and potential future research directions are discussed and analyzed. Full article
Show Figures

Figure 1

32 pages, 34035 KB  
Review
Irradiation-Induced Defect Engineering in REBCO Coated Conductors: Mechanisms, Effects, and Perspectives
by Yuxiang Li, Ningning Liu, Ziheng Guo, Liangkang Chen, Dongliang Gong, Dongliang Wang and Yanwei Ma
Materials 2026, 19(2), 300; https://doi.org/10.3390/ma19020300 - 12 Jan 2026
Abstract
REBa2Cu3O7−δ (REBCO) coated conductors are considered a critical material for next-generation high-field superconducting applications owing to their superior superconducting performance at elevated temperatures and under strong magnetic fields. However, rapid degradation of the critical current density ( [...] Read more.
REBa2Cu3O7−δ (REBCO) coated conductors are considered a critical material for next-generation high-field superconducting applications owing to their superior superconducting performance at elevated temperatures and under strong magnetic fields. However, rapid degradation of the critical current density (Jc) under high-field and high-temperature conditions remains a major limitation for their practical applications. To address this, controlling flux pinning centers has emerged as a crucial strategy to enhance performance. Irradiation techniques, as one of the most commonly employed methods, have attracted considerable attention due to their capability to provide precise control, high reproducibility, and flexibility in tailoring the microstructure. In this review, we focus on the effects of proton, heavy-ion, and neutron irradiation on the microstructure and superconducting properties of REBCO coated conductors. We discuss the underlying mechanisms in terms of defect types and distributions, energy loss processes, flux pinning enhancement, and the evolution of Jc and transition temperature (Tc). Furthermore, we compare different irradiation methods, highlighting their advantages and suitability across diverse temperature and magnetic field conditions. The potential of hybrid irradiation strategies for creating multiscale composite pinning landscapes is also examined. Future efforts should aim to synergistically combine different irradiation mechanisms and optimize defect structures to develop REBCO tapes with highly isotropic and stable flux pinning, which is essential for large-scale applications in fusion energy, high-field magnets, and aerospace electric motors. Full article
Show Figures

Figure 1

10 pages, 3414 KB  
Article
PN Tandem Solar Cells Based on Combination of Dye-Sensitized TiO2 Photoanode and Perovskite-Sensitized NiO Photocathode
by Huan Wang, Weicheng Tang, Mengru Li and Xiaoli Mao
Micromachines 2026, 17(1), 99; https://doi.org/10.3390/mi17010099 - 12 Jan 2026
Abstract
Dye-sensitized solar cells (DSSCs) have attracted significant attention as next-generation photovoltaic devices due to their low cost, simple fabrication process, use of earth-abundant materials, and potential for colour tunability and transparency. p–n tandem DSSCs have garnered particular interest owing to their higher open-circuit [...] Read more.
Dye-sensitized solar cells (DSSCs) have attracted significant attention as next-generation photovoltaic devices due to their low cost, simple fabrication process, use of earth-abundant materials, and potential for colour tunability and transparency. p–n tandem DSSCs have garnered particular interest owing to their higher open-circuit voltage compared to single-junction DSSCs. However, the performance of such tandem devices remains limited by relatively low open-circuit voltage and short-circuit current density, primarily due to the scarcity of suitable p-type sensitizers. To address this challenge, we report a novel p–n tandem solar cell integrating a dye-sensitized TiO2 photoanode with a perovskite-sensitized NiO photocathode, achieving a record power conversion efficiency of 4.02%. By optimizing the thickness of the TiO2 layer, a maximum open-circuit voltage of 1060 mV and a peak short-circuit current density of 6.11 mA cm−2 were simultaneously attained. Full article
(This article belongs to the Special Issue Photonic and Optoelectronic Devices and Systems, 4th Edition)
Show Figures

Figure 1

16 pages, 3068 KB  
Article
Modulating Reactivity and Stability of Graphene Quantum Dots with Boron Dopants for Mercury Ion Interaction: A DFT Perspective
by Joaquín Alejandro Hernández Fernández, Juan Jose Carrascal and Juan Sebastian Gómez Pérez
J. Compos. Sci. 2026, 10(1), 40; https://doi.org/10.3390/jcs10010040 - 12 Jan 2026
Abstract
The objective of this study was to use Density Functional Theory (DFT) calculations to examine how boron doping modulates the electronic properties of graphene quantum dots (GQDs) and their interaction with the Hg2+ ion. Boron doping decreases the HOMO-LUMO gap and increases [...] Read more.
The objective of this study was to use Density Functional Theory (DFT) calculations to examine how boron doping modulates the electronic properties of graphene quantum dots (GQDs) and their interaction with the Hg2+ ion. Boron doping decreases the HOMO-LUMO gap and increases the GQD’s electrophilic character, facilitating charge transfer to the metal ion. The adsorption energy results were negative, indicating electronic stabilization of the combined systems, without implying thermodynamic favorability, with the GQD@3B_Hg2+ system being the strongest at −349.52 kcal/mol. The analysis of global parameters (chemical descriptors) and the study of non-covalent interactions (NCIs) supported the affinity of Hg2+ for doped surfaces, showing that the presence of a single boron atom contributes to clear attractive interactions. In general, configurations doped with 1 or 2 boron atoms exhibit satisfactory performance, demonstrating that boron doping effectively modulates the reactivity and adsorption properties of GQD for efficient Hg2+ capture. Full article
(This article belongs to the Section Composites Modelling and Characterization)
Show Figures

Figure 1

45 pages, 2580 KB  
Review
Thermogenesis in Adipose Tissue: Adrenergic and Non-Adrenergic Pathways
by Md Arafat Hossain, Ankita Poojari and Atefeh Rabiee
Cells 2026, 15(2), 131; https://doi.org/10.3390/cells15020131 - 12 Jan 2026
Abstract
Obesity has reached epidemic proportions, driven by energy imbalance and limited capacity for adaptive thermogenesis. Brown (BAT) and beige adipose tissues dissipate energy through non-shivering thermogenesis (NST), primarily via uncoupling protein-1 (UCP1), making them attractive targets for increasing energy expenditure (EE). The canonical [...] Read more.
Obesity has reached epidemic proportions, driven by energy imbalance and limited capacity for adaptive thermogenesis. Brown (BAT) and beige adipose tissues dissipate energy through non-shivering thermogenesis (NST), primarily via uncoupling protein-1 (UCP1), making them attractive targets for increasing energy expenditure (EE). The canonical β-adrenergic pathway robustly activates NST in rodents through β3 adrenoceptors; however, translational success in humans has been limited by low β3 expression, off-target cardiovascular effects, and the emerging dominance of β2-mediated signaling in human BAT. Consequently, attention has shifted to non-adrenergic and UCP1-independent mechanisms that offer greater tissue distribution and improved safety profiles. This review examines a broad spectrum of alternative receptors and pathways—including GPRs, TRP channels, TGR5, GLP-1R, thyroid hormone receptors, estrogen receptors, growth hormone, BMPs, sirtuins, PPARs, and interleukin signaling—as well as futile substrate cycles (Ca2+, creatine, and glycerol-3-phosphate) that sustain thermogenesis in beige adipocytes and skeletal muscle. Pharmacological agents (natural compounds, peptides, and small molecules) and non-pharmacological interventions (cold exposure, exercise, diet, and time shift) targeting these pathways are critically evaluated. We highlight the translational gaps between rodent and human studies, the promise of multimodal therapies combining low-dose adrenergic agents with non-adrenergic activators, and emerging strategies such as sarco/endoplasmic reticulum calcium ATPase protein (SERCA) modulators and tissue-specific delivery. Ultimately, integrating adrenergic and non-adrenergic approaches holds the greatest potential for safe, effective, and sustainable obesity management. Full article
Show Figures

Figure 1

16 pages, 3692 KB  
Article
Study on the Molecular Mechanism of Interaction Between Perfluoroalkyl Acids and PPAR by Molecular Docking
by Renli Wei, Huiping Xiao, Jie Fu, Yin Luo and Pengfei Wang
Toxics 2026, 14(1), 67; https://doi.org/10.3390/toxics14010067 - 11 Jan 2026
Abstract
Per- and polyfluoroalkyl substances (PFASs), as a class of “permanent chemicals” with high environmental persistence and bioaccumulation, have attracted much attention. In this study, we focused on the molecular mechanism of the interaction between perfluoroalkyl acids (PFAAs) and peroxisome proliferator-activated receptor δ (PPARδ). [...] Read more.
Per- and polyfluoroalkyl substances (PFASs), as a class of “permanent chemicals” with high environmental persistence and bioaccumulation, have attracted much attention. In this study, we focused on the molecular mechanism of the interaction between perfluoroalkyl acids (PFAAs) and peroxisome proliferator-activated receptor δ (PPARδ). Using molecular docking, binding free energy calculation, and structural analysis, we systematically investigated the binding modes, key amino acid residues, and binding energies of 20 structurally diverse PFAAs with PPARδ. The results showed that the binding energies of PFAAs with PPARδ were significantly affected by the molecular weight, the number of hydrogen bond donors, and the melting point of PFAAs. PFAAs with smaller molecular weights and fewer hydrogen bond donors showed stronger binding affinity. The binding sites were concentrated in high-frequency amino acid residues such as TRP-256, ASN-269, and GLY-270, and the interaction forces were dominated by hydrogen and halogen bonds. PFAAs with branched structure of larger molecular weight (e.g., 3m-PFOA, binding energy of −2.92 kcal·mol−1; 3,3m2-PFOA, binding energy of −2.45 kcal·mol−1) had weaker binding energies than their straight-chain counterparts due to spatial site-blocking effect. In addition, validation group experiments further confirmed the regulation law of binding strength by physicochemical properties. In order to verify the binding stability of the key complexes predicted by molecular docking, and to investigate the dynamic behavior under the conditions of solvation and protein flexibility, molecular dynamics simulations were conducted on PFBA, PFOA, 3,3m2-PFOA, and PFHxA. The results confirmed the dynamic stability of the binding of the high-affinity ligands selected through docking to PPARδ. Moreover, the influence of molecular weight and branched structure on the binding strength was quantitatively verified from the perspectives of energy and RMSD trajectories. The present study revealed the molecular mechanism of PFAAs interfering with metabolic homeostasis through the PPARδ pathway, providing a theoretical basis for assessing its ecological and health risks. Full article
(This article belongs to the Section Emerging Contaminants)
Show Figures

Graphical abstract

9 pages, 707 KB  
Brief Report
Evaluation of Trap Systems for Monitoring of Odontothrips loti and Frankliniella occidentalis: A Pilot Field Trial
by Yingning Luo, Chen Han, Xiongbing Tu, Mark R. McNeill, Xuewei Yin and Liping Ban
Insects 2026, 17(1), 84; https://doi.org/10.3390/insects17010084 - 11 Jan 2026
Abstract
Plant-derived volatile organic compounds (VOCs) are widely used as insect attractants for population monitoring, offering an efficient and eco-friendly approach to pest management. Since thrips are the dominant pest species in alfalfa fields, this study aimed to identify a suitable attractant trap design [...] Read more.
Plant-derived volatile organic compounds (VOCs) are widely used as insect attractants for population monitoring, offering an efficient and eco-friendly approach to pest management. Since thrips are the dominant pest species in alfalfa fields, this study aimed to identify a suitable attractant trap design that could be employed to monitor Odontothrips loti and Frankliniella occidentalis. The field experiment showed that p-Menth-8-en-2-one, dispensed through PE (Polyethylene) vials positioned at the top of the alfalfa canopy, attracted the most thrips, with the optimal concentrations of 1 µg/µL for O. loti and 50 µg/µL for F. occidentalis, respectively. When both species occur in alfalfa, PVC pipes dispensing p-Menth-8-en-2-one at a concentration of 1 µg/µL provide an effective attractant for both species, offering an indication of presence and relative abundance. Understanding the incidence and abundance of both species in the field provides growers an opportunity to target treatments to protect crops before significant damage occurs, reduce insecticide overuse, and support integrated pest management strategies for these two high-impact pests. Full article
(This article belongs to the Section Insect Pest and Vector Management)
Show Figures

Figure 1

24 pages, 6343 KB  
Review
Fe-Based Catalysts in MgH2 Hydrogen Storage: Mechanistic Insights, Stability Challenges, and a Roadmap for Scalable Design
by Quanhui Hou, Qianyang Wang, Xue Du, Zhihao Xu, Xiao Xu, Yunxuan Zhou and Zhao Ding
Coatings 2026, 16(1), 92; https://doi.org/10.3390/coatings16010092 - 11 Jan 2026
Abstract
Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material owing to its high hydrogen capacity and low cost, yet its practical application is limited by sluggish kinetics, high operating temperatures, and poor cycling stability. Among various catalytic approaches, Fe-based catalysts [...] Read more.
Magnesium hydride (MgH2) is a promising solid-state hydrogen storage material owing to its high hydrogen capacity and low cost, yet its practical application is limited by sluggish kinetics, high operating temperatures, and poor cycling stability. Among various catalytic approaches, Fe-based catalysts have emerged as attractive candidates due to their abundance, compositional tunability, and effective promotion of hydrogen sorption reactions in MgH2 systems. This review critically summarizes recent progress in Fe-based catalysts for MgH2 hydrogen storage, encompassing elemental Fe, iron oxides, Fe-based alloys, and advanced composite catalysts with nanostructured and multicomponent architectures. Mechanistic insights into catalytic enhancement are discussed, with particular emphasis on interfacial electron transfer, catalytic phase evolution, hydrogen diffusion pathways, and synergistic effects between Fe-containing species and MgH2, supported by experimental and theoretical studies. In addition to catalytic activity, key stability challenges—including catalyst agglomeration, phase segregation, interfacial degradation, and performance decay during cycling—are analyzed in relation to structural evolution and kinetic–thermodynamic trade-offs. Finally, a roadmap for the scalable design of Fe-based catalysts is proposed, highlighting rational catalyst selection, interface engineering, and compatibility with large-scale synthesis. This review aims to bridge fundamental mechanisms with practical design considerations for developing durable and high-performance MgH2-based hydrogen storage materials. Full article
(This article belongs to the Special Issue The Research of Change: Catalysts for a Sustainable Future)
16 pages, 831 KB  
Article
Color Assessments and Glycolysis of Cetylpyridinium Chloride-Containing Aqueous Solutions and Commercial Mouthwashes
by Robert L. Karlinsey and Tamara R. Karlinsey
Methods Protoc. 2026, 9(1), 10; https://doi.org/10.3390/mps9010010 - 11 Jan 2026
Abstract
Background: Effective cetylpyridinium chloride (CPC)-based mouthwashes critically depend on maintaining maximum levels of bioavailable CPC to deliver optimum antimicrobial benefits. While this is traditionally assessed using cellulose-based methods, from economic and efficiency perspectives, there remains a need to identify other potential methods [...] Read more.
Background: Effective cetylpyridinium chloride (CPC)-based mouthwashes critically depend on maintaining maximum levels of bioavailable CPC to deliver optimum antimicrobial benefits. While this is traditionally assessed using cellulose-based methods, from economic and efficiency perspectives, there remains a need to identify other potential methods of assessing bioavailable CPC. Here, we explored whether quaternary ammonium compound (QAC) test strips are sensitive to CPC-based formulations, and if so, whether there might exist a possible correlation with glycolysis outcomes. Methods: Quantitative color parameters were obtained using spectrophotometric assessments of QAC test strips immersed in simple CPC solutions and eight commercial CPC-based mouthwashes available in the USA. Then, using our established glycolysis model, we assessed the glycolytic response of both the simple CPC solutions and commercial CPC-based mouthwashes, and compared these data sets. Results: Significant differences (p < 0.05) among the CPC simple solutions were found. Importantly, spectrophotometric assessments and glycolysis trials produced good correlations. Evaluations of the commercial mouthwashes further underlined this correlation, even though those that comprise zinc salts may impact QAC-based color. Conclusions: Based on these results, we believe the use of QAC test strips provides an attractive option to formulators and brands specializing in the development and/or testing of CPC-based oral care formulations. Full article
(This article belongs to the Section Biomedical Sciences and Physiology)
Back to TopTop