Designing Sustainable Packaging Materials: Citric Acid-Modified TPS/PLA Blends with Enhanced Functional and Eco-Performance
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Thermoplasticization of Native Starch and Structural Modification via Citric Acid
2.3. Fabrication of PLA-Based Binary Blends
2.4. FTIR–ATR Spectroscopy
2.5. Melt Flow Index (MFI)
2.6. Morphology
2.7. Thermal Stability
2.7.1. TGA Analysis
2.7.2. DSC Analysis
2.8. X-Ray Diffraction Analysis
2.9. Water Absorption
2.10. Water Vapor Permeability (WVP) According to Herfeld
2.11. Mechanical Properties
2.12. Biodegradability Analysis of the Material
3. Results
3.1. FTIR–ATR Analysis of TPS and TPS/PLA Biopolymeric Blends
3.2. Melt Flow Index (MFI) and Rheological Behavior of TPS/PLA Blends
3.3. Morphological Analysis of TPS/PLA Biopolymeric Blends Using Scanning Electron Microscopy
3.4. XRD Analysis of the Biopolymeric Blends
3.5. Thermal Behavior of TPS/PLA Biopolymeric Blends
3.6. Thermogravimetric Analysis of Biopolymeric Blends
3.7. Water Vapor Permeability (WVP) of the Biopolymeric Blends
3.8. Water Absorption of the Biopolymeric Blends
3.9. Mechanical Properties of the Biopolymeric Blends
3.10. Biodegradability of the Biopolymeric Blends
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Naser, A.Z.; Deiab, I.; Daras, B.M. Poly(lactic acid) (PLA) and polyhydroxyalkanoates (PHAs), green alternatives to petroleum-based plastics: A review. RSC Adv. 2021, 11, 17151–17196. [Google Scholar] [CrossRef]
- Kiessling, T.; Hinzmann, M.; Mederak, L.; Dittmann, S.; Brennecke, D.; Böhm-Beck, M.; Thiel, M. What potential does the EU Single-Use Plastics Directive have for reducing plastic pollution at coastlines and riversides? An evaluation based on citizen science data. Waste Manag. 2023, 164, 106–118. [Google Scholar] [CrossRef]
- Velenturf, A.P.M.; Archer, S.A.; Gomes, H.I.; Christgen, B.; Lag-Brotons, A.J.; Purnell, P. Circular economy and the matter of integrated resources. Sci. Total Environ. 2019, 689, 963–969. [Google Scholar] [CrossRef] [PubMed]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastic ever made. Sci. Adv. 2017, 3, 25–29. [Google Scholar] [CrossRef] [PubMed]
- Fonseca-García, A.; Osorio, B.H.; Aguirre-Loredo, R.Y.; Calambas, H.L.; Caicedo, C. Miscibility study of thermoplastic starch/polylactic acid blends: Thermal and superficial properties. Carbohydr. Polym. 2022, 293, 119744. [Google Scholar] [CrossRef] [PubMed]
- Martinez Villadiego, K.; Arias Tapia, M.J.; Useche, J.; Escobar Macías, D. Thermoplastic starch (TPS)/polylactic acid (PLA) blending methodologies: A review. J. Polym. Environ. 2022, 30, 75–91. [Google Scholar] [CrossRef]
- Leja, K.; Lewandowicz, G. Polymer biodegradation and biodegradable polymers—A Review. Pol. J. Environ. Stud. 2010, 19, 255–266. [Google Scholar]
- Palai, B.; Mohanty, S.; Nayak, S.K. A Comparison on Biodegradation Behaviour of Polylactic Acid (PLA) Based Blown Films by Incorporating Thermoplasticized Starch (TPS) and Poly (Butylene Succinate-co-Adipate) (PBSA) Biopolymer in Soil. J. Polym. Environ. 2021, 29, 2772–2788. [Google Scholar] [CrossRef]
- Ocelić Bulatović, V.; Borković, I.; Kučić Grgić, D.; Jozinović, A. Thermal and Mechanical Properties of Thermoplastic Starch Blends. Kem. Ind. 2018, 67, 21–31. [Google Scholar] [CrossRef]
- Ocelić Bulatović, V.; Govorčin Bajsić, E.; Kučić Grgić, D.; Jozinović, A. Thermal properties of biodegradable PLA/TPS blends. Kem. Ind. 2018, 67, 33–42. [Google Scholar] [CrossRef]
- Pacheco, M.S.; Barbieri, D.; da Silva, C.F.; de Moraes, M.A. A review on orally disintegrating films (ODFs) made from natural polymers such as pullulan, maltodextrin, starch, and others. Inter. J. Biol. Macromol. 2021, 178, 504–513. [Google Scholar] [CrossRef] [PubMed]
- Grgić, I.; Ačkar, Đ.; Barišić, V.; Vlainić, M.; Knežević, N.; Medverec Knežević, Z. Nonthermal methods for starch modification—A review. J. Food Process. Preserv. 2019, 43, e14242. [Google Scholar] [CrossRef]
- Sirohi, R.; Singh, S.; Tarafdar, A.; Prakash Reddy, N.B.; Negi, T.; Gaur, V.K.; Pandey, A.K.; Sindhu, R.; Madhavan, A.; Arun, K.B. Chapter 3—Thermoplastic starch. In Biomass, Biofuels, Biochemicals—Biodegradable Polymers and Composites—Process Engineering to Commercialization; Binod, P., Raveendran, S., Pandey, A., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 31–49. [Google Scholar] [CrossRef]
- Zain, A.H.M.; Ab Wahab, M.K.; Ismail, H. Biodegradation Behaviour of Thermoplastic Starch: The Roles of Carboxylic Acids on Cassava Starch. J. Polym. Environ. 2018, 26, 691–700. [Google Scholar] [CrossRef]
- Plastics—The Facts 2021. Available online: https://plasticseurope.org/knowledge-hub/plastics-the-facts-2021/ (accessed on 4 February 2024).
- Lauer, M.K.; Smith, R.C. Recent advances in starch-based films toward food packaging applications: Physicochemical, mechanical, and functional properties. Compr. Rev. Food Sci. Food Saf. 2020, 19, 3031–3083. [Google Scholar] [CrossRef]
- Jayarathna, S.; Andersson, M.; Andersson, R. Recent advances in starch-based blends and composites for bioplastics applications. Polymers 2022, 14, 4557. [Google Scholar] [CrossRef]
- Auras, R.A.; Lim, L.T.; Selke, S.E.M.; Tsuji, H. Poly(lactic Acid): Synthesis, Structures, Properties, Processing, Applications, and End of Life; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2022; pp. 19–25. [Google Scholar]
- Kahar, A.W.M.; Othoman, N.; Ismail, H. Morphology and tensile properties of high-density polyethylene/natural rubber/thermoplastic tapioca starch blends: The effect of citric acid-modified tapioca starch. J. Appl. Polym. Sci. 2012, 125, 768–775. [Google Scholar] [CrossRef]
- Akrami, M.; Ghasemi, I.; Azizi, H.; Karrabi, M.; Seyedabadi, M. A new approach in compatibilization of the poly(lactic acid)/thermoplastic starch (PLA/TPS) blends. Carbohydr. Polym. 2016, 144, 254–262. [Google Scholar] [CrossRef]
- Mironescu, M.; Lazea-Stoyanova, A.; Barbinta-Patrascu, M.E.; Virchea, L.-I.; Rexhepi, D.; Mathe, E.; Georgescu, C. Green Design of Novel Starch-Based Packaging Materials Sustaining Human and Environmental Health. Polymers 2021, 13, 1190. [Google Scholar] [CrossRef]
- Li, D.; Luo, C.; Zhou, J.; Dong, L.; Chen, Y.; Liu, G.; Qiao, S. The role of the interface of PLA with thermoplastic starch in the nonisothermal crystallization behavior of PLA in PLA/Thermoplastic Starch/SiO2 Composites. Polymers 2023, 15, 1579. [Google Scholar] [CrossRef]
- Castro, J.M.; Montalbán, M.G.; Domene-López, D.; Martín-Gullón, I.; García-Quesada, J.C. Study of the Plasticization Effect of 1-Ethyl-3-methylimidazolium Acetate in TPS/PVA Biodegradable Blends Produced by Melt-Mixing. Polymers 2023, 15, 1788. [Google Scholar] [CrossRef]
- Kovač, M.; Ravnjak, B.; Šubarić, D.; Vinković, T.; Babić, J.; Ačkar, Đ.; Lončarić, A.; Šarić, A.; Bulatović, V.O.; Jozinović, A. Isolation and Characterization of Starch from Different Potato Cultivars Grown in Croatia. Appl. Sci. 2024, 14, 909. [Google Scholar] [CrossRef]
- Kapelko-Żeberska, M.; Buksa, K.; Szumny, A.; Zięba, T.; Gryszkin, A. Analysis of molecular structure of starch citrate obtained by a well-stablished method. LWT-Food Sci. Technol. 2016, 69, 334–341. [Google Scholar] [CrossRef]
- Puchalski, M.; Kwolek, S.; Szparaga, G.; Chrzanowski, M.; Krucińska, I. Investigation of the Influence of PLA Molecular Structure on the Crystalline Forms (α’ and α) and Mechanical Properties of Wet Spinning Fibres. Polymers 2017, 9, 18. [Google Scholar] [CrossRef] [PubMed]
- Bota, J.; Vukoje, M.; Brozović, M.; Hrnjak-Murgić, Z. Reduced water permeability of biodegradable PCL nanocomposite coated paperboard packaging. Chem. Biochem. Eng. Q. 2017, 31, 417–424. [Google Scholar] [CrossRef]
- ISO 527-1:2019; Plastics—Determination of Tensile Properties Part 1: General Principles. International Organisation for Standardisation: Geneva, Switzerland, 2019.
- ISO 17556:2019; Plastics—Determination of the Ultimate Aerobic Biodegradability of Plastic Materials in Soil by Measuring the Oxygen Demand in a Respirometer or the Amount of Carbon Dioxide Evolved. International Organisation for Standardisation: Geneva, Switzerland, 2019.
- Jozinović, A.; Kovač, M.; Ocelić Bulatović, V.; Kučić Grgić, D.; Miloloža, M.; Šubarić, D.; Ačkar, Đ. Biopolymeric Blends of Thermoplastic Starch and Polylactide as Sustainable Packaging Materials. Polymers 2024, 16, 1268. [Google Scholar] [CrossRef]
- Wang, N.; Yu, J.G.; Ma, X.F.; Wu, Y. The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohydr. Polym. 2007, 67, 446–453. [Google Scholar] [CrossRef]
- Chi, Y.; Maitland, E.; Pascall, M.A. The effect of citric acid concentrations on the mechanical, thermal, and structural properties of starch edible films. Int. J. Food Sci. Technol. 2024, 59, 1801–1813. [Google Scholar] [CrossRef]
- Tharanathan, R.N. Starch-value addition by modification. Crit. Rev. Food Sci. Nutr. 2005, 45, 371–384. [Google Scholar] [CrossRef]
- Kumar, M.; Mohanty, S.; Nayak, S.K.; Parvaiz, M.R. Effect of glycidylmethacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites. Bioresour. Technol. 2010, 101, 8406–8415. [Google Scholar] [CrossRef]
- Stelescu, M.D.; Oprea, O.C.; Sonmez, M.; Ficai, A.; Motelica, L.; Ficai, D.; Georgescu, M.; Gurau, D.F. Structural and thermal characterization of some thermoplastic starch mixtures. Polysaccharides 2024, 5, 504–522. [Google Scholar] [CrossRef]
- Ibrahim, N.; Ab Wahab, M.K.; Ngoc Uylan, D.; Ismail, H. Physical and Degradation Properties of Polylactic Acid and Thermoplastic Starch Blends—Effect of Citric Acid Treatment on Starch Structures. BioResources 2017, 12, 3076–3087. [Google Scholar] [CrossRef]
- Oduola, M.K.; Akpeji, P.O. Effect of starch on the mechanical and rheological properties of polypropylene. Am. J. Chem. Eng. 2015, 3, 1–8. [Google Scholar] [CrossRef]
- Ocelić Bulatović, V.; Mandić, V.; Kučić Grgić, D.; Ivančić, A. Biodegradable polymer blends based on thermoplastic starch. J. Polym. Environ. 2021, 2, 492–508. [Google Scholar] [CrossRef]
- Noivoil, N.; Yoksan, R. Compatibility improvement of poly(lactic acid)/thermoplastic starch blown films using acetylated starch. J. Appl. Polym. Sci. 2021, 138, 49675. [Google Scholar] [CrossRef]
- Dewi, R.; Sylvia, N.; Riza, M. Melt flow Index (MFI) analysis of sago based thermoplastic starch blend with polypropylene and polyethylene. Mater. Today Proc. 2023, 87, 396–400. [Google Scholar] [CrossRef]
- Ferrarezi, M.M.F.; de Oliveira Taipina, M.; Escobar da Silva, L.C.; do Carmo Gonçalves, M. Poly(ethilene glycol) as a compatibilizer for poly(lactic acid)/thermoplastic starch blends. J. Polym. Environ. 2013, 21, 151–159. [Google Scholar] [CrossRef]
- Tawakaltu, A.R.A.; Egwim, E.C.; Ochigbo, S.S.; Ossai, P.C. Effect of acetic acid and citric acid modification on biodegradability of cassava starch nanocomposite films. Mater. Sci. Eng. B 2015, 5, 372–379. [Google Scholar] [CrossRef]
- Peidayesh, H.; Heydari, A.; Mosnáčková, K.; Chodák, I. In situ dual crosslinking strategy to improve the physico-chemical properties of thermoplastic starch. Carbohydr. Polym. 2021, 269, 118250. [Google Scholar] [CrossRef]
- Gómez-López, R.A.; Montilla-Buitrago, C.E.; Villada-Castillo, H.S.; Sáenz-Galindo, A.; Avalos-Belmontes, F.; Serna-Cock, L. Co-Plasticization of Starch with Glycerol and Isosorbide: Effect on Retrogradation in Thermo-Plastic Cassava Starch Films. Polymers 2023, 15, 2104. [Google Scholar] [CrossRef]
- Li, H.; Huneault, M.A. Crystallization of PLA/Thermoplastic Starch Blends. Int. Polym. Proc. 2008, 23, 412–418. [Google Scholar] [CrossRef]
- Li, H.; Huneault, M.A. Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer 2007, 48, 6855–6866. [Google Scholar] [CrossRef]
- Garlotta, D. A Literature Review of Poly(Lactic Acid). J. Polym. Environ. 2001, 9, 63–84. [Google Scholar] [CrossRef]
- Fukushima, K.; Fina, A.; Geobaldo, F.; Venturello, A.; Camino, G. Properties of poly(lactic acid) nanocomposites based on montmorillonite, sepiolite and zirconium phosphonate. Express Polym. Lett. 2012, 6, 914–926. [Google Scholar] [CrossRef]
- Kalish, J.P.; Aou, K.; Yang, X.; Hsu, S.L. Spectroscopic and thermal analyses of α′ and α crystalline forms of poly(l-lactic acid). Polymer 2011, 52, 814–821. [Google Scholar] [CrossRef]
- Wilhelm, H.M.; Sierakowski, M.R.; Souza, G.P.; Wypych, F. Starch films reinforced with mineral clay. Carbohydr. Polym. 2013, 52, 101–110. [Google Scholar] [CrossRef]
- Salam, A.; Pawlak, J.J.A.; Venditti, R.; El-Tahlawy, K. Synthesis and characterization of starch citrate−chitosanfoam with superior water and saline absorbance properties. Biomacromolecules 2010, 11, 1453–1459. [Google Scholar] [CrossRef]
- Raj, B.; Udaya Sankar, K.; Siddaramaiah. Low Density Polyethylene Starch Blend Films for Food Packaging Applications. Adv. Polym. Technol. 2004, 23, 32–45. [Google Scholar] [CrossRef]
- Khan, K.H.; Ali, T.M.; Hasnain, A. Effect of chemical modifications on the functional and rheological properties of potato (Solanum tuberosum) Starches. J. Anim. Plant. Sci. 2014, 24, 550–555. [Google Scholar]
- Piyada, K.; Waranyou, S.; Thawien, W. Mechanical, thermal and structural properties of rice starch films reinforced with rice starch nanocrystals. Int. Food Res. J. 2013, 20, 439–449. [Google Scholar]
- Karamanlioglu, M.; Robson, G.D. The influence of biotic and abiotic factors on the rate of degradation of poly(lactic) acid (PLA) coupons buried in compost and soil. Polym. Degrad. Stab. 2013, 98, 2063–2071. [Google Scholar] [CrossRef]
- Olewnik-Kruszkowska, E.; Burkowska-But, A.; Tarach, I.; Walczak, M.; Jakubowska, E. Biodegradation of polylactide-based composites with an addition of a compatibilizing agent in different environments. Int. Biodeterior. Biodegrad. 2020, 147, 104840. [Google Scholar] [CrossRef]
- Platnieks, O.; Gaidukovs, S.; Barkane, A.; Gaidukova, G.; Grase, L.; Thakur, V.K.; Filipova, I.; Fridrihsone, V.; Skute, M.; Laka, M. Highly loaded cellulose/poly (butylene succinate) sustainable composites for woody-like advanced materials application. Molecules 2020, 25, 121. [Google Scholar] [CrossRef]
Starch from Scala Variety | |
---|---|
Chemical composition % d.m. | |
Dry Matter | 84.95 ± 0.01 |
Protein | 0.09 ± 0.00 |
Fat | 0.01 ± 0.00 |
Ash | 0.25 ± 0.00 |
Starch | 82.95 ± 0.42 |
Crude Fiber | 0.90 ± 0.01 |
Amylose | 16.97 ± 0.37 |
Color properties | |
L* | 94.18 ± 0.25 |
a* | −1.32 ± 0.02 |
b* | 2.31 ± 0.07 |
Gelatinization parameters | |
To (°C) | 67.52 ± 0.59 |
Tp (°C) | 71.41 ± 0.06 |
Te (°C) | 77.05 ± 0.17 |
∆H (J g−1) | 2.30 ± 0.04 |
Pasting properties | |
Peak Viscosity [BU] | 1673.5 ± 20.5 |
Viscosity at 92 °C [BU] | 974.0 ± 9.9 |
Viscosity at 50 °C [BU] | 915.0 ± 4.2 |
Texture properties of starch gels | |
Gel Strength (g) | 3.03 ± 0.08 |
Rupture Strength (g) | 912.11 ± 17.51 |
Adhesiveness (g sec) | −192.56 ± 5.68 |
Samples | TPS (wt.%) | PLA (wt.%) | mTPS_5CA (wt.%) | mTPS_10CA (wt.%) | mTPS_20CA (wt.%) |
---|---|---|---|---|---|
PLA | - | 100 | - | - | - |
TPS | 100 | - | - | - | - |
mTPS_ 5CA | - | - | 100 | - | - |
mTPS_ 10CA | - | - | - | 100 | - |
mTPS_ 20CA | - | - | - | - | 100 |
TPS/PLA 60/40 | 60 | 40 | - | - | - |
TPS/PLA 50/50 | 50 | 50 | - | - | - |
TPS/PLA 40/60 | 40 | 60 | - | - | - |
mTPS_5CA/PLA 60/40 | - | 40 | 60 | - | - |
mTPS_5CA/PLA 50/50 | - | 50 | 50 | - | - |
mTPS_5CA/PLA 40/60 | - | 60 | 40 | - | - |
mTPS_10CA/PLA 60/40 | - | 40 | - | 60 | - |
mTPS_10CA/PLA 50/50 | - | 50 | - | 50 | - |
mTPS_10CA/PLA 40/60 | - | 60 | - | 40 | - |
mTPS_20CA/PLA 60/40 | - | 40 | - | - | 60 |
mTPS_20CA/PLA 50/50 | - | 50 | - | - | 50 |
mTPS_20CA/PLA 40/60 | - | 60 | - | - | 40 |
Sample | MFI (g(10 min)−1) |
---|---|
PLA | 6.3 ± 0.7 |
TPS/PLA 60/40 | 2.2 ± 0.1 |
TPS/PLA 50/50 | 4.5 ± 0.9 |
TPS/PLA 40/60 | 5.1 ± 1.1 |
mTPS_5CA/PLA 60/40 | 2.2 ± 0.3 |
mTPS_5CA/PLA 50/50 | 5.0 ± 0.8 |
mTPS_5CA/PLA 40/60 | 4.9 ± 0.4 |
mTPS_10CA/PLA 60/40 | 1.7 ± 0.2 |
mTPS_10CA/PLA 50/50 | 3.7 ± 0.3 |
mTPS_10CA/PLA 40/60 | 5.2 ± 0.8 |
mTPS_20CA/PLA 60/40 | 2.1 ± 0.1 |
mTPS_20CA/PLA 50/50 | 4.9 ± 0.3 |
mTPS_20CA/PLA 40/60 | 5.3 ± 0.1 |
Sample | Tg (°C) | Tc (°C) | ΔHc (Jg−1) | Tm (°C) | ΔHm (Jg−1) | χc (%) |
---|---|---|---|---|---|---|
PLA | 58.5 | 112.4 | 20.9 | 152.1 | 20.2 | 21.7 |
TPS/PLA 60/40 | 56.8 | 122.0 | 16.6 | 151.4 | 17.6 | 47.3 |
TPS/PLA 50/50 | 56.3 | 115.6 | 18.7 | 148.0 | 15.4 | 33.1 |
TPS/PLA 40/60 | 56.0 | 112.7 | 16.2 | 147.0 | 15.0 | 26.9 |
mTPS_5CA/PLA 60/40 | 54.7 | 106.9 | 17.1 | 153.6 | 17.9 | 48.1 |
mTPS_5CA/PLA 50/50 | 53.8 | 106.2 | 21.7 | 152.9 | 21.2 | 45.5 |
mTPS_5CA/PLA 40/60 | 53.6 | 105.0 | 15.9 | 153.7 | 16.8 | 30.1 |
mTPS_10CA/PLA 60/40 | 53.3 | 106.9 | 22.7 | 153.4 | 21.6 | 58.0 |
mTPS_10CA/PLA 50/50 | 53.1 | 104.4 | 15.8 | 152.7 | 14.1 | 30.3 |
mTPS_10CA/PLA 40/60 | 55.2 | 108.7 | 16.8 | 154.7 | 16.5 | 29.5 |
mTPS_20CA/PLA 60/40 | 55.4 | 108.4 | 14.60 | 153.2 | 13.4 | 36.0 |
mTPS_20CA/PLA 50/50 | 56.0 | 110.0 | 18.04 | 153.9 | 17.0 | 36.5 |
mTPS_20CA/PLA 40/60 | 56.0 | 109.7 | 20.15 | 155.0 | 19.4 | 34.7 |
Sample | Tonset (°C) | Tmax1 (°C) | Tmax2 (°C) | Tend (°C) | R600°C (%) |
---|---|---|---|---|---|
PLA | 287.4 | / | 345.0 | 363.4 | 1.0 |
TPS | 253.4 | 287.3 | / | 334.5 | 7.8 |
TPS/PLA 60/40 | 235.3 | 252.3 | 293.2 | 375.3 | 2.5 |
TPS/PLA 50/50 | 259.3 | 293.7 | 333.8 | 394.6 | 4.3 |
TPS/PLA 40/60 | 276.5 | 310.8 | 359.6 | 396.4 | 5.1 |
mTPS_5CA/PLA 60/40 | 258.7 | 295.3 | 354.5 | 393.6 | 3.4 |
mTPS_5CA /PLA 50/50 | 229.7 | 248.3 | 297.8 | 371.4 | 5.1 |
mTPS_5CA/PLA 40/60 | 232.9 | 308.7 | 319.2 | 391.4 | 5.2 |
mTPS_10CA /PLA 60/40 | 238.4 | / | 312.8 | 337.4 | 5.4 |
mTPS_10CA /PLA 50/50 | 225.7 | 257.3 | 288.6 | 363.4 | 4.8 |
mTPS_10CA /PLA 40/60 | 234.6 | 312.4 | / | 390.2 | 6.3 |
mTPS_20CA /PLA 60/40 | 222.4 | 285.4 | 294.8 | 324.5 | 7.3 |
mTPS_20CA /PLA 50/50 | 219.4 | 228.9 | 255.6 | 364.4 | 6.3 |
mTPS_20CA /PLA 40/60 | 218.4 | 258.4 | 276.4 | 342.5 | 10.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bulatović, V.O.; Kovač, M.; Grgić, D.K.; Mandić, V.; Jozinović, A. Designing Sustainable Packaging Materials: Citric Acid-Modified TPS/PLA Blends with Enhanced Functional and Eco-Performance. Polymers 2025, 17, 2571. https://doi.org/10.3390/polym17192571
Bulatović VO, Kovač M, Grgić DK, Mandić V, Jozinović A. Designing Sustainable Packaging Materials: Citric Acid-Modified TPS/PLA Blends with Enhanced Functional and Eco-Performance. Polymers. 2025; 17(19):2571. https://doi.org/10.3390/polym17192571
Chicago/Turabian StyleBulatović, Vesna Ocelić, Mario Kovač, Dajana Kučić Grgić, Vilko Mandić, and Antun Jozinović. 2025. "Designing Sustainable Packaging Materials: Citric Acid-Modified TPS/PLA Blends with Enhanced Functional and Eco-Performance" Polymers 17, no. 19: 2571. https://doi.org/10.3390/polym17192571
APA StyleBulatović, V. O., Kovač, M., Grgić, D. K., Mandić, V., & Jozinović, A. (2025). Designing Sustainable Packaging Materials: Citric Acid-Modified TPS/PLA Blends with Enhanced Functional and Eco-Performance. Polymers, 17(19), 2571. https://doi.org/10.3390/polym17192571