Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (152)

Search Parameters:
Keywords = asymmetric scattering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 1184 KiB  
Article
Influence of Bragg Resonance on the Hydrodynamic Performance of a Fixed-Detached Asymmetric Oscillating Water Column Device
by Prakash Kar, Robert Mayon and Dezhi Ning
J. Mar. Sci. Eng. 2025, 13(6), 1115; https://doi.org/10.3390/jmse13061115 - 2 Jun 2025
Viewed by 484
Abstract
The present study analyzes the hydrodynamic performance of an asymmetric offshore Oscillating Water Column device positioned in close proximity to multiple bottom standing and fully submerged breakwaters and trenches. The breakwaters and trenches are located on the leeward side of the Oscillating Water [...] Read more.
The present study analyzes the hydrodynamic performance of an asymmetric offshore Oscillating Water Column device positioned in close proximity to multiple bottom standing and fully submerged breakwaters and trenches. The breakwaters and trenches are located on the leeward side of the Oscillating Water Column device. The structures are investigated in combination with a shore-fixed vertical wall. The analysis is carried out using the Boundary Element Method based on the linear potential flow theory. The results are compared with the existing analytical, numerical, and experiment results available in the literature. The effects of the various shape parameters of the submerged breakwaters/trenches and the shape parameters of the Oscillating Water Column device are investigated. The results show that the resonance effects on the efficiency performance increase as the number of breakwaters/trenches increases. The undulating bottom trench shape is effective in improving the efficiency of the Oscillating Water Column device compared to the breakwater. The efficiency bandwidth is greater in the case of a rectangular trench than in the case of a parabolic- or triangular-shaped trench. In addition, the first peak value in the efficiency curve for a lower frequency is higher in the case of a larger-draft Oscillating Water Column device front wall compared to that of the rear wall. This study demonstrates that in the long wave-length regime, a zero efficiency point is observed between two consecutive resonant peaks, whereas in the intermediate and short wave-length regimes, a trough and a zero efficiency point alternately occur between two consecutive resonance peaks. Various parameters relevant to the behavior of the Oscillating Water Column Wave Energy Converter, such as radiation susceptance, radiation conductance, hydrodynamic efficiency, and volume flux due to a scatter potential, are addressed. Full article
(This article belongs to the Topic Marine Renewable Energy, 2nd Edition)
Show Figures

Figure 1

12 pages, 3903 KiB  
Article
Microstructure and Electrical Properties of Scandium-Doped Aluminum Nitride Thin Film
by Jiaqiang Chen, Junxi Zhang, Zhiyang Fan and Ping Yu
Coatings 2025, 15(5), 549; https://doi.org/10.3390/coatings15050549 - 4 May 2025
Viewed by 851
Abstract
Highly (0002)-oriented Al1−xScxN thin films with different Sc doping concentrations (x = 0, 0.2, 0.25, 0.3, and 0.43) were prepared via a magnetron sputtering system. The effects of Sc doping on the crystal structure and electrical property [...] Read more.
Highly (0002)-oriented Al1−xScxN thin films with different Sc doping concentrations (x = 0, 0.2, 0.25, 0.3, and 0.43) were prepared via a magnetron sputtering system. The effects of Sc doping on the crystal structure and electrical property of the as-prepared thin films were investigated experimentally. The results of synchrotron radiation grazing-incidence wide-angle X-ray scattering (GIWAXS) and X-ray diffraction (XRD) demonstrated that the Sc3+ substitution for Al3+ induced asymmetric lattice distortion: the a-axis exhibited monotonic expansion (reaching 3.46 Å at x = 0.43) due to the larger atomic radius of Sc (~0.87 Å), while the c-axis attained a maximum value of 5.14 Å at x = 0.2 and subsequently contracted as the bond angle reduction became dominant. The dielectric constant increased to 34.67 (225% enhancement) at x = 0.43, attributed to the enhanced polarization of Sc-N bonds and interfacial charge accumulation effects. Simultaneously, the dielectric loss increased from 0.15% (x = 0) to 6.7% (x = 0.43). Leakage current studies revealed that high Sc doping (x = 0.43) elevated the leakage current density to 10−6 A/cm2 under an electric field of 0.2 MV/cm, accompanied by a transition from Ohmic conduction to space-charge-limited current (SCLC) at a low electric field strength (<0.072 MV/cm). Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

13 pages, 6504 KiB  
Article
Germanium Metasurface for the Polarization-Sensitive Stokes Thermal Imaging at a MWIR 4-Micron Wavelength
by Hosna Sultana
Photonics 2025, 12(2), 137; https://doi.org/10.3390/photonics12020137 - 7 Feb 2025
Viewed by 1341
Abstract
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive [...] Read more.
The mid-wave infrared (MWIR) spectral range can provide a larger bandwidth for optical sensing and communication when the near-infrared band becomes congested. This range of thermal signatures can provide more information for digital imaging and object recognition, which can be unraveled from polarization-sensitive detection by integrating the metasurface of the subwavelength-scale structured interface to control light–matter interactions. To enforce the metasurface-enabled simultaneous detection and parallel analysis of polarization states in a compact footprint for 4-micron wavelength, we designed a high-contrast germanium metasurface with an axially asymmetric triangular nanoantenna with a height 0.525 times the working wavelength. First, we optimized linear polarization separation of a 52-degree angle with about 50% transmission efficiency, holding the meta-element aspect ratio within the 3.5–1.67 range. The transmission modulation in terms of periodicity and lattice resonance for the phase-gradient high-contrast dielectric metasurface in correlation with the scattering cross-section for both 1D and 2D cases has been discussed for reducing the aspect ratio to overcome the nanofabrication challenge. Furthermore, by employing the geometric phase, we achieved 40% and 60% transmission contrasts for the linear and circular polarization states, respectively, and reconstructed the Stokes vectors and output polarization states. Without any spatial multiplexing, this single metasurface unit cell can perform well in the division of focal plane Stokes thermal imaging, with an almost 10-degree field of view, and it has an excellent refractive index and height tolerance for nanofabrication. Full article
Show Figures

Figure 1

20 pages, 5255 KiB  
Article
Virus-Mimicking Polymer Nanocomplexes Co-Assembling HCV E1E2 and Core Proteins with TLR 7/8 Agonist—Synthesis, Characterization, and In Vivo Activity
by Thomas R. Fuerst, Alexander Marin, Sarah Jeong, Liudmila Kulakova, Raman Hlushko, Katrina Gorga, Eric A. Toth, Nevil J. Singh and Alexander K. Andrianov
J. Funct. Biomater. 2025, 16(1), 34; https://doi.org/10.3390/jfb16010034 - 19 Jan 2025
Cited by 1 | Viewed by 1829
Abstract
Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein [...] Read more.
Hepatitis C virus (HCV) is a major public health concern, and the development of an effective HCV vaccine plays an important role in the effort to prevent new infections. Supramolecular co-assembly and co-presentation of the HCV envelope E1E2 heterodimer complex and core protein presents an attractive vaccine design strategy for achieving effective humoral and cellular immunity. With this objective, the two antigens were non-covalently assembled with an immunostimulant (TLR 7/8 agonist) into virus-mimicking polymer nanocomplexes (VMPNs) using a biodegradable synthetic polyphosphazene delivery vehicle. The resulting assemblies were characterized using dynamic light scattering and asymmetric flow field-flow fractionation methods and directly visualized in their vitrified state by cryogenic electron microscopy. The in vivo superiority of VMPNs over the individual components and an Alum-formulated vaccine manifests in higher neutralizing antibody titers, the promotion of a balanced IgG response, and the induction of a cellular immunity—CD4+ T cell responses to core proteins. The aqueous-based spontaneous co-assembly of antigens and immunopotentiating molecules enabled by a synthetic biodegradable carrier offers a simple and effective pathway to the development of polymer-based supramolecular nanovaccine systems. Full article
(This article belongs to the Special Issue Synthesis, Biomanufacturing, and Bio-Application of Advanced Polymers)
Show Figures

Graphical abstract

18 pages, 4197 KiB  
Article
Smart Poly(acrylic acid)/Poly(acrylamide) Microgels with Interpenetrating Polymer Network Structure
by Marin Simeonov, Pavletta Shestakova, Susanne Boye, Albena Lederer and Elena Vassileva
Appl. Sci. 2024, 14(24), 11562; https://doi.org/10.3390/app142411562 - 11 Dec 2024
Viewed by 1407
Abstract
Microgels with precisely tuned properties are of great importance as drug delivery systems. Here, we report the synthesis of microgel particles (MGs) with an interpenetrating polymer network structure composed of poly(acrylic acid) (PAA) and polyacrylamide (PAAM) for their potential application as cationic drug [...] Read more.
Microgels with precisely tuned properties are of great importance as drug delivery systems. Here, we report the synthesis of microgel particles (MGs) with an interpenetrating polymer network structure composed of poly(acrylic acid) (PAA) and polyacrylamide (PAAM) for their potential application as cationic drug carriers. The MG properties were investigated via several analytical techniques, such as Dynamic Light Scattering (DLS) and zeta potential (ZP) measurements, Diffusion Nuclear Magnetic Resonance (NMR) spectroscopy, Asymmetrical Flow Field-Flow Fractionation (AF4) and Transmission Electron Microscopy (TEM). The MGs show pH-dependent swelling behavior with a radius of ~100 nm at collapsed state (pH < 4.5) and swell up to ~450 nm (pH~7), while their ZP decreases from −5 to −40 mV, depending on their composition. The results of the conducted studies demonstrate the potential of synthesized microgels for drug delivery in the gastrointestinal tract. Full article
Show Figures

Figure 1

24 pages, 9119 KiB  
Article
Nearshore Migration of Munitions and Canonical Objects Under Large-Scale Laboratory Forcing
by Temitope E. Idowu, Emily Chapman, Manoj K. Gangadharan, Jacob Stolle and Jack A. Puleo
J. Mar. Sci. Eng. 2024, 12(11), 2103; https://doi.org/10.3390/jmse12112103 - 20 Nov 2024
Viewed by 879
Abstract
A quantitative understanding of the migration of munitions and canonical objects in the nearshore is needed for the effective management of contaminated sites. Migrations of munitions with a density range of 2000 kg/m3 to 5720 kg/m3 were quantified in a large-scale [...] Read more.
A quantitative understanding of the migration of munitions and canonical objects in the nearshore is needed for the effective management of contaminated sites. Migrations of munitions with a density range of 2000 kg/m3 to 5720 kg/m3 were quantified in a large-scale wave flume. The forcing consisted of six cases of varying wave heights, periods, still water depths, and durations. The cross-shore profile, typical of natural sandy beaches, was sub-divided into swash, surf, and offshore zones. Overall, 2228 migration measurements were recorded with 16% and 84% of the migration observations classified as “motion” (net distance > 0.5 m) and “no motion” (net distance ≤ 0.5 m), respectively. The probability of munitions migration increased with proximity to the shoreline. There was a nearly equal probability of onshore or offshore migration in the swash zone. Migration in the surf zone tended to be offshore-directed (65%), while migration was onshore-dominant (65%) in the offshore zone. Migration in the offshore zone was preferentially onshore due to skewed waves over flat bathymetry. Less dense munitions in the offshore zone may have migrated offshore likely still related to the skewed nature of the wave profile causing transport in both directions through the majority of the wave phase. The largest migration distances occurred in the surf zone likely due to downslope gravity. Migration in the surf and swash zones is a balance between skewed/asymmetric forcing and downslope gravity, with downslope gravity tending to be pronounced provided the forcing is sufficient to initiate motion. An exception was sometimes observed in the swash zone where onshore forcing was sufficient to transport munitions to the seaward side of the berm where they became trapped in a bathymetric depression between the dune and berm. Relating overall migration (Lagrangian) to fixed hydrodynamic measurements (Eulerian) was ineffective. Parameters such as the Shields number, wave skewness, and wave asymmetry estimated from the closest measurement location were insufficient to predict migration. Large scatter in the migration data resulting from competing hydrodynamic, morphodynamic, and munitions response processes makes robust deterministic predictions with flow statistics and dimensionless numbers difficult. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Graphical abstract

18 pages, 1823 KiB  
Article
New Asymmetric Gemini Triazole Surfactants with a Polar Triethylene Glycol Fragment: Synthesis and Physico-Chemical Properties
by Ilshat Bogdanov, Diana Mironova, Elza Sultanova, Vladimir Burilov, Svetlana Solovieva and Igor Antipin
Molecules 2024, 29(22), 5420; https://doi.org/10.3390/molecules29225420 - 17 Nov 2024
Viewed by 977
Abstract
The present work is devoted to the synthesis and analysis of the physicochemical properties of new functionalized asymmetric Gemini surfactants. Herein, alkyl- and azide-substituted surfactants with symmetric and asymmetric substituents were synthesized by using the click-reaction method. The critical aggregation concentration values of [...] Read more.
The present work is devoted to the synthesis and analysis of the physicochemical properties of new functionalized asymmetric Gemini surfactants. Herein, alkyl- and azide-substituted surfactants with symmetric and asymmetric substituents were synthesized by using the click-reaction method. The critical aggregation concentration values of Gemini surfactants were determined. The binding processes of functionalized Gemini surfactants with bovine serum albumin were evaluated by fluorescence spectroscopy. Also, using the temperature dependences of the binding constants, the mechanism of Gemini surfactants binding with bovine serum albumin was studied. The hydrodynamic diameters of the formed bovine serum albumin/surfactant aggregates were analyzed. Based on electrophoretic light scattering, the ability of the synthesized Gemini surfactants to form associates was analyzed. The possibility of changing the mechanism of interaction in the 15c/bovine serum albumin system was shown. Based on the results obtained using different light scattering techniques and fluorescence spectroscopy, the mechanisms of interaction between bovine serum albumin and surfactants were determined. Full article
(This article belongs to the Section Organic Chemistry)
Show Figures

Figure 1

18 pages, 3362 KiB  
Article
Making Mobile Nanotechnology Accessible: Is the Explicit Preparation of Janus Nanoparticle Necessary to Achieve Mobility?
by Vagisha Nidhi, Arthur Allaire, Zakariya Ait Athmane, Patrick Guenoun, Fabienne Testard, Jean-Philippe Renault and Florent Malloggi
Nanomaterials 2024, 14(22), 1796; https://doi.org/10.3390/nano14221796 - 8 Nov 2024
Viewed by 1446
Abstract
This study compares the mobility behaviour, in a H2O2 environment, of three different geometries of hybrid particle made of silica core functionalized by gold (nanoparticles or layer). It is known that the decomposition of H2O2 on gold [...] Read more.
This study compares the mobility behaviour, in a H2O2 environment, of three different geometries of hybrid particle made of silica core functionalized by gold (nanoparticles or layer). It is known that the decomposition of H2O2 on gold surfaces drives mobility; however, the link between mobility orientation and the organization of gold on silica surfaces is still questionable. While conventional wisdom posits that asymmetric designs are crucial for generating phoretic forces or localized bubble propulsion, recent research suggests that symmetrical particles may also exhibit motility. To address this debate, we developed a robust workflow for synthesizing gold grafted silica nanoparticles with precise control over size and shape, enabling the direct comparison of their motile behaviour by dynamic light scattering and particle tracking velocimetry. Our results indicate, first, that a combination of techniques is necessary to overcome their intrinsic limitation and, second, that the inherent asymmetry generated by isotropic gold nanoparticle deposition onto silica surfaces may enable particle motility. Full article
(This article belongs to the Special Issue Morphological Design and Synthesis of Nanoparticles (Second Edition))
Show Figures

Figure 1

19 pages, 8257 KiB  
Article
Basic Cells Special Features and Their Influence on Global Transport Properties of Long Periodic Structures
by Luna R. N. Oliveira and Marcos G. E. da Luz
Entropy 2024, 26(11), 942; https://doi.org/10.3390/e26110942 - 3 Nov 2024
Cited by 1 | Viewed by 845
Abstract
In this contribution, we address quantum transport in long periodic arrays whose basic cells, localized potentials U(x), display certain particular features. We investigate under which conditions these “local” special characteristics can influence the tunneling behavior through the full structure. [...] Read more.
In this contribution, we address quantum transport in long periodic arrays whose basic cells, localized potentials U(x), display certain particular features. We investigate under which conditions these “local” special characteristics can influence the tunneling behavior through the full structure. As the building blocks, we consider two types of U(x)s: combinations of either Pöschl–Teller, U0/cosh2[αx], potentials (for which the reflection and transmission coefficients are known analytically) or Gaussian-shaped potentials. For the latter, we employ an improved potential slicing procedure using basic barriers, like rectangular, triangular and trapezoidal, to approximate U(x) and thus obtain its scattering amplitudes. By means of a recently derived method, we discuss scattering along lattices composed of a number, N, of these U(x)s. We find that near-resonance energies of an isolated U(x) do impact the corresponding energy bands in the limit of very large Ns, but only when the cell is spatially asymmetric. Then, there is a very narrow opening (defect or rip) in the system conduction quasi-band, corresponding to the energy of the U(x) quasi-state. Also, for specific U0’s of a single Pöschl–Teller well, one has 100% transmission for any incident E>0. For the U(x) parameters rather close to such a condition, the associated array leads to a kind of “reflection comb” for large Ns; |TN(k)|2 is not close to one only at very specific values of k, when |TN|20. Finally, the examples here—illustrating how the anomalous transport comportment in finite but long lattices can be inherited from certain singular aspects of the U(x)s—are briefly discussed in the context of known effects in the literature, notably for lattices with asymmetric cells. Full article
(This article belongs to the Special Issue Tunneling in Complex Systems)
Show Figures

Figure 1

17 pages, 5985 KiB  
Article
Characterization of Nanoparticles in Drinking Water Using Field-Flow Fractionation Coupled with Multi-Angle Light Scattering and Inductively Coupled Plasma Mass Spectrometry
by Talie Zarei, Marcos B. A. Colombo, Elmar C. Fuchs, Herman L. Offerhaus, Denis Gebauer and Luewton L. F. Agostinho
Water 2024, 16(17), 2419; https://doi.org/10.3390/w16172419 - 27 Aug 2024
Viewed by 1732
Abstract
The current absence of well-established and standardized methods for characterizing submicrometer- and nano-sized particles in water samples presents a significant analytical challenge. With the increasing utilization of nanomaterials, the potential for unintended exposure escalates. The widespread and persistent pollution of water by micro- [...] Read more.
The current absence of well-established and standardized methods for characterizing submicrometer- and nano-sized particles in water samples presents a significant analytical challenge. With the increasing utilization of nanomaterials, the potential for unintended exposure escalates. The widespread and persistent pollution of water by micro- and nanoplastics globally is a concern that demands attention, not only to reduce pollution but also to develop methods for analyzing these pollutants. Additionally, the analysis of naturally occurring nano entities such as bubbles and colloidal matter poses challenges due to the lack of systematic and consistent methodologies. This study presents Asymmetric Flow Field-Flow Fractionation (AF4) separation coupled with a UV-VIS spectrometer followed by Multi-Angle Light Scattering (MALS) for detection and size characterization of nanometric entities. It is coupled with an Inductively Coupled Plasma Mass Spectrometer (ICP-MS) for elemental analysis. Water samples from different sources, such as untreated mountain spring water, groundwater, and bottled drinking water, were analyzed. The system was calibrated using pure particle standards of different metallic compositions. Our study demonstrates the capability of AF4-UV-MALS-ICP-MS to detect metals such as Al, Ba, Cu, and Zn in particles of around 200 nm diameter and Mg associated with very small particles between 1.5 and 10 nm in different drinking water samples. Full article
Show Figures

Figure 1

15 pages, 1712 KiB  
Article
Composition Profiles at the Metal Substrate–Deposit Interface Produced in Laser-Assisted Additive Manufacturing Processes
by László Péter, Szilvia Kugler, Tamás Kolonits and Attila Nagy
Materials 2024, 17(13), 3125; https://doi.org/10.3390/ma17133125 - 26 Jun 2024
Viewed by 1457
Abstract
The cross-section of various substrate–deposit metal pairs obtained with a laser-assisted additive manufacturing process has been studied by observing the composition profile with energy-dispersive spectroscopy (EDS). The EDS composition profiles observed with a sufficiently high data acquisition time revealed that the composition profile [...] Read more.
The cross-section of various substrate–deposit metal pairs obtained with a laser-assisted additive manufacturing process has been studied by observing the composition profile with energy-dispersive spectroscopy (EDS). The EDS composition profiles observed with a sufficiently high data acquisition time revealed that the composition profile is asymmetric. By scanning toward the growth direction, a sudden composition variation was observed, which was followed by a slow decay. The character of the composition profile was the same for a number of substrate–deposit pairs, and similar trends were found in various earlier publications as well. A mathematical model for the composition variation is suggested based on the assumption that a spontaneous homogenization process takes place in the intermixing (dilution) zone of the remelted top layer of the substrate. The equation obtained makes it possible to quantitatively describe the composition profile of each component that exhibits a concentration difference between the substrate and the deposit, provided that the mole fraction difference much exceeds the scattering of the data measured. The suggested model has also been applied successfully to composition profiles published in other works, hence exhibiting general relevance. Since the variation in some physical parameters (such as hardness) along the growth direction has been reported to follow the same pattern, it is assumed that the root cause in these cases may also be the composition variation. Full article
Show Figures

Figure 1

13 pages, 2281 KiB  
Article
Poly(ethylene oxide)- and Polyzwitterion-Based Thermoplastic Elastomers for Solid Electrolytes
by Ding-Li Xia, Shi-Peng Ding, Ze Ye, Chen Yang and Jun-Ting Xu
Materials 2024, 17(9), 2145; https://doi.org/10.3390/ma17092145 - 3 May 2024
Cited by 4 | Viewed by 1489
Abstract
In this article, ABA triblock copolymer (tri-BCP) thermoplastic elastomers with poly(ethylene oxide) (PEO) middle block and polyzwitterionic poly(4-vinylpyridine) propane-1-sulfonate (PVPS) outer blocks were synthesized. The PVPS-b-PEO-b-PVPS tri-BCPs were doped with lithium bis-(trifluoromethane-sulfonyl) imide (LiTFSI) and used as solid polyelectrolytes [...] Read more.
In this article, ABA triblock copolymer (tri-BCP) thermoplastic elastomers with poly(ethylene oxide) (PEO) middle block and polyzwitterionic poly(4-vinylpyridine) propane-1-sulfonate (PVPS) outer blocks were synthesized. The PVPS-b-PEO-b-PVPS tri-BCPs were doped with lithium bis-(trifluoromethane-sulfonyl) imide (LiTFSI) and used as solid polyelectrolytes (SPEs). The thermal properties and microphase separation behavior of the tri-BCP/LiTFSI hybrids were studied. Small-angle X-ray scattering (SAXS) results revealed that all tri-BCPs formed asymmetric lamellar structures in the range of PVPS volume fractions from 12.9% to 26.1%. The microphase separation strength was enhanced with increasing the PVPS fraction (fPVPS) but was weakened as the doping ratio increased, which affected the thermal properties of the hybrids, such as melting temperature and glass transition temperature, to some extent. As compared with the PEO/LiTFSI hybrids, the PVPS-b-PEO-b-PVPS/LiTFSI hybrids could achieve both higher modulus and higher ionic conductivity, which were attributed to the physical crosslinking and the assistance in dissociation of Li+ ions by the PVPS blocks, respectively. On the basis of excellent electrical and mechanical performances, the PVPS-b-PEO-b-PVPS/LiTFSI hybrids can potentially be used as solid electrolytes in lithium-ion batteries. Full article
(This article belongs to the Special Issue Advanced Rubber Composites (3rd Edition))
Show Figures

Figure 1

22 pages, 6031 KiB  
Article
Preparation of Asymmetric Al2O3-SiO2 Janus Nanoparticles in Aqueous Phase and Its Interfacial Property
by Xinli Jia, Peiwen Xiao, Liqiang Yang, Jianhui Luo, Meiying He, Pingmei Wang, Bo Jiang and Bo Xiao
Materials 2024, 17(6), 1251; https://doi.org/10.3390/ma17061251 - 8 Mar 2024
Cited by 2 | Viewed by 1545
Abstract
In this study, asymmetric Al2O3-SiO2 Janus nanoparticles with a dumbbell-like structure were synthesized by a facile chemical process in the aqueous phase. Prior to synthesis, Al2O3 nanoparticles in hydrosol were amino-modified using 3-aminopropyl triethoxysilane (KH550) [...] Read more.
In this study, asymmetric Al2O3-SiO2 Janus nanoparticles with a dumbbell-like structure were synthesized by a facile chemical process in the aqueous phase. Prior to synthesis, Al2O3 nanoparticles in hydrosol were amino-modified using 3-aminopropyl triethoxysilane (KH550) and then carboxyl acid-functionalized using a ring-opening reaction of the amine functions with succinic anhydride, imparting unique anionic properties to the Al2O3 end. SiO2 nanoparticles were rendered hydrophobic through modification with hexamethyldisilazane (HMDS) and further functionalized with 3-chloropropyl triethoxysilane (KH230). The two nanoparticle hydrosols were then mixed, and the asymmetric Al2O3-SiO2 Janus nanoparticles were synthesized via the reaction between the –NH2 and −CH2Cl groups. The prepared Janus nanoparticles were primarily characterized by dynamic light scattering (DLS), Zeta potential (ZP), and transmission electron microscopy (TEM). The results indicated that about 90% of the modified Al2O3 and SiO2 nanoparticles were covalently coupled in a one-to-one manner to form the dominant dumbbell-like structure. These Janus nanoparticles exhibit amphiphilic properties, making them highly promising surfactants for emulsifying oil–water mixtures. Full article
Show Figures

Figure 1

19 pages, 2261 KiB  
Article
Copper Speciation in Wine Growing-Drain Waters: Mobilization, Transport, and Environmental Diffusion
by Valentin De Carsalade du Pont, Amani Ben Azzouz, Hind El Hadri, Philippe Chéry and Gaëtane Lespes
Environments 2024, 11(1), 19; https://doi.org/10.3390/environments11010019 - 19 Jan 2024
Cited by 1 | Viewed by 2311
Abstract
Copper (Cu) has been used to treat vines for a long time, which has led to its accumulation in vineyard soils. In the present work, the mobilization of copper from these soils and its transport, and diffusion outside the plots by drain water [...] Read more.
Copper (Cu) has been used to treat vines for a long time, which has led to its accumulation in vineyard soils. In the present work, the mobilization of copper from these soils and its transport, and diffusion outside the plots by drain water were investigated. For this, the distribution of copper between the dissolved and colloidal phases, and within the colloidal phase, of these waters was determined using an investigation strategy based on the coupling between a size separation technique, asymmetric flow field-flow fractionation, and several detectors. First, the total copper concentrations in water from different drains were monitored over a period of 2 years: Cu was mainly found in the fraction of < 450 nm. Then, the distribution of copper on the size continuum was more closely studied in water from one of the drains, sampled over a winter period. Between 45 and 75% of Cu was found in the 2–450 nm colloidal fraction. The <450 nm colloidal phase of the drain waters was found to be mainly composed of humic acids (~15 to 60 mg L−1) and clay-rich particles (~100 to 650 mg (Al) L−1). These particles also contained (hydr)oxides of iron and manganese. The concentrations of Fe and Mn were approximately 100 to 200 times lower than those of Al. The majority of humic acids had an apparent molar mass of ≤ 10 kDa. They were distributed along the size continuum: (i) in a population with an average size of ~20 nm, probably consisting of supramolecular entities, and (ii) associated with clay-rich particles with a size of ~120–200 nm. Copper was found to be complexed with humic acids and associated with clays via clay-humic complexes. Copper mobilization from the soil to the water and its transport to the drain water appeared governed by the soil humidity level and the rainfall. Full article
Show Figures

Figure 1

16 pages, 2265 KiB  
Article
Decomposition of the Voltages in a Three-Phase Asymmetrical Circuit with a Non-Sinusoidal Voltage Source
by Konrad Zajkowski and Stanisław Duer
Energies 2023, 16(22), 7616; https://doi.org/10.3390/en16227616 - 16 Nov 2023
Cited by 5 | Viewed by 1565
Abstract
This article presents the concept of a mathematical description of a three-phase, four-wire asymmetrical electric circuit in decomposition into Voltages’ Physical Components (VPC), associated with distinctive physical phenomena in the load. This is an alternative method of mathematical description to the Currents’ Physical [...] Read more.
This article presents the concept of a mathematical description of a three-phase, four-wire asymmetrical electric circuit in decomposition into Voltages’ Physical Components (VPC), associated with distinctive physical phenomena in the load. This is an alternative method of mathematical description to the Currents’ Physical Components (CPC) still being developed since the end of the last century. According to previous studies, the improvement of the power factor in three-phase systems is possible by observing several components. Compensation for the scattered power is possible only by using a reactive compensator connected in series with the load. Thanks to the presented analytical method, it is possible to design compensators connected in series with the load. The VPC power theory opens the possibility of improving the power factor in three-phase networks for loads with asymmetry between phases. Due to the unfavorable impact of high currents on the compensator branches, the method proposed in the article can improve the energy quality in local low-power grids. However, the possibility of its practical use in high-power industrial networks is questionable. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

Back to TopTop