Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (68)

Search Parameters:
Keywords = asbestos-cement

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5190 KiB  
Article
Comparative Evaluation of the Effectiveness and Efficiency of Computational Methods in the Detection of Asbestos Cement in Hyperspectral Images
by Gabriel Elías Chanchí-Golondrino, Manuel Saba and Manuel Alejandro Ospina-Alarcón
Materials 2025, 18(15), 3456; https://doi.org/10.3390/ma18153456 - 23 Jul 2025
Viewed by 339
Abstract
Among the existing challenges in the field of hyperspectral imaging, the need to optimize memory usage and computational capacity in material detection methods stands out, given the vast amount of data associated with the hundreds of reflectance bands. In line with this, this [...] Read more.
Among the existing challenges in the field of hyperspectral imaging, the need to optimize memory usage and computational capacity in material detection methods stands out, given the vast amount of data associated with the hundreds of reflectance bands. In line with this, this article proposes a comparative study on the effectiveness and efficiency of five computational methods for detecting composite material asbestos cement (AC) in hyperspectral images: correlation, spectral differential similarity (SDS), Fourier phase similarity (FPS), area under the curve (AUC), and decision trees (DT). The novelty lies in the comparison between the first four methods, which represent the spectral proximity method and a machine learning method, such as DT. Furthermore, SDS and FPS are novel methods proposed in the present document. Given the accuracy that detection methods based on supervised learning have demonstrated in material identification, the results obtained from the DT model were compared with the percentage of AC detected in a hyperspectral image of the Manga neighborhood in the city of Cartagena by the other four methods. Similarly, in terms of computational efficiency, a 20 × 20 pixel region with 380 bands was selected for the execution of multiple repetitions of each of the five computational methods considered, in order to obtain the average processing time of each method and the relative efficiency of the methods with respect to the method with the best effectiveness. The decision tree (DT) model achieved the highest classification accuracy at 99.4%, identifying 11.44% of asbestos cement (AC) pixels in the reference image. However, the correlation method, while detecting a lower percentage of AC pixels (9.72%), showed the most accurate visual performance and had no spectral overlap, with a 1.4% separation between AC and non-AC pixels. The SDS method was the most computationally efficient, running 23.85 times faster than the DT model. The proposed methods and results can be applied to other hyperspectral imaging tasks involving material identification in urban environments, especially when balancing accuracy and computational efficiency is essential. Full article
Show Figures

Figure 1

2 pages, 133 KiB  
Correction
Correction: Durczak et al. Modern Methods of Asbestos Waste Management as Innovative Solutions for Recycling and Sustainable Cement Production. Sustainability 2024, 16, 8798
by Karol Durczak, Michał Pyzalski, Tomasz Brylewski, Michał Juszczyk, Agnieszka Leśniak, Marek Libura, Leonas Ustinovičius and Mantas Vaišnoras
Sustainability 2025, 17(14), 6486; https://doi.org/10.3390/su17146486 - 16 Jul 2025
Viewed by 185
Abstract
The authors would like to make the following corrections to the published paper [...] Full article
13 pages, 523 KiB  
Article
The Impact of Rainwater Quality Harvested from Asbestos Cement Roofs on Leaf Temperature in Solanum lycopersicum as a Plant Water Stress Indicator
by Gergely Zoltán Macher
Water 2025, 17(14), 2070; https://doi.org/10.3390/w17142070 - 10 Jul 2025
Viewed by 370
Abstract
Rainwater harvesting (abbreviation: RWH) presents a valuable alternative water source for agriculture, particularly in regions facing water scarcity. However, contaminants leaching from roofing materials, such as asbestos cement (abbreviation: AC), may compromise water quality and affect plant physiological responses. This paper aimed to [...] Read more.
Rainwater harvesting (abbreviation: RWH) presents a valuable alternative water source for agriculture, particularly in regions facing water scarcity. However, contaminants leaching from roofing materials, such as asbestos cement (abbreviation: AC), may compromise water quality and affect plant physiological responses. This paper aimed to assess how simulated rainwater, reflecting the different levels of contamination (1, 2, 5, 10, and 20 mg/L), influences leaf temperature in tomato plants (Solanum lycopersicum), a known non-invasive indicator of plant water stress. The treatments were applied over a four-week period under controlled greenhouse conditions. Leaf temperature was monitored using infrared thermography. Results showed that higher treatment concentrations led to a significant increase in leaf temperature, indicating elevated water stress. These findings suggest that even low levels of contaminants originating from roofing materials can induce detectable physiological stress in plants. Monitoring leaf temperature offers a rapid and non-destructive method for assessing environmental water quality impacts on crops. The outcomes of this research have direct applicability in the safer design of RWH systems and in evaluating the suitability of collected rainwater for irrigation use. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

15 pages, 556 KiB  
Review
Mosses in Urban Environments as Passive Biofilters and Organisms Impacted by Asbestos-Contaminated Habitats
by Gergely Zoltán Macher and Dóra Beke
Int. J. Environ. Res. Public Health 2025, 22(6), 838; https://doi.org/10.3390/ijerph22060838 - 26 May 2025
Viewed by 501
Abstract
Asbestos cement materials represent a persistent source of environmental contamination, particularly in urban areas where weathering facilitates the release of hazardous chrysotile fibres. Despite extensive research on the human health impacts of asbestos, ecological interactions remain poorly understood. This paper explores the dual [...] Read more.
Asbestos cement materials represent a persistent source of environmental contamination, particularly in urban areas where weathering facilitates the release of hazardous chrysotile fibres. Despite extensive research on the human health impacts of asbestos, ecological interactions remain poorly understood. This paper explores the dual role of bryophytes colonising asbestos cement roofing as passive filters that trap airborne fibres and as vulnerable organisms subjected to asbestos-induced stress. Using a synthesis of recent findings, we assess the capacity of mosses to immobilise chrysotile fibres through their dense, mat-like structures, potentially reducing local dispersion. Simultaneously, we examine physiological and biochemical responses to prolonged fibre exposure, including reduced photosynthetic activity and signs of oxidative stress. The findings highlight a paradoxical function of bryophytes: while they contribute to pollution mitigation, they also accumulate contaminants and suffer from sublethal damage. These interactions may have broader implications for contaminant redistribution, particularly through decomposition and trophic transfer. Understanding these dynamics is essential for advancing ecological risk assessments and developing sustainable remediation strategies in asbestos-contaminated habitats. Full article
Show Figures

Figure 1

18 pages, 14418 KiB  
Article
Recovery of End-of-Life Building Materials: Thermal Decomposition and Phase Transformation of Chrysotile in Asbestos-Containing Fiber Cement Boards
by António Curado, Leonel J. R. Nunes, Arlete Carvalho, João Abrantes, Eduarda Lima and Mário Tomé
Fibers 2025, 13(5), 62; https://doi.org/10.3390/fib13050062 - 9 May 2025
Viewed by 599
Abstract
The circular economy emphasizes reducing, recycling, and reusing waste, a principle that is challenging to apply to hazardous materials like asbestos-containing construction waste, typically destined for landfills due to limited recycling options. This experimental study investigates the physicochemical characterization of asbestos fibers in [...] Read more.
The circular economy emphasizes reducing, recycling, and reusing waste, a principle that is challenging to apply to hazardous materials like asbestos-containing construction waste, typically destined for landfills due to limited recycling options. This experimental study investigates the physicochemical characterization of asbestos fibers in fiber cement boards and assesses the efficacy of mechanical grinding and thermal treatments to transform these fibers into non-fibrous, stable phases for reuse in sustainable construction applications, such as cement and mineral wool production. Using scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD), we analyzed samples from end-of-life fiber cement panels, subjecting them to thermal treatments at 700 °C, 1000 °C, and 1200 °C. Results show that, while grinding reduces particle size, it does not eliminate fibrous structures; however, thermal treatment above 1000 °C fully converts chrysotile into forsterite and enstatite, eliminating health risks and enabling material reuse. These findings, that are part of the FiberRec project, support a systematic approach to integrating asbestos-containing waste into a closed-loop material cycle, significantly reducing carbon emissions and landfill dependency. Full article
Show Figures

Figure 1

11 pages, 1951 KiB  
Article
Kinetic Analysis of Cement–Asbestos Materials’ Thermal Decomposition Process by an Ex Situ Technique
by Robert Kusiorowski, Anna Gerle and Magdalena Kujawa
Fibers 2025, 13(4), 43; https://doi.org/10.3390/fib13040043 - 10 Apr 2025
Cited by 1 | Viewed by 464
Abstract
For many years, countries around the world have been struggling with the problem of storing asbestos waste, especially in, those countries where the production and use of asbestos products have been legally banned. Following the adoption of plans for cleaning up asbestos waste, [...] Read more.
For many years, countries around the world have been struggling with the problem of storing asbestos waste, especially in, those countries where the production and use of asbestos products have been legally banned. Following the adoption of plans for cleaning up asbestos waste, countries are struggling with the problem of its disposal, which mainly involves storing it in specialist landfills. At the same time, scientists are looking for alternatives to this type of “disposal” of asbestos by developing methods for degrading the harmful fibers. Particular attention has been paid to methods based on the thermal treatment of this waste, which results in hazardous asbestos fibers being thermally decomposed. This work focuses on the kinetic study of the thermal decomposition process of cement–asbestos using an exsitu thermal treatment. The results obtained made it possible to interpret this thermal transformation kinetically. Kinetic analysis of the isothermal data using an Avrami–Erofeev model yielded values for the overall reaction order. On this basis, the value of the apparent activation energy of the thermal decomposition process of the tested cement–asbestos samples was obtained, which was approximately 140–180 kJ mol−1. Full article
Show Figures

Figure 1

17 pages, 23171 KiB  
Article
Thermal Decomposition and Phase Transformation of Chrysotile in Asbestos-Containing Waste
by Chaewon Kim, Yumi Kim and Yul Roh
Minerals 2025, 15(4), 344; https://doi.org/10.3390/min15040344 - 27 Mar 2025
Cited by 3 | Viewed by 707
Abstract
In Korea, asbestos-containing waste (ACW) is disposed of in landfills. However, due to the limited landfill capacity and the potential health risks of asbestos contamination, alternative, safer disposal methods are needed. Heat treatment has been suggested as an alternative disposal method for ACW. [...] Read more.
In Korea, asbestos-containing waste (ACW) is disposed of in landfills. However, due to the limited landfill capacity and the potential health risks of asbestos contamination, alternative, safer disposal methods are needed. Heat treatment has been suggested as an alternative disposal method for ACW. Therefore, it is necessary to determine the optimal conditions for the thermal decomposition of chrysotile in ACW and reveal the mineralogical composition of heat-treated ACW. In this study, asbestos cement roof (ACR) and asbestos gypsum board (AGB) samples were heat-treated at 600, 700, 800, and 900 °C to identify the optimal heat treatment parameters to eliminate chrysotile fibers. The thermal, chemical, and mineralogical characteristics of the ACW were determined before and after heat treatment using multiple analytical methods. The ACR consisted of chrysotile, calcite, and ettringite, and the AGB consisted of chrysotile, gypsum, and calcite. After heat treatment at 900 °C, the ACR was mainly composed of cement component minerals and lime, while the AGB additionally contained anhydrite. SEM-EDS analysis confirmed the persistence of fibrous minerals in the ACW up to 800 °C. Furthermore, TEM-EDS analysis revealed hollow tubular morphology of chrysotile in the heat-treated ACR at up to 700 °C and in the heat-treated AGB at 600 °C. These results suggest that heat treatment at temperatures of at least 900 °C may be necessary for the complete thermal decomposition of chrysotile in ACW. Full article
(This article belongs to the Section Environmental Mineralogy and Biogeochemistry)
Show Figures

Figure 1

20 pages, 426 KiB  
Review
Examining the Environmental Ramifications of Asbestos Fiber Movement Through the Water–Soil Continuum: A Review
by Gergely Zoltán Macher, András Torma and Dóra Beke
Int. J. Environ. Res. Public Health 2025, 22(4), 505; https://doi.org/10.3390/ijerph22040505 - 26 Mar 2025
Cited by 1 | Viewed by 974
Abstract
The environmental pollution potential of asbestos products is a worldwide health issue, but their dissemination through the water–soil continuum is often an overlooked aspect. Similarly, the behavior of asbestos fibers released from the products is still not fully understood, although our knowledge is [...] Read more.
The environmental pollution potential of asbestos products is a worldwide health issue, but their dissemination through the water–soil continuum is often an overlooked aspect. Similarly, the behavior of asbestos fibers released from the products is still not fully understood, although our knowledge is based on studies concerning their mineralogical characteristics, health effects, and waste disposal. It has been claimed and contradicted that asbestos harm is only found in air and humans. Asbestos fibers are found not only in industrial settings but also through the industrial use of asbestos cement products, which has contributed to asbestos emissions and its movement in water and soil. Asbestos fibers are diverse in their physicochemical properties, and this diversity has a significant influence on their behavior in the environment. Recent research has confirmed that asbestos can be transported by water and spread to other parts of the environment. However, the mechanisms underlying this, such as the settling of fibers, their attachment to soil particles, or their movement in groundwater, as well as the environmental and health implications, require further investigation. This paper examines the process and impact of asbestos contamination in the interconnected water, soil, and plant environmental sectors, providing a systematic review of the latest literature. Full article
12 pages, 2880 KiB  
Article
Development and Performance Evaluation of a Gel-Based Plugging System for Complex Fractured Formations Using Acrylic Resin Particles
by Lei Yao, Xiaohu Quan, Jihe Ma, Ge Wang, Qi Feng, Hui Jin and Jun Yang
Gels 2025, 11(3), 162; https://doi.org/10.3390/gels11030162 - 24 Feb 2025
Viewed by 560
Abstract
The issue of fluid loss in fractured formations presents a significant challenge in petroleum engineering, often leading to increased operational costs and construction risks. To address the limitations of traditional lost circulation materials (LCMs) in oil reservoirs with different fracture sizes, this study [...] Read more.
The issue of fluid loss in fractured formations presents a significant challenge in petroleum engineering, often leading to increased operational costs and construction risks. To address the limitations of traditional lost circulation materials (LCMs) in oil reservoirs with different fracture sizes, this study developed an acrylic resin gel particle with excellent thermal stability (thermal decomposition temperature up to 314 °C) and compatibility. By employing Box–Behnken design and response surface methodology, the synergistic interaction of calcium hydroxide (Ca(OH)2), asbestos fibers, and cement was optimized to create a novel gel solidification plugging system that meets the requirements of fluid loss control and compressive strength improvement. Experimental results revealed that the gel-based system demonstrated exceptional performance, achieving rapid fluid loss (total fluid loss time of 18~47 s) and forming a high-strength gelled filter cake (24 h compressive strength up to 17.5 MPa). Under simulated conditions (150 °C), the gel-based system provided efficient fracture sealing, showcasing remarkable adaptability and potential for engineering applications. This study underscores the promise of acrylic resin gel particles in overcoming fluid loss challenges in complex fractured formations. Full article
(This article belongs to the Special Issue Chemical and Gels for Oil Drilling and Enhanced Recovery)
Show Figures

Figure 1

31 pages, 6940 KiB  
Article
Short-Wave Infrared Spectroscopy for On-Site Discrimination of Hazardous Mineral Fibers Using Machine Learning Techniques
by Giuseppe Bonifazi, Sergio Bellagamba, Giuseppe Capobianco, Riccardo Gasbarrone, Ivano Lonigro, Sergio Malinconico, Federica Paglietti and Silvia Serranti
Sustainability 2025, 17(3), 972; https://doi.org/10.3390/su17030972 - 24 Jan 2025
Cited by 1 | Viewed by 1278
Abstract
Asbestos fibers are well-known carcinogens, and their rapid detection is critical for ensuring safety, protecting public health, and promoting environmental sustainability. In this work, short-wave infrared (SWIR) spectroscopy, combined with machine learning (ML), was evaluated as an environmentally friendly analytical approach for simultaneously [...] Read more.
Asbestos fibers are well-known carcinogens, and their rapid detection is critical for ensuring safety, protecting public health, and promoting environmental sustainability. In this work, short-wave infrared (SWIR) spectroscopy, combined with machine learning (ML), was evaluated as an environmentally friendly analytical approach for simultaneously distinguishing the asbestos type, asbestos-containing materials in various forms, asbestos-contaminated/-uncontaminated soil, and asbestos-contaminated/-uncontaminated cement, simultaneously. This approach offers a noninvasive and efficient alternative to traditional laboratory methods, aligning with sustainable practices by reducing hazardous waste generation and enabling in situ testing. Different chemometrics techniques were applied to discriminate the material classes. In more detail, partial least squares discriminant analysis (PLS-DA), principal component analysis-based discriminant analysis (PCA-DA), principal component analysis-based K-nearest neighbors classification (PCA-KNN), classification and regression trees (CART), and error-correcting output-coding support vector machine (ECOC SVM) classifiers were tested. The tested classifiers showed different performances in discriminating between the analyzed samples. CART and ECOC SVM performed best (RecallM and AccuracyM  equal to 1.00), followed by PCA-KNN (RecallM of 0.98–1.00 and AccuracyM  equal to 1.00). Poorer performances were obtained by PLS-DA (RecallM of 0.68–0.72 and AccuracyM equal to 0.95) and PCA-DA (RecallM of 0.66–0.70 and AccuracyM equal to 0.95). This research aligns with the United Nations’ Sustainable Development Goals (SDGs), particularly SDG 3 (Good Health and Well-Being), by enhancing human health protection through advanced asbestos detection methods, and SDG 12 (Responsible Consumption and Production), by promoting sustainable, low-waste testing methodologies. Full article
Show Figures

Figure 1

18 pages, 5472 KiB  
Article
Energy Efficiency in Subtropical Homes: Replacing Asbestos–Cement Roofs with Sustainable Alternatives
by Manuel Saba, Oscar E. Coronado-Hernández and Leydy Karina Torres Gil
Buildings 2024, 14(12), 4082; https://doi.org/10.3390/buildings14124082 - 23 Dec 2024
Cited by 3 | Viewed by 1031
Abstract
This study evaluates the impact of building orientation, typology, and envelope characteristics on energy efficiency and CO2 emissions in urban dwellings in subtropical climate, with a focus on Cartagena, Colombia. North-facing dwellings consistently demonstrate superior energy performance, achieving an average efficiency increase [...] Read more.
This study evaluates the impact of building orientation, typology, and envelope characteristics on energy efficiency and CO2 emissions in urban dwellings in subtropical climate, with a focus on Cartagena, Colombia. North-facing dwellings consistently demonstrate superior energy performance, achieving an average efficiency increase of 4.27 ± 1.77% compared to south-facing counterparts. This trend is less pronounced near the equator due to the sun’s high zenith angle. Semi-detached homes exhibit 23.17 ± 9.83% greater energy efficiency than corner houses, attributed to reduced exterior wall exposure, which lowers energy demand and CO2 emissions by 2.16 ± 0.74 kg CO2/m2 annually. Significant disparities in emissions are observed across socioeconomic strata; homes in strata 3 and 4 show the lowest emissions (6.69 ± 1.42 kg CO2/m2 per year), while strata 5 and 6 have the highest (10.48 ± 1.42 kg CO2/m2 per year), due to differences in construction quality and glazing ratios. Roofing materials also play a key role, with thermoacoustic (TAC) roofs reducing emissions by up to 5.80% in lower strata compared to asbestos–cement roofs. Furthermore, sandwich panels demonstrate substantial potential, achieving CO2 emissions reductions of up to 51.6% in strata 1 and 2 south-facing median homes and a minimum saving of 9.4% in strata 5 and 6. These findings underscore the importance of integrating energy performance criteria into public housing policies, promoting construction practices that enhance sustainability and reduce greenhouse gas emissions while improving occupant comfort and property value. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

23 pages, 2788 KiB  
Article
Efficient Management of Asbestos Waste Through Utilization as Mineral Additives in Portland Cement Production
by Karol Durczak, Michał Pyzalski, Agnieszka Sujak, Michał Juszczyk, Dariusz Sala and Leonas Ustinovichius
Materials 2024, 17(23), 5793; https://doi.org/10.3390/ma17235793 - 26 Nov 2024
Cited by 1 | Viewed by 950
Abstract
This article presents research on the effectiveness of utilizing asbestos waste, particularly chrysotile asbestos, in the production of Portland cement. The study aimed to evaluate the feasibility of transforming asbestos cement (Eternit) through thermal treatment and its enrichment with mineral additives, enabling its [...] Read more.
This article presents research on the effectiveness of utilizing asbestos waste, particularly chrysotile asbestos, in the production of Portland cement. The study aimed to evaluate the feasibility of transforming asbestos cement (Eternit) through thermal treatment and its enrichment with mineral additives, enabling its integration into the clinker synthesis process. Differences in the physicochemical properties of types of cement produced from conventional raw materials and those manufactured using asbestos waste were analyzed. The research findings indicate that the presence of asbestos in cementitious materials leads to a significant mass loss of 29.4% due to thermal decomposition. Chemical analysis revealed the presence of aluminum oxide (Al2O3) and iron oxide (Fe2O3) at levels of 4.10% and 3.54%, respectively, suggesting the formation of brownmillerite, a phase typical of cement clinker. Furthermore, compressive strength tests on asbestos-modified cements demonstrated comparable mechanical properties to reference cement (CEM I), indicating their potential applicability in construction. This study provides essential insights into the mineralogical composition of asbestos cement, which is crucial for developing effective methods for its safe disposal. It represents a significant step toward sustainable asbestos waste management and the promotion of innovative solutions in the construction industry. Full article
Show Figures

Figure 1

13 pages, 6459 KiB  
Article
The Development of Fiber–Cement Flat Sheets by Young and Mature Coconut Fibers to Replace Asbestos for Eco-Friendly Products
by Prachoom Khamput, Tawich Klathae, Chookiat Choosakul and Saofee Dueramae
Appl. Sci. 2024, 14(23), 10786; https://doi.org/10.3390/app142310786 - 21 Nov 2024
Viewed by 1476
Abstract
This study investigated young and mature coconut fibers as an asbestos replacement in fiber–cement flat sheets. The ratio of fiber content ranged from 5% to 9.5% in increments of 0.5% by weight of binder. Crushed rock dust (CRD) was also utilized in this [...] Read more.
This study investigated young and mature coconut fibers as an asbestos replacement in fiber–cement flat sheets. The ratio of fiber content ranged from 5% to 9.5% in increments of 0.5% by weight of binder. Crushed rock dust (CRD) was also utilized in this study at a ratio of 50% as sand replacement. The results showed that the addition of young coconut fiber (YCF) and mature coconut fiber (MCF) in flat sheets increased with decreasing bulk density and thermal conductivity. The optimum fiber content was 6.5%–7% by weight of binder for two types of fiber with the highest modulus of rupture of 12–13 MPa. The modulus of rupture and density of fiber–cement flat sheets using YCF were higher than that of fiber–cement flat sheets using MCF, which was clarified by SEM results due to the denser structure of MCF. Moreover, the modulus of rupture was directly proportional to the modulus of elasticity in fiber–cement flat sheets. Full article
Show Figures

Figure 1

9 pages, 3332 KiB  
Communication
Application of Product of Vitrification of Asbestos-Cement Waste and CRT Glass Cullet as Reinforcing Phase in Surface Composites Produced by FSP Method
by Józef Iwaszko, Krzysztof Kudła and Małgorzata Lubas
Materials 2024, 17(22), 5508; https://doi.org/10.3390/ma17225508 - 12 Nov 2024
Cited by 2 | Viewed by 784
Abstract
In this study, the vitrification of asbestos-cement waste (ACW) and glass cullet from cathode-ray tubes (CRTs) was performed. The resulting product of vitrification from the abovementioned waste was used as the reinforcing phase in a composite with the AA7075 alloy matrix. The composite [...] Read more.
In this study, the vitrification of asbestos-cement waste (ACW) and glass cullet from cathode-ray tubes (CRTs) was performed. The resulting product of vitrification from the abovementioned waste was used as the reinforcing phase in a composite with the AA7075 alloy matrix. The composite was made by means of the FSP (friction stir processing) method. The main aim of this work was to determine whether the product of the vitrification can be utilized as the reinforcing phase in the composite. The tests show that introducing the vitrification product into the composite matrix increases both the hardness of the material and its wear resistance. The composite was characterized by a 39% higher hardness and 30.4% higher wear resistance compared to the initial AA7075 alloy. The changes in the properties were caused by strong refinement of the grains, but primarily by the presence of the hard particles of the reinforcing phase in the composite matrix. This research demonstrates that vitrified material, thanks to its properties, can constitute a full-value reinforcing material that can ultimately replace more expensive engineering materials in composites. Full article
Show Figures

Figure 1

30 pages, 397 KiB  
Review
Historical Evolution and Current Developments in Building Thermal Insulation Materials—A Review
by Barbara Klemczak, Beata Kucharczyk-Brus, Anna Sulimowska and Rafał Radziewicz-Winnicki
Energies 2024, 17(22), 5535; https://doi.org/10.3390/en17225535 - 6 Nov 2024
Cited by 7 | Viewed by 6583
Abstract
The European Climate Law mandates a 55% reduction in CO2 emissions by 2030, intending to achieve climate neutrality by 2050. To meet these targets, there is a strong focus on reducing energy consumption in buildings, particularly for heating and cooling, which are [...] Read more.
The European Climate Law mandates a 55% reduction in CO2 emissions by 2030, intending to achieve climate neutrality by 2050. To meet these targets, there is a strong focus on reducing energy consumption in buildings, particularly for heating and cooling, which are the primary drivers of energy use and greenhouse gas emissions. As a result, the demand for energy-efficient and sustainable buildings is increasing, and thermal insulation plays a crucial role in minimizing energy consumption for both winter heating and summer cooling. This review explores the historical development of thermal insulation materials, beginning with natural options such as straw, wool, and clay, progressing to materials like cork, asbestos, and mineral wool, and culminating in synthetic insulators such as fiberglass and polystyrene. The review also examines innovative materials like polyurethane foam, vacuum insulation panels, and cement foams enhanced with phase change materials. Additionally, it highlights the renewed interest in environmentally friendly materials like cellulose, hemp, and sheep wool. The current challenges in developing sustainable, high-performance building solutions are discussed, including the implementation of the 6R principles for insulating materials. Finally, the review not only traces the historical evolution of insulation materials but also provides various classifications and summarizes emerging aspects in the field. Full article
(This article belongs to the Section J: Thermal Management)
Back to TopTop