Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,106)

Search Parameters:
Keywords = attenuated total reflection Fourier transform infrared

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 8611 KB  
Article
Multifunctional Electrospun Materials from Poly(Vinyl Alcohol)/Chitosan and Polylactide Incorporating Rosmarinic Acid and Lidocaine with Antioxidant and Antimicrobial Properties
by Milena Ignatova, Dilyana Paneva, Selin Kyuchyuk, Nevena Manolova, Iliya Rashkov, Milena Mourdjeva and Nadya Markova
Polymers 2025, 17(19), 2657; https://doi.org/10.3390/polym17192657 - 30 Sep 2025
Abstract
Novel multifunctional fibrous materials were prepared by simultaneous dual spinneret electrospinning of two separate solutions differing in composition. This technique allowed for the preparation of materials built of two types of fibers: fibers from poly(vinyl alcohol) (PVA), chitosan (Ch), and rosmarinic acid (RA), [...] Read more.
Novel multifunctional fibrous materials were prepared by simultaneous dual spinneret electrospinning of two separate solutions differing in composition. This technique allowed for the preparation of materials built of two types of fibers: fibers from poly(vinyl alcohol) (PVA), chitosan (Ch), and rosmarinic acid (RA), and poly(L-lactide) (PLA) fibers containing lidocaine hydrochloride (LHC). Confocal laser scanning microscopy (CLSM) analyses showed that both types of fibers are present on the surface and in the bulk of the new materials. The presence of all components and some interactions between them were proven by attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. RA and LHC were in an amorphous state in the fibers, and their presence affected the temperature characteristics and the crystallinity, as detected by differential scanning calorimetry (DSC) and X-ray diffraction analyses (XRD). The presence of PVA/Ch/RA fibers enabled the hydrophilization of the surface of the multifunctional fibrous materials (the water contact angle value was 0°). The newly developed materials demonstrated adequate mechanical properties, making them suitable for use in wound dressing applications. The RA-containing fibrous mats possessed high radical-scavenging activity (ca. 93%), and the combining with LHC led to an enhancement of this effect (ca. 98.5%). RA-containing fibrous mats killed all the pathogenic bacteria S. aureus and E. coli and decreased the titer of fungi C. albicans by ca. 0.4 log for a contact time of 24 h. Therefore, the new materials are prospective as antibacterial and atraumatic functional wound dressings, as systems for local drug delivery, and in medical skincare. Full article
(This article belongs to the Special Issue Electrospinning of Polymer Systems)
14 pages, 537 KB  
Article
Enhancing Tetradesmus sp. Biomass Recovery: The Influence of Culture Media on Surface Physicochemical Properties
by Ana Carolina Anzures-Mendoza, Ulises Páramo-García, Nohra Violeta Gallardo-Rivas, Luciano Aguilera-Vázquez and Ana María Mendoza-Martínez
Processes 2025, 13(10), 3099; https://doi.org/10.3390/pr13103099 - 27 Sep 2025
Abstract
Efficient biomass harvesting remains one of the primary barriers to the commercial feasibility of large-scale microalgal production. This study investigates the effect of different culture media on the surface physicochemical properties of Tetradesmus sp., with emphasis on their role in natural aggregation. Cultures [...] Read more.
Efficient biomass harvesting remains one of the primary barriers to the commercial feasibility of large-scale microalgal production. This study investigates the effect of different culture media on the surface physicochemical properties of Tetradesmus sp., with emphasis on their role in natural aggregation. Cultures were grown for 30 days under controlled light and temperature conditions using Blue Green 11 (BG11), Tris–acetate–phosphate (TAP), and deionized water supplemented with Bayfolan® fertilizer. Surface hydrophobicity was assessed through microbial adhesion to solvents (MATS) and contact angle analysis, electrokinetic properties were evaluated by zeta potential measurements, and cell surface chemistry was characterized by attenuated total reflectance (ATR) sampling methodology for Fourier Transform Infrared (FTIR) spectroscopy. Across all treatments, Tetradesmus sp. exhibited inherent hydrophobicity, but Bayfolan® supplementation yielded the highest contact angle (49.0 ± 0.9°) and the least negative free energy of interaction (ΔGsws = −26.36 mJ·m−2), indicating a stronger tendency toward self-aggregation. Zeta potential values remained consistently negative (−10 to −14 mV), with no significant variation among media, suggesting that hydrophobic interactions rather than electrostatic forces govern aggregation. ATR-FTIR spectra confirmed the presence of lipids, proteins, and carbohydrates, with changes in peak intensities reflecting metabolic adjustments to media composition. These results demonstrate that low-cost Bayfolan® supplementation enhances surface hydrophobicity and aggregation, providing a sustainable strategy to facilitate biomass recovery and reduce harvesting costs in microalgal biorefineries. Full article
(This article belongs to the Special Issue Advances in Bioprocess Technology, 2nd Edition)
20 pages, 5255 KB  
Article
Development and Characterization of Chitosan Microparticles via Ionic Gelation for Drug Delivery
by Zahra Rajabimashhadi, Annalia Masi, Sonia Bagheri, Claudio Mele, Gianpiero Colangelo, Federica Paladini and Mauro Pollini
Polymers 2025, 17(19), 2603; https://doi.org/10.3390/polym17192603 - 26 Sep 2025
Abstract
This study explores the formulation of chitosan microparticles through ionic gelation and presents detailed physicochemical characterization, release studies, and the utility and potential uses for drug delivery. Three formulations were prepared under rate-controlled conditions (stirring at 800 rpm and pH maintained at 4.6) [...] Read more.
This study explores the formulation of chitosan microparticles through ionic gelation and presents detailed physicochemical characterization, release studies, and the utility and potential uses for drug delivery. Three formulations were prepared under rate-controlled conditions (stirring at 800 rpm and pH maintained at 4.6) with and without stabilizers to examine the effects of formulation parameters on particle morphology and structural stability. To determine different structural and chemical characteristics, Attenuated Total Reflectance Fourier-Transform Infrared spectroscopy (ATR–FTIR), Scanning Electron Microscopy (SEM), and dynamic light scattering (DLS) were utilized, which confirmed that the particles formed and assessed size distribution and structural integrity. Atomic force microscopy (AFM) was used to quantify surface roughness and potential nanomechanical differences that may derive from the use of different modifiers. Coformulation of bovine serum albumin (BSA) permitted assessment of encapsulation efficiency and drug release capacity. Based on in vitro release evidence, the protein released at a different rate, and the dispersion of formulations under physiological conditions (PBS, pH 7.4, 37 °C) confirmed the differences in stability between formulations. The tunable physical characteristics, mild fabrication conditions, and controlled drug release demonstrated that the chitosan particles could have useful relevance as a substrate for localized drug delivery and as a bioactive scaffold for tissue regenerative purposes. Full article
(This article belongs to the Special Issue Advanced Polymeric Biomaterials for Drug Delivery Applications)
Show Figures

Figure 1

20 pages, 1707 KB  
Article
A Grape-Derived Solvent for the Recovery of Phenolic Compounds from Food Waste By-Products Using Ultrasonic-Assisted and Overnight Extraction
by Dimitrios G. Lazaridis, Vassilios K. Karabagias, Nikolaos D. Andritsos, Aris E. Giannakas and Ioannis K. Karabagias
Molecules 2025, 30(19), 3878; https://doi.org/10.3390/molecules30193878 - 25 Sep 2025
Abstract
This present study aimed to investigate the recovery of polyphenols from red onion peel (OPP) and pomace of Merlot (MWP) and Syrah (SWP) grape varieties, using a common biphasic solvent (70/30 ethanol/water) and a new biphasic and eco-friendly solvent that has been developed [...] Read more.
This present study aimed to investigate the recovery of polyphenols from red onion peel (OPP) and pomace of Merlot (MWP) and Syrah (SWP) grape varieties, using a common biphasic solvent (70/30 ethanol/water) and a new biphasic and eco-friendly solvent that has been developed in our laboratory (ethanol of grape origin). Moreover, overnight and ultrasonic-assisted extractions were carried out to investigate whether the extraction method could affect the obtained results. Results showed that 70% ethanol achieved a significantly (p < 0.05) higher yield in total phenolic content (TPC) and total flavonoid content (TFC), while the extracts with ethanol of grape origin exhibited considerably higher antioxidant activity as evidenced by the DPPH and complementary by FRAP assays. The overnight and ultrasonic-assisted extraction played a significant (p < 0.05) role in achieving better extraction of bioactive components such as phenolic compounds. Color parameters were also determined, showing that the presence of yellow, blue and red color tones depend on the extraction method and solvent, due to the different compositional characteristics of pigments, mainly anthocyanins. In addition, physicochemical parameters such as pH and total soluble solids (TSSs) of the extracts were also measured. Finally, the composition of ethanol of grape origin was characterized by means of Ultraviolet–Visible (UV-Vis) and Attenuated Total Reflectance-Fourier Transform Infrared (ATR-FTIR) spectroscopy, which confirmed the presence of ethanol and acetic acid. This study brings new results regarding the prospect of using new solvents for the recovery of bioactive compounds from agricultural by-products, and the development direction of scientific research or industrial production, based on ultrasonic-assisted and overnight extraction methods. Full article
Show Figures

Graphical abstract

21 pages, 9399 KB  
Article
Combined Effect of Zinc Oxide and Titanium Dioxide Nanoparticles on Color Stability and Antifungal Activity of Maxillofacial Silicone Elastomers: An In Vitro Study
by Ali Sabah Mohammad and Zhala Dara Omar Meran
Prosthesis 2025, 7(5), 122; https://doi.org/10.3390/prosthesis7050122 - 25 Sep 2025
Abstract
Objective: Maxillofacial silicone elastomers represent a standard material in maxillofacial prosthetic applications due to their excellent biocompatibility and aesthetic properties. However, their long-term performance is limited by color degradation and susceptibility to fungal colonization. Incorporating nanoparticles into silicone matrices has emerged as a [...] Read more.
Objective: Maxillofacial silicone elastomers represent a standard material in maxillofacial prosthetic applications due to their excellent biocompatibility and aesthetic properties. However, their long-term performance is limited by color degradation and susceptibility to fungal colonization. Incorporating nanoparticles into silicone matrices has emerged as a potential solution to enhance durability and hygiene. This study aimed to evaluate the effect of zinc oxide (ZnO) and titanium dioxide (TiO2) nanoparticles used individually and in combination to evaluate the color stability and antifungal activity of pigmented maxillofacial silicone elastomers. Material and Methods: Fifty specimens were fabricated for each test and divided into five groups: Group (A) control (pigmented silicone only, no nanoparticles), Group (B) ZnO (1.5 wt%), Group (C) TiO2 (2.5 wt%), and two combinations: Group(D1) (0.75 wt% ZnO + 1.25 wt% TiO2) and Group (D2)(0.5 wt% ZnO + 0.83 wt% TiO2) ratios. Color stability was assessed before and after 500 h of artificial aging using CIELAB-ΔE values and visual scoring. Antifungal activity was evaluated against Candida albicans using the disk diffusion method. Attenuated Total Reflectance with Fourier Transform Infrared Spectroscopy (ATR-FTIR), Scanning electron microscopy (SEM) along side with Energy-dispersive X-ray spectroscopy (EDS) were applied for Specimen characterization. Data were analyzed with one-way ANOVA and Tukey’s post hoc test (α = 0.05). Results: The dual-nanoparticle group with 0.75% ZnO and 1.25% TiO2 demonstrated the best color stability (ΔE = 0.86 ± 0.50) and strongest antifungal activity (inhibition zone: 7.8 ± 3.8 mm) compared to the control (ΔE = 2.31 ± 0.62; no inhibition). Single-nanoparticle groups showed moderate improvements. A significant Association (r = 0.89, p < 0.01) was found between nanoparticle dispersion and material performance. Conclusions: Incorporating ZnO and TiO2 nanoparticles into maxillofacial silicone elastomers significantly enhances color stability and antifungal efficacy. The combined formulation showed a synergistic effect, offering promising potential for improving the longevity and hygiene of maxillofacial prostheses. Full article
Show Figures

Figure 1

34 pages, 20406 KB  
Article
Designing Sustainable Packaging Materials: Citric Acid-Modified TPS/PLA Blends with Enhanced Functional and Eco-Performance
by Vesna Ocelić Bulatović, Mario Kovač, Dajana Kučić Grgić, Vilko Mandić and Antun Jozinović
Polymers 2025, 17(19), 2571; https://doi.org/10.3390/polym17192571 - 23 Sep 2025
Viewed by 119
Abstract
Starch extracted from the domestically cultivated Scala potato variety was explored as a renewable resource for the formulation of biodegradable thermoplastic starch (TPS)/polylactic acid (PLA) blends intended for environmentally friendly food packaging applications. The isolated starch underwent comprehensive physicochemical and structural characterization to [...] Read more.
Starch extracted from the domestically cultivated Scala potato variety was explored as a renewable resource for the formulation of biodegradable thermoplastic starch (TPS)/polylactic acid (PLA) blends intended for environmentally friendly food packaging applications. The isolated starch underwent comprehensive physicochemical and structural characterization to assess its suitability for polymer processing. TPS derived from Scala starch was compounded with PLA, both with and without citric acid (CA) as a green compatibilizer to enhance phase compatibility. The resulting polymer blends were systematically analyzed using Fourier-transform infrared spectroscopy with attenuated total reflectance (FTIR–ATR), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), and X-ray diffraction (XRD) to evaluate thermal and structural properties. Mechanical performance, water vapor permeability (WVP), water absorption (WA), and biodegradability in soil over 56 days were also assessed. The incorporation of citric acid improved phase miscibility, leading to enhanced structural uniformity, thermal stability, mechanical strength, and barrier efficiency. Bio-degradation tests confirmed the environmental compatibility of the developed blends. Overall, the results demonstrate the potential of Scala-based TPS/PLA systems, particularly those modified with citric acid, as viable candidates for sustainable food packaging, while highlighting the importance of further formulation optimization to balance functional and biodegradative performance. Full article
(This article belongs to the Special Issue Biodegradable and Biobased Polymers for Sustainable Food Applications)
Show Figures

Graphical abstract

23 pages, 2237 KB  
Article
Discovery of Undescribed Clerodane Diterpenoids with Antimicrobial Activity Isolated from the Roots of Solidago gigantea Ait
by Márton Baglyas, Zoltán Bozsó, Ildikó Schwarczinger, Péter G. Ott, József Bakonyi, András Darcsi and Ágnes M. Móricz
Int. J. Mol. Sci. 2025, 26(18), 9187; https://doi.org/10.3390/ijms26189187 - 20 Sep 2025
Viewed by 232
Abstract
Three previously undescribed clerodane diterpenoids, including two cis-clerodanes, solidagolactone IX (1) and solidagoic acid K (2), and one trans-clerodane, solidagodiol (3), along with two known cis-clerodane diterpenoids, (−)-(5R,8R,9R,10 [...] Read more.
Three previously undescribed clerodane diterpenoids, including two cis-clerodanes, solidagolactone IX (1) and solidagoic acid K (2), and one trans-clerodane, solidagodiol (3), along with two known cis-clerodane diterpenoids, (−)-(5R,8R,9R,10S)-15,16-epoxy-ent-neo-cleroda-3,13,14-trien-18-ol (4) and solidagoic acid J (5), were isolated and comprehensively characterized from the ethanolic and ethyl acetate root extract of Solidago gigantea Ait. (giant goldenrod). Compound 4 has previously been reported from the roots of this species, whereas compound 5 was identified from the leaves of S. gigantea but not from the roots. The bioassay-guided isolation involved thin-layer chromatography–direct bioautography (TLC–DB) with a Bacillus subtilis antibacterial assay, preparative flash column chromatography, and TLC–mass spectrometry (MS). The chemical structures of the isolated compounds (15) were elucidated through extensive in-depth spectroscopic and spectrometric analyses, including one- and two-dimensional nuclear magnetic resonance (NMR) spectroscopy, high-resolution tandem mass spectrometry (HRMS/MS), and attenuated total reflectance Fourier-transform infrared (ATR–FTIR) spectroscopy. Their antimicrobial activities were evaluated using in vitro microdilution assays against B. subtilis and different plant pathogens. Compound 3 was the most active against the tested Gram-positive strains, exerting particularly potent effects against Clavibacter michiganensis with a minimal inhibitory concentration (MIC) value of 5.1 µM as well as B. subtilis and Curtobacterium flaccumfaciens pv. flaccumfaciens (MIC 21 µM for both). Compound 4 also strongly inhibited the growth of C. michiganensis (MIC 6.3 µM). Compounds 2, 4, and 5 displayed moderate to weak activity against B. subtilis and C. flaccumfaciens pv. flaccumfaciens with MIC values ranging from 100 to 402 µM. Rhodococcus fascians bacteria were moderately inhibited by compounds 3 (MIC 41 µM) and 4 (MIC 201 µM). Bactericidal activity was observed for compound 3 against C. michiganensis with a minimal bactericidal concentration (MBC) value of 83 µM. Compounds 2 and 3 demonstrated weak antifungal activity against Fusarium graminearum. Our findings underscore the value of bioassay-guided approaches in discovering previously undescribed bioactive compounds. Full article
Show Figures

Figure 1

15 pages, 4276 KB  
Article
Electrochemical Synthesis of Aminated Polyaniline/Multi-Walled Carbon Nanotube Composite for Selective Dopamine Detection in Artificial Urine
by Saengrawee Sriwichai and Pimmada Thongnoppakhun
Polymers 2025, 17(18), 2539; https://doi.org/10.3390/polym17182539 - 19 Sep 2025
Viewed by 274
Abstract
Monitoring dopamine (DA) has attracted increasing attention due to alterations in DA levels associated with brain disorders. In addition, the urinary DA concentration plays a significant role in the sympathoadrenal system. A decrease in DA can impair reward-seeking behavior and cognitive flexibility. Therefore, [...] Read more.
Monitoring dopamine (DA) has attracted increasing attention due to alterations in DA levels associated with brain disorders. In addition, the urinary DA concentration plays a significant role in the sympathoadrenal system. A decrease in DA can impair reward-seeking behavior and cognitive flexibility. Therefore, accurate and precise DA detection is necessary. In this study, a poly(3-aminobenzylamine)/functionalized multi-walled carbon nanotube (PABA/f-CNT) composite thin film was fabricated by electrochemical synthesis, or electropolymerization, of 3-aminobenzylamine (3-ABA) monomer and f-CNTs through cyclic voltammetry (CV) on a fluorine-doped tin oxide (FTO)-coated glass substrate, which also served as a working electrode for label-free DA detection in artificial urine. The formation of the film was confirmed by the obtained cyclic voltammogram, electrochemical impedance spectroscopy (EIS) plots, and scanning electron microscope (SEM) and transmission electron microscope (TEM) images. The chemical components of the films were analyzed using attenuated total reflection–Fourier transform infrared (ATR–FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS). For label-free DA detection, various concentrations (50–1000 nM) of DA were determined in buffer solution through differential pulse voltammetry (DPV). The fabricated PABA/f-CNT film presented two linear ranges of 50–400 nM (R2 = 0.9915) and 500–1000 nM (R2 = 0.9443), with sensitivities of 1.97 and 0.95 µA·cm−2·µM−1, respectively. The limit of detection (LOD) and the limit of quantity (LOQ) were 119.54 nM and 398.48 nM, respectively. In addition, the PABA/f-CNT film provided excellent selectivity against common interferents (ascorbic acid, uric acid, and glucose) with high stability, reproducibility, and repeatability. For potential future medical applications, DA detection was further performed in artificial urine, yielding a high percentage of recovery. Full article
(This article belongs to the Special Issue Development of Applications of Polymer-Based Sensors and Actuators)
Show Figures

Figure 1

18 pages, 2326 KB  
Article
Preparation of Self-Healing Antifogging Hard Coatings Using Carboxy-Functionalized Polysilsesquioxanes and Oligo(ethylene glycol)s
by Seiya Morinaga, Rione Baba, Chino Fujii and Yoshiro Kaneko
Polymers 2025, 17(18), 2491; https://doi.org/10.3390/polym17182491 - 15 Sep 2025
Viewed by 309
Abstract
Water-resistant antifogging hard coatings possessing self-healing properties were successfully prepared by applying N,N-dimethylformamide solutions containing the mixtures of carboxy-functionalized polysilsesquioxane (PSQ-2C) with oligo(ethylene glycol)s (OEGs; n = 2–6 and n = 2–4) at the feed functional group ratios (carboxy groups [...] Read more.
Water-resistant antifogging hard coatings possessing self-healing properties were successfully prepared by applying N,N-dimethylformamide solutions containing the mixtures of carboxy-functionalized polysilsesquioxane (PSQ-2C) with oligo(ethylene glycol)s (OEGs; n = 2–6 and n = 2–4) at the feed functional group ratios (carboxy groups in PSQ-2C/hydroxy groups in OEG) of 10:1 and 4:1, respectively, onto oxygen plasma–treated glass substrates, followed by heat drying, water immersion, and room-temperature drying. The formation of ester bonds in the resulting coatings, indicating the presence of a cross-linked structure, was confirmed via Fourier-transform infrared/attenuated total reflectance spectroscopy. Notably, the coating prepared using PSQ-2C and tetraethylene glycol (OEG; n = 4) at a feed functional group ratio of 10:1 demonstrated no peeling or dissolution even after water immersion for 1 h, and its surface hardness, which was evaluated via the pencil scratch test, was 4H. Additionally, when exposed to water vapor generated from warm water at 40 °C at a distance of 2 cm, the coating maintained transparency for up to 85 s, confirming its excellent antifogging performance. Finally, the coating exhibited self-healing properties, as evidenced by the disappearance of scratches induced by a 5H pencil when the coating was left standing at 25 °C and 30% relative humidity for 5 min. Full article
(This article belongs to the Special Issue Polymer-Based Coatings: Principles, Development and Applications)
Show Figures

Graphical abstract

19 pages, 3859 KB  
Article
PP-Based Blends with PVP-I Additive: Mechanical, Thermal, and Barrier Properties for Packaging of Iodophor Pharmaceutical Formulations
by Melania Leanza, Domenico Carmelo Carbone, Giovanna Poggi, Marco Rapisarda, Marilena Baiamonte, Emanuela Teresa Agata Spina, David Chelazzi, Piero Baglioni, Francesco Paolo La Mantia and Paola Rizzarelli
Polymers 2025, 17(18), 2442; https://doi.org/10.3390/polym17182442 - 9 Sep 2025
Viewed by 507
Abstract
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the [...] Read more.
The influence of minor components on leaching molecular iodine (I2) through polypropylene (PP)-based packaging from a povidone iodine-based (PVP-I) formulation, simulating an ophthalmic application, was evaluated. I2 is a cheap, broad-spectrum, and multi-target antiseptic. Nevertheless, it is volatile, and the prolonged storage of I2-based formulations is demanding in plastic packaging because of transmission through the material. Therefore, we explored the possibility of moderating the loss of I2 from an iodophor formulation by introducing small amounts of molecular iodine into the polymer material commonly used in eyedropper caps, i.e., PP. Thus, PP was blended via an extrusion process with a polymeric complex containing iodine (such as PVP-I) or with a second polymeric component able to complex the I2 released from an iodophor solution. The aim of this work was to introduce I2 into PP-based polymer matrices without using organic solvents and indirectly, i.e., through the addition of components that could generate molecular iodine or complex it in the solid phase, as I2 is heat-sensitive. To increase the miscibility between PP and PVP-I, poly(N-vinylpyrrolidone) (PVP) or a vinyl pyrrolidone vinyl acetate copolymer 55/45 (Sokalan) were added as compatibilizers. The PP-based binary and ternary blends, in granular or sheet form, were characterized thermally (Differential Scanning Calorimetry, DSC, and Thermogravimetric analysis, TGA), mechanically (tensile tests), morphologically (scanning electron microscopy (SEM)), and chemically (attenuated total reflectance Fourier transform infrared (ATR-FTIR)). Additionally, the variation in wettability induced by the introduction of the hydrophilic minority components was determined by static contact angle measurements (static contact angle (SCA)), and tests were carried out to determine the barrier properties against oxygen (oxygen transmission rate (OTR)) and molecular iodine. The I2 leaching of the different blends was compared with that of PP by monitoring the I2 retention in a buffered PVP-I solution via UV-vis spectroscopy. Overall, the experimental data showed the capability of the minority components in the blends to increase thermal stability as well as act as a barrier to oxygen. Additionally, the PP blend with PVP-I induced a reduction in molecular iodine leaching in comparison with PP. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Graphical abstract

23 pages, 7670 KB  
Article
Biogenic Synthesis of Gold Nanoparticles Using Scabiosa palaestina Extract: Characterization, Anticancer and Antioxidant Activities
by Heba Hellany, Adnan Badran, Ghosoon Albahri, Nadine Kafrouny, Riham El Kurdi, Marc Maresca, Digambara Patra and Elias Baydoun
Nanomaterials 2025, 15(17), 1368; https://doi.org/10.3390/nano15171368 - 4 Sep 2025
Viewed by 706
Abstract
Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of Scabiosa palaestina, characterize their physicochemical properties, [...] Read more.
Gold nanoparticles (AuNPs) are promising materials for the development of novel anticancer agents, and their green synthesis has become essential because of their numerous advantages. This study aimed to synthesize AuNPs using an ethanolic extract of Scabiosa palaestina, characterize their physicochemical properties, and evaluate their anticancer properties and antioxidant potential. AuNPs were successfully synthesized and characterized using UV–visible spectroscopy, scanning electron microscopy (SEM), zeta potential analysis, thermogravimetric analysis (TGA), X-ray diffraction (XRD), and attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR). The results indicated that the biosynthesized AuNPs were spherical and well-dispersed, exhibiting an absorption peak at 560 nm and an average size of 9.9 nm. Cytotoxicity assays demonstrated dose- and time-dependent inhibitory effects on MDA-MB-231, Capan-2, HCT116, and 22Rv1 cancer cell lines, with 22Rv1 and MDA-MB-231 cells showing the most potent responses. At the highest concentration tested (100 µg/mL), after 72 h, cell viability was reduced to 16.04  ±  1.8% for 22Rv1 and 17.48  ±  8.3% for MDA-MB-231 cells. Additionally, the AuNPs exhibited concentration-dependent antioxidant activity in both 2,2-diphenyl-1-picrylhydrazyl (DPPH) and hydrogen peroxide (H2O2) scavenging assays. In summary, the synthesized AuNPs demonstrated multifunctional properties that make them suitable for a wide range of biomedical and biotechnological applications. Full article
Show Figures

Graphical abstract

24 pages, 24217 KB  
Article
Modeling and Optimizing Ultrasound-Assisted Extractions of Pectin and Phenolic Compounds from Coffee Husk Waste Using Response Surface Methodology
by Bojórquez-Quintal Emanuel, Maccioni Oliviero, Zaza Fabio, Procacci Silvia, Gagliardi Serena and Bacchetta Loretta
Biomass 2025, 5(3), 53; https://doi.org/10.3390/biomass5030053 - 3 Sep 2025
Viewed by 653
Abstract
The coffee cherry processing produces various waste products, such as coffee husks, which are a valuable source of pectin and phenolic acids that can be used as high-value biomolecules in human and animal food, cosmetics, and pharmaceutical production chains. This study aims to [...] Read more.
The coffee cherry processing produces various waste products, such as coffee husks, which are a valuable source of pectin and phenolic acids that can be used as high-value biomolecules in human and animal food, cosmetics, and pharmaceutical production chains. This study aims to optimize the eco-friendly extraction of polysaccharides, as pectin, and phenolic compounds from coffee peel using response surface methodology (RSM). This model was used to evaluate the extraction variables (temperature, time, pH, ionic strength, ultrasonic frequency, particle size, and solid/liquid ratio in water) to identify the critical factors. All responses were fitted to the RSM model, which revealed high estimation capabilities. Ionic strength and temperature were found to be critical process variables for pectin extraction, while the main factors responsible for phenolic extraction were ultrasonic frequency, pH, and solid/liquid ratio. Therefore, the operating conditions to optimize the extraction of both pectin and phenolic compounds were 80 °C, ultrasonic frequency 60 kHz, solid/liquid ratio 1:20, using pH 2 or 12 in the case of pectin or polyphenols, respectively. Direct Analysis in Real Time Mass Spectrometry (DART-MS) and Fourier-Transform Infrared Spectroscopy–Attenuated Total Reflectance (FTIR-ATR) analyses were performed to evaluate the chemical profile of the extracts and pectin. The recycling of coffee husk waste into bioproducts in view of the circular economy contributes to minimizing the impact on the environment and to generating additional income for coffee growers. Full article
Show Figures

Figure 1

15 pages, 1014 KB  
Article
Machine Learning-Powered ATR-FTIR Spectroscopic Clinical Evaluation for Rapid Typing of Salmonella enterica O-Serogroups and Salmonella Typhi
by Cesira Giordano, Francesca Del Conte, Maira Napoleoni and Simona Barnini
Bacteria 2025, 4(3), 45; https://doi.org/10.3390/bacteria4030045 - 2 Sep 2025
Viewed by 496
Abstract
Clinical manifestations of salmonellosis in humans typically include acute gastroenteritis, abdominal pain, diarrhea, nausea, and fever. Diarrhea and anorexia may persist for several days. In some cases, the organisms may invade the intestinal mucosa and cause septicemia, even in the absence of significant [...] Read more.
Clinical manifestations of salmonellosis in humans typically include acute gastroenteritis, abdominal pain, diarrhea, nausea, and fever. Diarrhea and anorexia may persist for several days. In some cases, the organisms may invade the intestinal mucosa and cause septicemia, even in the absence of significant gastrointestinal symptoms. Most clinical signs are attributed to hematogenous dissemination of the pathogen. As with other microbial infections, disease severity is influenced by the serotype of the organism, bacterial load, and host susceptibility. Serotyping analysis of Salmonella spp. using the White–Kauffmann–Le Minor scheme remains the gold standard for strain typing. However, this method is expensive, time-consuming, and requires significant expertise and visual interpretation by trained personnel, which is why it is typically restricted to regional or national reference laboratories. In this study, we evaluated a spectroscopic technique coupled with chemometrics and multivariate machine learning algorithms for its ability to discriminate the main Salmonella spp. serogroups in a clinical routine setting. We analyzed 95 isolates of Salmonella that were randomly selected, including four strains of S. Typhi. The I-dOne Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR) system (Alifax S.r.l., Polverara, Italy) also shows promising potential for distinguishing Salmonella Typhi within the D serogroup. The I-dOne system enables simultaneous identification of both species and subspecies using the same workflow and instrumentation, thus streamlining the diagnostic process. Full article
Show Figures

Figure 1

22 pages, 3518 KB  
Article
Production and Characterisation of an Exopolysaccharide by Vreelandella titanicae Zn11_249 Isolated from Salar de Uyuni (Bolivia)
by Esteban Sabroso, José M. Martínez, Enrique Sánchez-León, Nuria Rodríguez, Ricardo Amils and Concepción Abrusci
Polymers 2025, 17(17), 2362; https://doi.org/10.3390/polym17172362 - 30 Aug 2025
Viewed by 815
Abstract
The extremophilic strain Vreelandella titanicae Zn11_249 was isolated from Salar de Uyuni, an environment with high salinity, among other extreme factors. This study researched the optimised production, characterisation, antioxidant activity, and cytotoxicity of exopolysaccharides (EPS) produced by this strain under different ionic stresses. [...] Read more.
The extremophilic strain Vreelandella titanicae Zn11_249 was isolated from Salar de Uyuni, an environment with high salinity, among other extreme factors. This study researched the optimised production, characterisation, antioxidant activity, and cytotoxicity of exopolysaccharides (EPS) produced by this strain under different ionic stresses. Zn11_249 was cultured in a minimal medium with glucose as the sole carbon source as a control, and under kosmotropic (NaCl, 1 M) and chaotropic (LiCl, 0.3 M) conditions, yielding EPSU1, EPSU2, and EPSU3, respectively. Maximum EPS production (336 mg/L) occurred under chaotropic conditions after 96 h. EPSs were characterised using the following techniques: Gas chromatography (GC-MS); Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR); Thermogravimetric Analysis (TGA); and Differential Scanning Calorimetry, (DSC). The results showed differences between the molecular weights for EPSU1 (3.9 × 104 Da), EPSU2 (3.9 × 104 Da), and EPSU3 (5.85 × 104 Da). Their monosaccharide molar ratios (%) were 40/25/25/10 in EPSU1, 10/30/30/30 in EPSU2, and 25/25/25/25 in EPSU3, composed of mannose, galactose, rhamnose, and glucose, respectively. Functional group analysis confirmed their heteropolysaccharide nature. Thermal profiles suggest the potential of these exopolysaccharides as biomaterials. Antioxidant tests demonstrated significant activity against DPPH, OH, and O2 radicals, while cytotoxicity assays showed no toxicity. These results highlight the biotechnological potential of EPSs from Veelandella titanicae Zn11_249 for biomedical and cosmetic uses. Full article
Show Figures

Graphical abstract

20 pages, 4438 KB  
Article
Fluoride Release and Biological Properties of Resin-Modified Glass Ionomer Cement Doped with Copper
by Aleksandra Piszko, Paweł J. Piszko, Michał J. Kulus, Magdalena Pajączkowska, Joanna Nowicka, Aleksandra Chwirot, Agnieszka Rusak, Grzegorz Chodaczek, Maria Szymonowicz and Maciej Dobrzyński
Appl. Sci. 2025, 15(17), 9506; https://doi.org/10.3390/app15179506 - 29 Aug 2025
Viewed by 523
Abstract
Glass ionomers are utilized extensively within the domain of dentistry, for instance, as provisional restorations, liners, or bases, in addition to their application as pit and fissure sealers. It is imperative that this type of material exhibits favorable physico-chemical and biological properties. The [...] Read more.
Glass ionomers are utilized extensively within the domain of dentistry, for instance, as provisional restorations, liners, or bases, in addition to their application as pit and fissure sealers. It is imperative that this type of material exhibits favorable physico-chemical and biological properties. The primary objective of the presented study is to modify commercial resin-modified glass ionomer (Riva Light Cure, RMGIC) by doping it with copper particles (RMGIC + Cu) and to evaluate its properties in terms of potential beneficial clinical applications. Susceptibility to adhesion of microbial species and potential antimicrobial activity was evaluated against the Candida albicans, Streptococcus mutans, and Lactobacillus rhamnosus strains. Antiviral properties were evaluated against two viruses: Herpes simplex virus type 1 and human Adenovirus 5. Cytotoxicity of the materials was assessed using Balb/3T3 mouse fibroblast cell line. Temporal fluoride release up to 168 h in water and artificial saliva of different pH levels were also measured and assessed using statistical analysis. Samples were also subjected to Attenuated Total Reflectance Fourier-Transform Infrared Spectroscopy and Fourier-Transform Raman Spectroscopy. The findings of the present study demonstrate that RMGIC + Cu displays reduced biofilm formation against the tested strains when compared to non-modified material. The influence of the Cu presence on fluoride release is most pronounced in artificial saliva with a low pH (4.5), where the difference is significantly higher in samples with Cu than in samples without it. No reduction in herpes simplex 1 titers under the influence of either material was observed, whereas both materials exhibited virucidal properties against human adenovirus 5. Commercial glass ionomer presented no cytotoxicity, while the modified biomaterial caused changes in the fibroblast culture only under the sample (slight cytotoxicity, grade 1). Considering all the acquired results, doping glass ionomer with copper may be an interesting modification enhancing antimicrobial properties of the biomaterial, but it requires further evaluation in terms of long-term cytotoxicity before further in vivo studies. Full article
(This article belongs to the Section Applied Dentistry and Oral Sciences)
Show Figures

Figure 1

Back to TopTop