A Grape-Derived Solvent for the Recovery of Phenolic Compounds from Food Waste By-Products Using Ultrasonic-Assisted and Overnight Extraction
Abstract
1. Introduction
2. Results and Discussion
2.1. Recovery of Phenolic Compounds
2.2. Total Flavonoid Content
2.3. Total Anthocyanin Content
2.4. Antioxidant Activity
2.5. Color Parameters
2.5.1. Yellow Color Tone
2.5.2. Blue Color Tone
2.5.3. Red Color Tone
2.6. pH and Total Soluble Solids
2.7. Characterization of Ethanol of Grape Origin (EEGO) with UV-Vis and ATR-FTIR Spectra
3. Materials and Methods
3.1. Preparation of Onion Peel and Grape Pomace Powder
3.2. Chemicals and Reagents
3.3. Preparation of Ethanol of Grape Origin
3.4. Extraction of Phenolic Compounds
3.5. Determination of Total Phenolic Content
3.6. Determination of Total Flavonoid Content
3.6.1. Method Development
3.6.2. Preparation of Quercetin Calibration Curve
3.6.3. Determination of Flavonoids in OPP, MWP, and SWP Extracts
3.7. Total Anthocyanin Content
3.8. Determination of In Vitro Antioxidant Activity in OPP, MWP, and SWP Extracts Using DPPH Assay
3.8.1. Preparation of DPPH. Standard Solution
3.8.2. Preparation of DPPH. Calibration Curve
3.8.3. Estimation of Antioxidant Activity in Food Waste By-Products Using the DPPH Assay
3.8.4. Preparation of Trolox Calibration Curve Against DPPH
3.9. Determination of In Vitro Antioxidant Activity in OPP, MWP, and SWP Extracts Using the FRAP Assay
3.9.1. Preparation of Ferric Reducing Antioxidant Power (FRAP) Reagent
3.9.2. Determination of Antioxidant Activity in OPP, MWP, and SWP Extracts Using FRAP Assay
3.9.3. Preparation of Trolox Calibration Curve Against FRAP
3.10. Determination of Color Tones
3.11. pH and Total Soluble Solids (TSS)
3.12. Characterization of Ethanol of Grape Origin (EEGO) with Ultraviolet–Visible and Attenuated Total Reflectance–Fourier Transform Infrared (ATR-FTIR) Spectroscopy
3.13. Statistical Analysis
4. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bayram, Y.; Ozkan, K.; Sagdic, O. Valorization of Viticulture Waste as Verjuice Powders: Their Characterization, Storage Stability and Application in Beverage Formulation. Eur. Food Res. Technol. 2023, 249, 2897–2910. [Google Scholar] [CrossRef]
- Lazaridis, D.G.; Andritsos, N.D.; Giannakas, A.E.; Karabagias, I.K. Development and Valuation of Novel PLA-Based Biodegradable Packaging Materials Complemented with Food Waste of Plant and Animal Origin for Shelf-Life Extension of Selected Foods: Trends and Challenges. Sustainability 2025, 17, 720. [Google Scholar] [CrossRef]
- Zhang, H.; Sablani, S. Biodegradable Packaging Reinforced with Plant-Based Food Waste and By-Products. Curr. Opin. Food Sci. 2021, 42, 61–68. [Google Scholar] [CrossRef]
- Aït-Kaddour, A.; Hassoun, A.; Tarchi, I.; Loudiyi, M.; Boukria, O.; Cahyana, Y.; Ozogul, F.; Khwaldia, K. Transforming Plant-Based Waste and By-Products into Valuable Products Using Various “Food Industry 4.0” Enabling Technologies: A Literature Review. Sci. Total Environ. 2024, 955, 176872. [Google Scholar] [CrossRef]
- Dilucia, F.; Lacivita, V.; Conte, A.; Del Nobile, M.A. Sustainable Use of Fruit and Vegetable By-Products to Enhance Food Packaging Performance. Foods 2020, 9, 857. [Google Scholar] [CrossRef] [PubMed]
- Tapia-Quirós, P.; Montenegro-Landívar, M.F.; Reig, M.; Vecino, X.; Cortina, J.L.; Saurina, J.; Granados, M. Recovery of Polyphenols from Agri-Food By-Products: The Olive Oil and Winery Industries Cases. Foods 2022, 11, 362. [Google Scholar] [CrossRef]
- Castro-Muñoz, R.; Yáñez-Fernández, J.; Fíla, V. Phenolic Compounds Recovered from Agro-Food By-Products Using Membrane Technologies: An Overview. Food Chem. 2016, 213, 753–762. [Google Scholar] [CrossRef]
- Barba, F.J.; Zhu, Z.; Koubaa, M.; Sant’Ana, A.S.; Orlien, V. Green Alternative Methods for the Extraction of Antioxidant Bioactive Compounds from Winery Wastes and By-Products: A Review. Trends Food Sci. Technol. 2016, 49, 96–109. [Google Scholar] [CrossRef]
- Lazaridis, D.G.; Kitsios, A.-P.; Koutoulis, A.S.; Malisova, O.; Karabagias, I.K. Fruits, Spices and Honey Phenolic Compounds: A Comprehensive Review on Their Origin, Methods of Extraction and Beneficial Health Properties. Antioxidants 2024, 13, 1335. [Google Scholar] [CrossRef] [PubMed]
- Prelac, M.; Palčić, I.; Cvitan, D.; Anđelini, D.; Repajić, M.; Ćurko, J.; Kovačević, T.K.; Goreta Ban, S.; Užila, Z.; Ban, D.; et al. From Waste to Green: Water-Based Extraction of Polyphenols from Onion Peel and Their Adsorption on Biochar from Grapevine Pruning Residues. Antioxidants 2023, 12, 1697. [Google Scholar] [CrossRef] [PubMed]
- FAO. World Food and Agriculture—Statistical Yearbook 2021; FAO: Rome, Italy, 2021; ISBN 9789251343326. [Google Scholar] [CrossRef]
- Thivya, P.; Reddy, N.B.P.; Yuvraj, K.B.; Sinija, V.R. Recent Advances and Perspectives for Effective Utilization of Onion Solid Waste in Food Packaging: A Critical Review. Rev. Environ. Sci. Biotechnol. 2023, 22, 29–53. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Punia, S.; Dhumal, S.; Radha; Rais, N.; Chandran, D.; Pandiselvam, R.; Kothakota, A.; et al. Onion (Allium cepa L.) Peels: A Review on Bioactive Compounds and Biomedical Activities. Biomed. Pharmacother. 2022, 146, 112498. [Google Scholar] [CrossRef] [PubMed]
- Metrani, R.; Singh, J.; Acharya, P.; Jayaprakasha, G.K.; Patil, B.S. Comparative Metabolomics Profiling of Polyphenols, Nutrients and Antioxidant Activities of Two Red Onion (Allium cepa L.) Cultivars. Plants 2020, 9, 1077. [Google Scholar] [CrossRef]
- Črnivec, I.G.O.; Skrt, M.; Šeremet, D.; Sterniša, M.; Farčnik, D.; Štrumbelj, E.; Poljanšek, A.; Cebin, N.; Pogačnik, L.; Možina, S.S.; et al. Waste Streams in Onion Production: Bioactive Compounds, Quercetin and Use of Antimicrobial and Antioxidative Properties. Waste Manag. 2021, 126, 476–486. [Google Scholar] [CrossRef]
- Salunkhe, S.; Chaudhary, B.U.; Tewari, S.; Meshram, R.; Kale, R.D. Utilization of Agricultural Waste as an Alternative for Packaging Films. Ind. Crops Prod. 2022, 188, 115685. [Google Scholar] [CrossRef]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef]
- Albishi, T.; John, J.A.; Al-Khalifa, A.S.; Shahidi, F. Antioxidative Phenolic Constituents of Skins of Onion Varieties and Their Activities. J. Funct. Foods 2013, 5, 1191–1203. [Google Scholar] [CrossRef]
- Oancea, S.; Radu, M.; Olosutean, H. Development of ultrasonic extracts with strong antioxidant properties from red onion wastes. Rom. Biotechnol. Lett. 2020, 25, 1320–1327. [Google Scholar] [CrossRef]
- Lee, J.; Mitchell, A.E. Quercetin and Isorhamnetin Glycosides in Onion (Allium cepa L.): Varietal Comparison, Physical Distribution, Coproduct Evaluation, and Long-Term Storage Stability. J. Agric. Food Chem. 2011, 59, 857–863. [Google Scholar] [CrossRef]
- Lee, S.U.; Lee, J.H.; Choi, S.H.; Lee, J.S.; Ohnisi-Kameyama, M.; Kozukue, N.; Levin, C.E.; Friedman, M. Flavonoid Content in Fresh, Home-Processed, and Light-Exposed Onions and in Dehydrated Commercial Onion Products. J. Agric. Food Chem. 2008, 56, 8541–8548. [Google Scholar] [CrossRef] [PubMed]
- Higashio, H.; Hirokane, H.; Sato, H.; Tokuda, S.; Urgami, A. Effect of UV irredation after the harvest on the content of flavonoid in vegetables. Acta Hortic. 2005, 682, 1007–1012. [Google Scholar] [CrossRef]
- Chakka, A.K.; Babu, A.S. Bioactive Compounds of Winery By-Products: Extraction Techniques and Their Potential Health Benefits. Appl. Food Res. 2022, 2, 100058. [Google Scholar] [CrossRef]
- USDA. Available online: https://fdc.nal.usda.gov/food-details/1102665/nutrients (accessed on 19 July 2025).
- Nanni, A.; Parisi, M.; Colonna, M. Wine By-Products as Raw Materials for the Production of Biopolymers and of Natural Reinforcing Fillers: A Critical Review. Polymers 2021, 13, 381. [Google Scholar] [CrossRef] [PubMed]
- Peixoto, C.; Dias, M.I.; Dalva, M.; Calhelha, R.C.; Pinho, S.P.; Ferreira, I.C.F.R. Grape Pomace as a Source of Phenolic Compounds and Diverse Bioactive Properties. Food Chem. 2018, 253, 132–138. [Google Scholar] [CrossRef]
- Machado, T.O.X.; Portugal, I.; Kodel, H.d.A.C.; Droppa-Almeida, D.; Lima, M.D.S.; Fathi, F.; Oliveira, M.B.P.P.; de Albuquerque-Júnior, R.L.C.; Dariva, C.; Souto, E.B. Therapeutic Potential of Grape Pomace Extracts: A Review of Scientific Evidence. Food Biosci. 2024, 60, 104210. [Google Scholar] [CrossRef]
- Jia, M.-Z.; Fu, X.-Q.; Deng, L.; Li, Z.-L.; Dang, Y.-Y. Phenolic Extraction from Grape (Vitis vinifera) Seed via Enzyme and Microwave Co-Assisted Salting-out Extraction. Food Biosci. 2021, 40, 100919. [Google Scholar] [CrossRef]
- Brezoiu, A.-M.; Matei, C.; Deaconu, M.; Stanciuc, A.-M.; Trifan, A.; Gaspar-Pintiliescu, A.; Berger, D. Polyphenols Extract from Grape Pomace. Characterization and Valorisation through Encapsulation into Mesoporous Silica-Type Matrices. Food Chem. Toxicol. 2019, 133, 110787. [Google Scholar] [CrossRef]
- Moro, K.I.B.; Bender, A.B.B.; Ferreira, D.d.F.; Speroni, C.S.; Barin, J.S.; da Silva, L.P.; Penna, N.G. Recovery of Phenolic Compounds from Grape Pomace (Vitis vinifera L.) by Microwave Hydrodiffusion and Gravity. LWT 2021, 150, 112066. [Google Scholar] [CrossRef]
- Huamán-Castilla, N.L.; Campos, D.; García-Ríos, D.; Parada, J.; Martínez-Cifuentes, M.; Mariotti-Celis, M.S.; Pérez-Correa, J.R. Chemical Properties of Vitis vinifera Carménère Pomace Extracts Obtained by Hot Pressurized Liquid Extraction, and Their Inhibitory Effect on Type 2 Diabetes Mellitus Related Enzymes. Antioxidants 2021, 10, 472. [Google Scholar] [CrossRef] [PubMed]
- Kadouh, H.C.; Sun, S.; Zhu, W.; Zhou, K. α-Glucosidase Inhibiting Activity and Bioactive Compounds of Six Red Wine Grape Pomace Extracts. J. Funct. Foods 2016, 26, 577–584. [Google Scholar] [CrossRef] [PubMed]
- Verano-Naranjo, L.; Cejudo-Bastante, C.; Casas, L.; Martínez de la Ossa, E.; Mantell, C. Use of Winemaking By-Products for the Functionalization of Polylactic Acid for Biomedical Applications. Antioxidants 2023, 12, 1416. [Google Scholar] [CrossRef]
- Kim, Y.; Kim, Y.-J.; Shin, Y. Comparative Analysis of Polyphenol Content and Antioxidant Activity of Different Parts of Five Onion Cultivars Harvested in Korea. Antioxidants 2024, 13, 197. [Google Scholar] [CrossRef] [PubMed]
- Nile, A.; Gansukh, E.; Park, G.-S.; Kim, D.-H.; Nile, S.H. Novel Insights on the Multi-Functional Properties of Flavonol Glucosides from Red Onion (Allium cepa L) Solid Waste-in Vitro and in Silico Approach. Food Chem. 2021, 335, 127650. [Google Scholar] [CrossRef] [PubMed]
- Martins, I.M.; Roberto, B.S.; Blumberg, J.B.; Chen, C.-Y.O.; Macedo, G.A. Enzymatic Biotransformation of Polyphenolics Increases Antioxidant Activity of Red and White Grape Pomace. Food Res. Int. 2016, 89, 533–539. [Google Scholar] [CrossRef]
- Achkar, T.E.; Fourmentin, S.; Greige-Gerges, H. Deep Eutectic Solvents: An Overview on Their Interactions with Water and Biochemical Compounds. J. Mol. Liq. 2019, 288, 111028. [Google Scholar] [CrossRef]
- Žagar, T.; Frlan, R.; Kočevar Glavač, N. Using Subcritical Water to Obtain Polyphenol-Rich Extracts with Antimicrobial Properties. Antibiotics 2024, 13, 334. [Google Scholar] [CrossRef]
- Lee, K.A.; Kim, K.-T.; Kim, H.J.; Chung, M.-S.; Chang, P.-S.; Park, H.; Pai, H.-D. Antioxidant Activities of Onion (Allium cepa L.) Peel Extracts Produced by Ethanol, Hot Water, and Subcritical Water Extraction. Food Sci. Biotechnol. 2014, 23, 615–621. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B.; Rosales, A.; Turienzo, L.R.; Cortina, J.L. Valorisation Potential of Cabernet Grape Pomace for the Recovery of Polyphenols: Process Intensification, Optimisation and Study of Kinetics. Food Bioprod. Process. 2018, 109, 74–85. [Google Scholar] [CrossRef]
- Negro, C.; Tommasi, L.; Miceli, A. Phenolic Compounds and Antioxidant Activity from Red Grape Marc Extracts. Bioresour. Technol. 2003, 87, 41–44. [Google Scholar] [CrossRef]
- Ekici, L.; Simsek, Z.; Ozturk, I.; Sagdic, O.; Yetim, H. Effects of Temperature, Time, and PH on the Stability of Anthocyanin Extracts: Prediction of Total Anthocyanin Content Using Nonlinear Models. Food Anal. Methods 2013, 7, 1328–1336. [Google Scholar] [CrossRef]
- Taghavi, T.; Patel, H.; Rafie, R. Extraction Solvents Affect Anthocyanin Yield, Color, and Profile of Strawberries. Plants 2023, 12, 1833. [Google Scholar] [CrossRef] [PubMed]
- Stoica, F.; Condurache, N.N.; Horincar, G.; Constantin, O.E.; Turturică, M.; Stănciuc, N.; Aprodu, I.; Croitoru, C.; Râpeanu, G. Value-Added Crackers Enriched with Red Onion Skin Anthocyanins Entrapped in Different Combinations of Wall Materials. Antioxidants 2022, 11, 1048. [Google Scholar] [CrossRef]
- Samota, M.K.; Sharma, M.; Kaur, K.; Sarita, K.; Yadav, D.K.; Pandey, A.K.; Tak, Y.; Rawat, M.; Thakur, J.; Rani, H. Onion Anthocyanins: Extraction, Stability, Bioavailability, Dietary Effect, and Health Implications. Front. Nutr. 2022, 9. [Google Scholar] [CrossRef]
- Chadorshabi, S.; Hallaj-Nezhadi, S.; Ghasempour, Z. Red Onion Skin Active Ingredients, Extraction and Biological Properties for Functional Food Applications. Food Chem. 2022, 386, 132737. [Google Scholar] [CrossRef]
- Angioletti, L.; Godoy, E.; Mara, L.; Riceli, P.; Brito, E.; Fernandes, F.; Fonteles, T.V.; Rodrigues, S. Ultrasound-Assisted Extraction of Anthocyanins from Grape Pomace Using Acidified Water: Assessing Total Monomeric Anthocyanin and Specific Anthocyanin Contents. Food Res. Int. 2024, 194, 114910. [Google Scholar] [CrossRef]
- Jansen, E.T.; da Cruz, E.P.; Fonseca, L.M.; dos Santos Hackbart, H.C.; Radünz, M.; Siebeneichler, T.J.; Gandra, E.A.; Rombaldi, C.V.; Dias, A.R.G.; da Rosa Zavareze, E. Anthocyanin-Rich Grape Pomace Extract Encapsulated in Protein Fibers: Colorimetric Profile, in Vitro Release, Thermal Resistance, and Biological Activities. Food Res. Int. 2024, 196, 115081. [Google Scholar] [CrossRef]
- Bartolomé, B.; Nuñez, V.; Monagas, M.; Gómez-Cordovés, C. In Vitro Antioxidant Activity of Red Grape Skins. Eur. Food Res. Technol. 2004, 218, 173–177. [Google Scholar] [CrossRef]
- Murthy, K.N.C.; Singh, R.P.; Jayaprakasha, G.K. Antioxidant Activities of Grape (Vitis vinifera) Pomace Extracts. J. Agric. Food Chem. 2002, 50, 5909–5914. [Google Scholar] [CrossRef]
- Rodrigues, R.P.; Sousa, A.M.; Gando-Ferreira, L.M.; Quina, M.J. Grape Pomace as a Natural Source of Phenolic Compounds: Solvent Screening and Extraction Optimization. Molecules 2023, 28, 2715. [Google Scholar] [CrossRef]
- Kabir, F.; Tow, W.W.; Hamauzu, Y.; Katayama, S.; Tanaka, S.; Nakamura, S. Antioxidant and Cytoprotective Activities of Extracts Prepared from Fruit and Vegetable Wastes and By-Products. Food Chem. 2015, 167, 358–362. [Google Scholar] [CrossRef]
- Almanza-Oliveros, A.; Bautista-Hernández, I.; Castro-López, C.; Aguilar-Zárate, P.; Meza-Carranco, Z.; Rojas, R.; Michel, M.R.; Martínez-Ávila, G.C.G. Grape Pomace—Advances in Its Bioactivity, Health Benefits, and Food Applications. Foods 2024, 13, 580. [Google Scholar] [CrossRef] [PubMed]
- Abreu, T.; Luís, C.; Câmara, J.S.; Teixeira, J.; Perestrelo, R. Unveiling Potential Functional Applications of Grape Pomace Extracts Based on Their Phenolic Profiling, Bioactivities, and Circular Bioeconomy. Biomass Convers. Biorefinery 2025. [Google Scholar] [CrossRef]
- Muscolo, A.; Maffia, A.; Marra, F.; Battaglia, S.; Oliva, M.; Mallamaci, C.; Russo, M. Unlocking the Health Secrets of Onions: Investigating the Phytochemical Power and Beneficial Properties of Different Varieties and Their Parts. Molecules 2025, 30, 1758. [Google Scholar] [CrossRef]
- Carmona-Jiménez, Y.; Igartuburu, J.M.; Guillén-Sánchez, D.A.; García-Moreno, M.V. Fatty Acid and Tocopherol Composition of Pomace and Seed Oil from Five Grape Varieties Southern Spain. Molecules 2022, 27, 6980. [Google Scholar] [CrossRef]
- Janeš, L.; Lisjak, K.; Vanzo, A. Determination of Glutathione Content in Grape Juice and Wine by High-Performance Liquid Chromatography with Fluorescence Detection. Anal. Chim. Acta 2010, 674, 239–242. [Google Scholar] [CrossRef]
- Fujinami, Y.; Tai, A.; Yamamoto, I. Radical Scavenging Activity against 1,1-Diphenyl-2-Picrylhydrazyl of Ascorbic Acid 2-Glucoside (AA-2G) and 6-Acyl-AA-2G. Chem. Pharm. Bull. 2001, 49, 642–644. [Google Scholar] [CrossRef]
- La, J.; Kim, M.-J.; Lee, J. Evaluation of Solvent Effects on the DPPH Reactivity for Determining the Antioxidant Activity in Oil Matrix. Food Sci. Biotechnol. 2021, 30, 367–375. [Google Scholar] [CrossRef]
- Wołosiak, R.; Drużyńska, B.; Derewiaka, D.; Piecyk, M.; Majewska, E.; Ciecierska, M.; Worobiej, E.; Pakosz, P. Verification of the Conditions for Determination of Antioxidant Activity by ABTS and DPPH Assays—A Practical Approach. Molecules 2022, 27, 50. [Google Scholar] [CrossRef]
- Koutoulis, A.S.; Giannakas, A.E.; Lazaridis, D.G.; Kitsios, A.-P.; Karabagias, V.K.; Giannakas, A.E.; Ladavos, A.; Karabagias, I.K. Preparation and Characterization of PLA-Based Films Fabricated with Different Citrus Species Peel Powder. Coatings 2024, 14, 1311. [Google Scholar] [CrossRef]
- Lazaridis, D.G.; Karabagias, V.K.; Karabagias, I.K.; Andritsos, N.D.; Giannakas, A.E. Physicochemical and Phytochemical Characterization of Green Coffee, Cinnamon Clove, and Nutmeg EEGO, and Aroma Evaluation of the Raw Powders. Eur. Food Res. Technol. 2024, 250, 83–96. [Google Scholar] [CrossRef]
- Rodríguez-Mena, A.; Ochoa-Martínez, L.A.; González-Herrera, S.M.; Rutiaga-Quiñones, O.M.; González-Laredo, R.F.; Olmedilla-Alonso, B. Natural Pigments of Plant Origin: Classification, Extraction and Application in Foods. Food Chem. 2023, 398, 133908. [Google Scholar] [CrossRef]
- Koh, Y.Q.; Sin, Y.A.D.; Rong, H.J.; Chua, T.H.S.; Ho, S.-H.S.; Ho, H.K. Evaluation of Anthoxanthins and Their Actions on Digestive Enzyme Inhibition When Used Independently and in Combination. Heliyon 2022, 8, e10131. [Google Scholar] [CrossRef]
- Bashir, I.; Pandey, V.K.; Dar, A.H.; Dash, K.K.; Shams, R.; Mir, S.A.; Fayaz, U.; Khan, S.A.; Singh, R.; Zahoor, I. Exploring Sources, Extraction Techniques and Food Applications: A Review on Biocolors as Next-Generation Colorants. Phytochem. Rev. 2024, 23, 1–26. [Google Scholar] [CrossRef]
- Alappat, B.; Alappat, J. Anthocyanin Pigments: Beyond Aesthetics. Molecules 2020, 25, 5500. [Google Scholar] [CrossRef]
- Castellanos-Gallo, L.; Ballinas-Casarrubias, L.; Espinoza-Hicks, J.C.; Hernández-Ochoa, L.R.; Muñoz-Castellanos, L.N.; Zermeño-Ortega, M.R.; Borrego-Loya, A.; Salas, E. Grape Pomace Valorization by Extraction of Phenolic Polymeric Pigments: A Review. Processes 2022, 10, 469. [Google Scholar] [CrossRef]
- Beres, C.; Costa, G.N.S.; Cabezudo, I.; da Silva-James, N.K.; Teles, A.S.C.; Cruz, A.P.G.; Mellinger-Silva, C.; Tonon, R.V.; Cabral, L.M.C.; Freitas, S.P. Towards Integral Utilization of Grape Pomace from Winemaking Process: A Review. Waste Manag. 2017, 68, 581–594. [Google Scholar] [CrossRef] [PubMed]
- Husain, A.; Chanana, H.; Khan, S.A.; Dhanalekshmi, U.M.; Ali, M.; Alghamdi, A.A.; Ahmad, A. Chemistry and Pharmacological Actions of Delphinidin, a Dietary Purple Pigment in Anthocyanidin and Anthocyanin Forms. Front. Nutr. 2022, 9, 746881. [Google Scholar] [CrossRef]
- Kőrösi, L.; Molnár, S.; Teszlák, P.; Dörnyei, Á.; Maul, E.; Töpfer, R.; Marosvölgyi, T.; Szabó, É.; Röckel, F. Comparative Study on Grape Berry Anthocyanins of Various Teinturier Varieties. Foods 2022, 11, 3668. [Google Scholar] [CrossRef]
- Gamage, G.C.V.; Lim, Y.Y.; Choo, W.S. Anthocyanins from Clitoria ternatea Flower: Biosynthesis, Extraction, Stability, Antioxidant Activity, and Applications. Front. Plant Sci. 2021, 12, 792303. [Google Scholar] [CrossRef]
- Monteiro, G.C.; Minatel, I.O.; Junior, A.P.; Gomez-Gomez, H.A.; de Camargo, J.P.C.; Diamante, M.S.; Pereira Basílio, L.S.; Tecchio, M.A.; Pereira Lima, G.P. Bioactive Compounds and Antioxidant Capacity of Grape Pomace Flours. LWT 2021, 135, 110053. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Fernández-Lledó, V.; Angosto, J.M. New Insights into Red Plant Pigments: More than Just Natural Colorants. RSC Adv. 2020, 10, 24669–24682. [Google Scholar] [CrossRef]
- Bedrníček, J.; Kadlec, J.; Laknerová, I.; Mráz, J.; Samková, E.; Petrášková, E.; Hasoňová, L.; Vácha, F.; Kron, V.; Smetana, P. Onion Peel Powder as an Antioxidant-Rich Material for Sausages Prepared from Mechanically Separated Fish Meat. Antioxidants 2020, 9, 974. [Google Scholar] [CrossRef]
- Deng, Q.; Zhao, Y. Physicochemical, Nutritional, and Antimicrobial Properties of Wine Grape (Cv. Merlot) Pomace Extract-Based Films. J. Food Sci. 2011, 76, E309–E317. [Google Scholar] [CrossRef]
- Benke, A.P.; Mahajan, V.; Mokat, D.N. Unraveling the Biochemical Diversity in Short-Day Onion Genotypes. Horticulturae 2025, 11, 484. [Google Scholar] [CrossRef]
- Sarkar, A.; Hossain, M.W.; Alam, M.; Biswas, R.; Roy, M.; Haque, M.I. Drying Conditions and Varietal Impacts on Physicochemical, Antioxidant and Functional Properties of Onion Powder. J. Agric. Food Res. 2023, 12, 100578. [Google Scholar] [CrossRef]
- Poursakhi, S.; Asadi-Gharneh, H.A.; Nasr-Esfahani, M.; Abbasi, Z.; Khankahdani, H.H. Unveiling the Impact of Onion Bulb Size on Biochemical Composition and Antioxidant Potential: Insights into Varietal Differences and Health Implications. Food Chem. 2025, 488, 144869. [Google Scholar] [CrossRef] [PubMed]
- Bredun, M.A.; Prestes, A.A.; Panceri, C.P.; Prudêncio, E.S.; Burin, V.M. Bioactive Compounds Recovery by Freeze Concentration Process from Winemaking By-Product. Food Res. Int. 2023, 173, 113220. [Google Scholar] [CrossRef]
- Mojet, B.L.; Ebbesen, S.D.; Lefferts, L. Light at the Interface: The Potential of Attenuated Total Reflection Infrared Spectroscopy for Understanding Heterogeneous Catalysis in Water. Chem. Soc. Rev. 2010, 39, 4643–4655. [Google Scholar] [CrossRef] [PubMed]
- Zhuikov, V.; Zhuikova, Y. The Effect of Acetic Acid as a Solvent on the Structure and Properties of Poly(3-hydroxybutyrate)—Based Dried Gels. Gels 2024, 10, 664. [Google Scholar] [CrossRef]
- Mudalip, S.K.A.; Bakar, M.R.A.; Adam, F.; Jamal, P. Structures and Hydrogen Bonding Recognition of Mefenamic Acid Form I Crystals in Mefenamic Acid/ Ethanol Solution. Int. J. Chem. Eng. Appl. 2013, 4, 124–128. [Google Scholar] [CrossRef]
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Dhumal, S.; Singh, S.; Pandiselvam, R.; Rais, N.; Natta, S.; Senapathy, M.; Sinha, N.; et al. Onion (Allium Cepa L.) Peel: A Review on the Extraction of Bioactive Compounds, Its Antioxidant Potential, and Its Application as a Functional Food Ingredient. J. Food Sci. 2022, 87, 4289–4311. [Google Scholar] [CrossRef] [PubMed]
- Kitsios, A.-P.M.; Lazaridis, D.G.; Koutoulis, A.S.; Karabagias, V.K.; Andritsos, N.D.; Karabagias, I.K. Geographical Origin Estimation of Miniaturized Samples of “Nova” Mandarin Juice Based on Multiple Physicochemical and Biochemical Parameters Conjointly with Bootstrapping. Eur. Food Res. Technol. 2025, 251, 1005–1020. [Google Scholar] [CrossRef]
- Chandra, S.; Khan, S.; Avula, B.; Lata, H.; Yang, M.H.; ElSohly, M.A.; Khan, I.A. Assessment of Total Phenolic and Flavonoid Content, Antioxidant Properties, and Yield of Aeroponically and Conventionally Grown Leafy Vegetables and Fruit Crops: A Comparative Study. Evid. Based Complement. Altern. Med. 2014, 1–9. [Google Scholar] [CrossRef]
- Wairata, J.; Fadlan, A.; Purnomo, A.S.; Taher, M.; Ersam, T. Total Phenolic and Flavonoid Contents, Antioxidant, Antidiabetic and Antiplasmodial Activities of Garcinia forbesii King: A Correlation Study. Arab. J. Chem. 2022, 15, 103541. [Google Scholar] [CrossRef]
- Wrolstad, R.E.; Oregon State University. Color and Pigment Analyses in Fruit Products; Agricultural Experiment Station, Oregon State University: Corvallis, OR, USA, 1993; Available online: https://ir.library.oregonstate.edu/concern/administrative_report_or_publications/9s1616449 (accessed on 12 July 2025).
- Lazaridis, D.G.; Giannoulis, S.D.; Simoni, M.; Karabagias, V.K.; Andritsos, N.D.; Triantafyllidis, V.; Karabagias, I.K. Physicochemical and Phytochemical Determinations of Greek “Kollitsida’’ (Arctium lappa L.) from Different Regions and Evaluation of Its Antimicrobial Activity. Separations 2025, 12, 151. [Google Scholar] [CrossRef]
- Karabagias, I.K.; Koutsoumpou, M.; Liakou, V.; Kontakos, S.; Kontominas, M.G. Characterization and Geographical Discrimination of Saffron from Greece, Spain, Iran, and Morocco Based on Volatile and Bioactivity Markers, Using Chemometrics. Eur. Food Res. Technol. 2017, 243, 1577–1591. [Google Scholar] [CrossRef]
- Benzie, I.F.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef]
Food Waste Powder | Extraction | TPC (mg GAE/g) | TFC (mg QE/g) | TAC (mg C3G/g) * |
---|---|---|---|---|
OPP | EEGO Overnight | 16.00 ± 0.31 a | 2.01 ± 0.02 a | 0.10 ± 0.00 |
OPP | EEGO UAE | 16.59 ± 0.96 a | 2.23 ± 0.28 a | 0.08 ± 0.00 |
OPP | 70% Ethanol Overnight | 16.15 ± 0.77 a | 3.66 ± 0.07 b | - |
OPP | 70% Ethanol UAE | 15.58 ± 0.43 a | 3.14 ± 0.19 c | - |
MWP | EEGO Overnight | 9.43 ± 0.19 a | 1.91 ± 0.06 a | 0.45 ± 0.00 |
MWP | EEGO UAE | 8.61 ± 0.12 a | 1.99 ± 0.36 a | 0.62 ± 0.00 |
MWP | 70% Ethanol Overnight | 11.62 ± 1.91 b | 5.63 ± 0.03 b | - |
MWP | 70% Ethanol UAE | 16.40 ± 0.93 c | 5.52 ± 0.27 b | - |
SWP | EEGO Overnight | 11.12 ± 0.20 a | 1.99 ± 0.16 a | 0.28 ± 0.00 |
SWP | EEGO UAE | 9.93 ± 0.26 a | 2.73 ± 0.20 b | 0.28 ± 0.00 |
SWP | 70% Ethanol Overnight | 14.43 ± 1.46 b | 6.28 ± 0.62 c | - |
SWP | 70% Ethanol UAE | 15.68 ± 0.96 b | 4.71 ± 0.22 d | - |
Food Waste Powder | Extraction | DPPH (%) | DPPH (μmol TE/L) | FRAP (mmol Fe2+/L) | FRAP (μmol TE/L) |
---|---|---|---|---|---|
OPP | EEGO Overnight | 63.70 ± 1.43 a | 1695.19 ± 45.10 a | 324.57 ± 2.00 a | 1102.59 ± 8.23 a |
OPP | EEGO UAE | 62.60 ± 0.69 a | 1660.58 ± 21.72 a | 328.14 ± 4.00 a | 1117.29 ± 16.47 a |
OPP | 70% Ethanol Overnight | 53.70 ± 2.18 b | 1380.73 ± 68.78 b | 336 ± 4.14 b | 1149.65 ± 17.06 b |
OPP | 70% Ethanol UAE | 54.82 ± 1.38 b | 1.416.08 ± 43.29 b | 331.64 ± 0.65 ab | 1131.71 ± 2.64 ab |
MWP | EEGO Overnight | 71.17 ± 0.34 a | 1930.05 ± 10.55 a | 318.14 ± 3.43 a | 1076.12 ± 14.12 a |
MWP | EEGO UAE | 67.86 ± 1.73 b | 1825.96 ± 54.33 b | 323.14 ± 4.14 a | 1096.71 ± 17.06 a |
MWP | 70% Ethanol Overnight | 52.94 ± 1.66 c | 1356.86 ± 52.35 c | 339.50 ± 1.79 b | 1164.06 ± 7.35 b |
MWP | 70% Ethanol UAE | 53.29 ± 0.94 c | 1367.71 ± 29.73 c | 345.79 ± 2.50 c | 1189.94 ± 10.29 c |
SWP | EEGO Overnight | 68.82 ± 2.55 a | 1856.06 ± 80.23 a | 327.29 ± 2.28 a | 1113.76 ± 9.41 a |
SWP | EEGO UAE | 68.85 ± 2.40 a | 1857.04 ± 75.36 a | 336.36 ± 1.78 a | 1151.12 ± 7.35 a |
SWP | 70% Ethanol Overnight | 50.56 ± 1.50 b | 1281.88 ± 47.04 b | 357.07 ± 9.36 b | 1236.41 ± 38.53 b |
SWP | 70% Ethanol UAE | 46.23 ± 3.39 b | 1145.74 ± 106.74 b | 360.14 ± 4.71 b | 1249.06 ± 19.41 b |
Food Waste Powder | Extraction | YCT (%) | BCT (%) | RCT (%) |
---|---|---|---|---|
OPP | EEGO Overnight | 77.99 ± 0.26 a | 17.94 ± 0.18 a | 4.19 ± 0.07 a |
OPP | EEGO UAE | 79.78 ± 0.09 b | 17.03 ± 0.07 b | 3.09 ± 0.04 b |
OPP | 70% Ethanol Overnight | 78.55 ± 0.07 c | 19.13 ± 0.09 c | 4.00 ± 0.07 c |
OPP | 70% Ethanol UAE | 76.25 ± 0.08 d | 18.43 ± 0.06 d | 5.10 ± 0.04 d |
MWP | EEGO Overnight | 37.43 ± 0.02 a | 48.18 ± 0.01 a | 14.39 ± 0.02 a |
MWP | EEGO UAE | 39.94 ± 0.01 b | 43.13 ± 0.01 b | 16.92 ± 0.01 b |
MWP | 70% Ethanol Overnight | 45.72 ± 0.16 c | 40.13 ± 0.17 c | 14.14 ± 0.11 c |
MWP | 70% Ethanol UAE | 45.84 ± 0.38 c | 40.00 ± 0.36 c | 14.16 ± 0.18 c |
SWP | EEGO Overnight | 42.57 ± 0.09 a | 45.57 ± 0.11 a | 11.86 ± 0.05 a |
SWP | EEGO UAE | 43.65 ± 0.10 b | 38.17 ± 0.11 b | 18.18 ± 0.08 b |
SWP | 70% Ethanol Overnight | 53.22 ± 0.08 c | 35.68 ± 0.07 c | 11.10 ± 0.08 c |
SWP | 70% Ethanol UAE | 51.90 ± 0.24 d | 34.99 ± 0.22 d | 13.11 ± 0.06 d |
Food Waste Powder | pH | TSS (°Brix) |
---|---|---|
OPP | 5.30 ± 0.01 a | 1.14 ± 0.05 a |
MWP | 5.18 ± 0.01 b | 0.84 ± 0.05 b |
SWP | 5.21 ± 0.02 c | 0.71 ± 0.08 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lazaridis, D.G.; Karabagias, V.K.; Andritsos, N.D.; Giannakas, A.E.; Karabagias, I.K. A Grape-Derived Solvent for the Recovery of Phenolic Compounds from Food Waste By-Products Using Ultrasonic-Assisted and Overnight Extraction. Molecules 2025, 30, 3878. https://doi.org/10.3390/molecules30193878
Lazaridis DG, Karabagias VK, Andritsos ND, Giannakas AE, Karabagias IK. A Grape-Derived Solvent for the Recovery of Phenolic Compounds from Food Waste By-Products Using Ultrasonic-Assisted and Overnight Extraction. Molecules. 2025; 30(19):3878. https://doi.org/10.3390/molecules30193878
Chicago/Turabian StyleLazaridis, Dimitrios G., Vassilios K. Karabagias, Nikolaos D. Andritsos, Aris E. Giannakas, and Ioannis K. Karabagias. 2025. "A Grape-Derived Solvent for the Recovery of Phenolic Compounds from Food Waste By-Products Using Ultrasonic-Assisted and Overnight Extraction" Molecules 30, no. 19: 3878. https://doi.org/10.3390/molecules30193878
APA StyleLazaridis, D. G., Karabagias, V. K., Andritsos, N. D., Giannakas, A. E., & Karabagias, I. K. (2025). A Grape-Derived Solvent for the Recovery of Phenolic Compounds from Food Waste By-Products Using Ultrasonic-Assisted and Overnight Extraction. Molecules, 30(19), 3878. https://doi.org/10.3390/molecules30193878