Kinetic Analysis of Cement–Asbestos Materials’ Thermal Decomposition Process by an Ex Situ Technique
Abstract
:Highlights
- The kinetic aspects connected with the thermal decomposition of cement–asbestos materials from Poland were studied.
- The exsitu experiments performed confirm the considerable similarity of the cement–asbestos thermal decomposition process among the samples.
- Asbestos waste is dangerous; however, it can be effectively transformed by thermal methods, mitigating its environmental impact.
- The results obtained may be useful for the design of thermal methods for asbestos waste disposal technology.
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Cement–Asbestos Sample Characterisation
3.2. Kinetic Study
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gualtieri, A.F. Mineral Fibers: Crystal Chemistry, Chemical-Physical Properties, Biological Interaction and Toxicity; European Mineralogical Union: Dublin, UK, 2017. [Google Scholar]
- Gualtieri, A.F. Recycling asbestos-containing material (ACM) from construction and demolition waste (CDW). In Handbook of Recycled Concrete and Demolition Waste; Woodhead Publishing: Sawston, UK, 2013; pp. 500–525. [Google Scholar]
- Kusiorowski, R.; Lipowska, B.; Kujawa, M.; Gerle, A. Problem of asbestos-containing wastes in Poland. Clean. Waste Syst. 2023, 4, 1000085. [Google Scholar] [CrossRef]
- Musk, A.W.; de Klerk, N.; Reid, A.; Hui, J.; Franklin, P.; Brims, F. Asbestos-related diseases. Tuberc. Lung Dis. 2020, 24, 562–567. [Google Scholar] [CrossRef]
- Stayner, L.; Welch, L.S.; Lemen, R. The worldwide pandemic asbestos-related diseases. Annu. Rev. Public Health 2013, 34, 205–216. [Google Scholar] [CrossRef] [PubMed]
- Kwak, K.; Kang, D.; Paek, D. Environmental exposure to asbestos and the risk of lung cancer: A systematic review and meta-analysis. J. Occup. Environ. Med. 2022, 79, 207–214. [Google Scholar] [CrossRef]
- Paglietti, F.; Malinconico, S.; della Stafa, B.C.; Bellagamba, S.; De Simone, P. Classification and management of asbestos-containing waste: European legislation and the Italian experience. Waste Manag. 2016, 50, 130–150. [Google Scholar] [CrossRef]
- Li, J.; Dong, Q.; Yu, K.; Liu, L. Asbestos and asbestos waste management in the Asian-Pacific region: Trends, challenges and solutions. J. Clean. Prod. 2014, 81, 218–226. [Google Scholar] [CrossRef]
- Szymańska, D.; Lewandowska, A. Disposal of asbestos and products containing asbestos in Poland. J. Mater. Cycles Waste Manag. 2019, 21, 345–355. [Google Scholar] [CrossRef]
- Wallis, S.L.; Emmett, E.A.; Hardy, R.; Casper, B.B.; Blanchon, D.J.; Testa, J.R.; Menges, C.W.; Gonneau, C.; Jerolmack, D.J.; Seiphoori, A.; et al. Challenging global waste management—Bioremediation to detoxify asbestos. Front. Environ. Sci. 2020, 8, 20. [Google Scholar] [CrossRef] [PubMed]
- Promentilla, M.A.B.; Peralta, G.L. An evaluation of landfill disposal of asbestos-containing waste and geothermal residues within a risk-assessment framework. J. Mater. Cycles Waste Manag. 2003, 5, 0013–0021. [Google Scholar] [CrossRef]
- Spasiano, D.; Pirozzi, F. Treatments of asbestos containing wastes. J. Environ. Manag. 2017, 204, 82–91. [Google Scholar] [CrossRef]
- Paolini, V.; Tomassetti, L.; Segreto, M.; Borin, D.; Liotta, F.; Torre, M.; Petracchini, F. Asbestos treatment technologies. J. Mater. Cycles Waste Manag. 2019, 21, 205–226. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Giacobbe, C.; Sardisco, L.; Saraceno, M.; Gualtieri, M.L.; Lusvardi, G.; Cavenati, C.; Zanatto, I. Recycling of the product of thermal inertization of cement–asbestos for various industrial applications. Waste Manag. 2011, 31, 91–100. [Google Scholar] [CrossRef] [PubMed]
- Takata, A.; Yamauchi, H.; Yamashita, K.; Aminaka, M.; Hitomi, T.; Toya, T.; Kohyama, N. Mesothelioma carcinogenesis of chrysotile and forsterite compared and validated by intraperitoneal injection in rat. Ind. Health 2025, 63, 14–28. [Google Scholar] [CrossRef] [PubMed]
- Zaremba, T.; Krząkała, A.; Piotrowski, J.; Garczorz, D. Study on the thermal decomposition of chrysotile asbestos. J. Therm. Anal. Calorim. 2010, 101, 479–485. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Zaremba, T.; Piotrowski, J.; Gerle, A. Thermal decomposition of asbestos-containing materials. J. Therm. Anal. Calorim. 2013, 113, 179–188. [Google Scholar] [CrossRef]
- Kim, C.; Kim, Y.; Roh, Y. Thermal decomposition and phase transformation of chrysotile in asbestos-containing waste. Minerals 2025, 15, 344. [Google Scholar] [CrossRef]
- Poniatowska, A.; Andrzejewska-Górecka, D.; Macherzyński, B.; Kisiel, M. Thermal decomposition of asbestos fiber from asbestos cement wastes. Rocz. Ochr. Środowiska 2019, 21, 855–867. [Google Scholar]
- Bloise, A.; Catalano, M.; Barrese, E.; Gualtieri, A.F.; Bursi Gandolfi, N.; Capella, S.; Belluso, E. TG/DSC study of the thermal behaviour of hazardous mineral fibres. J. Therm. Anal. Calorim. 2016, 123, 2225–2239. [Google Scholar] [CrossRef]
- Kusiorowski, R.; Gerle, A.; Kujawa, M.; Śliwa, A.; Adamek, J. Charaterisation of asbestos-containing wastes by thermal analysis. J. Therm. Anal. Calorim. 2024, 149, 10681–10694. [Google Scholar] [CrossRef]
- Viani, A.; Gualtieri, A.F.; Secco, M.; Peruzzo, L.; Artioli, G.; Cruciani, G. Crystal chemistry of cement-asbestos. Am. Mineral. 2013, 98, 1095–1105. [Google Scholar] [CrossRef]
- Viani, A.; Gualtieri, A.F.; Pollastri, S.; Rinaudo, C.; Croce, A.; Urso, G. Crystal chemistry of the high-temperature product of transformation of cement-asbestos. J. Hazard. Mater. 2013, 248–249, 69–80. [Google Scholar] [CrossRef] [PubMed]
- Kusiorowski, R.; Gerle, A.; Kujawa, M.; Antonovič, V.; Boris, R. Structural characterisation of end-of-life cement-asbestos materials from Lithuania. Fibers 2024, 12, 37. [Google Scholar] [CrossRef]
- Belardi, C.; Piga, L. Influence of calcium carbonate on the decomposition of asbestos contained in end-of-life products. Thermochim. Acta 2013, 573, 220–228. [Google Scholar] [CrossRef]
- Dias, C.M.R.; Cincotto, M.A.; Savastano, H., Jr.; John, V.M. Long-term aging of fiber-cement corrugated sheets—The effect of carbonation, leaching and acid rain. Cem. Concr. Compos. 2008, 30, 255–265. [Google Scholar] [CrossRef]
- Vergani, F.; Galimberti, L.; Marian, N.M.; Giorgetti, G.; Viti, C.; Capitani, G. Thermal decomposition of cement–asbestos at 1100 °C: How much “safe” is “safe”? J. Mater. Cycles Waste Manag. 2022, 24, 297–310. [Google Scholar] [CrossRef]
- Gualtieri, A.F.; Cavenati, C.; Zanatto, I.; Meloni, M.; Elmi, G.; Gualtieri, M.L. The transformation sequence of cement-asbestos slates up to 1200 ◦C and safe recycling of the reaction product in stoneware tile mixtures. J. Hazard. Mater. 2008, 152, 563–570. [Google Scholar] [CrossRef]
- Iwaszko, J.; Lubas, M.; Sitarz, M.; Zajemska, M.; Nowak, A. Production of vitrified material from hazardous asbestos-cement waste and CRT glass cullet. J. Clean. Prod. 2021, 317, 128345. [Google Scholar] [CrossRef]
- EN ISO 12677:2011; Chemical Analysis of Refractory Products by X-ray Fluorescence (XRF)—Fused Cast-Bead Method. ISO: Geneva, Switzerland, 2011.
- Földvári, M. Handbook of Thermogravimetric System of Minerals and Its Use in Geological Practice; Geological Institute of Hungary: Budapest, Hungary, 2011. [Google Scholar]
- Strzałkowska, E. Thermal Analysis of Minerals, Rocks and Mineral Waste Materials; Silesian University of Technology: Gliwice, Poland, 2019. (In Polish) [Google Scholar]
- Bamford, C.H.; Tipper, C.F.H. Comprehensive Chemical Kinetics; Elsevier: Alpharetta, GA, USA, 1980. [Google Scholar]
- Halikia, I.; Zoumpoulakis, L.; Christodoulou, E.; Prattis, D. Kinetic study of the thermal decomposition of calcium carbonate by isothermal methods of analysis. Eur. J. Miner. Process. Environ. Protect. 2001, 1, 89–102. [Google Scholar]
Sample | BRZ | BUJ | DG | HEL | NOW |
---|---|---|---|---|---|
Apparent density [g cm−3] | 1.91 | 1.94 | 1.88 | 1.88 | 1.69 |
Open porosity [%] | 13.6 | 15.4 | 22.1 | 22.8 | 29.4 |
Water absorption [%] | 7.2 | 7.9 | 11.8 | 12.2 | 17.5 |
SiO2 | TiO2 | Al2O3 | Fe2O3 | MnO | MgO | CaO | Na2O | K2O | P2O5 | SO3 | L.O.I. |
---|---|---|---|---|---|---|---|---|---|---|---|
19.8 | 0.2 | 3.9 | 2.9 | 0.1 | 6.1 | 41.5 | 0.1 | 0.1 | 0.1 | 1.8 | 23.2 |
Component/Sample | BRZ | BUJ | DG | HEL | NOW |
---|---|---|---|---|---|
calcite | 13.8 | 18.7 | 15.1 | 15.8 | 9.1 |
portlandite | 4.4 | 1.5 | 4.9 | 4.8 | 6.9 |
ettringite | 3.0 | 0.8 | 0.5 | 0.5 | 1.6 |
hatrurite | 31.2 | 7.4 | 2.7 | 10.9 | 1.1 |
gypsum | 0.1 | 0.1 | 0.1 | 0.1 | 0.8 |
chrysotile | 9.9 | 1.4 | 5.0 | 5.6 | 16.6 |
crocidolite | - | 1.6 | - | 1.4 | - |
katoite | 1.2 | - | - | - | 1.7 |
larnite | 2.0 | - | 16.8 | 1.4 | 1.4 |
amorphous | 34.4 | 67.9 | 55.0 | 59.1 | 60.8 |
Temperature Range | Effect | Process |
---|---|---|
100–300 °C | endo | decomposition of the CSH phase from cementitious matrix; dehydration of gypsum and ettringite |
450–500 °C | endo | decomposition of portlandite |
500–700 °C | endo | decomposition of the jennite-like phase of the cement; decomposition of poorly crystallized calcite |
600–700 °C | endo | dehydroxylation of chrysotile asbestos |
750–900 °C | endo | decomposition of calcite |
820–870 °C | exo | recrystallisation to forsterite |
1200–1350 °C | endo | decomposition of sulphate compounds; mainly CaSO4 |
Temperature, [°C] | 700 | 725 | 750 | 775 | 800 |
---|---|---|---|---|---|
BRZ | |||||
Value of reaction order, n | 0.287 | 0.296 | 0.309 | 0.300 | 0.343 |
Rate coefficient, k | 0.120 | 0.151 | 0.326 | 0.467 | 0.502 |
Correlation coefficient | 0.999 | 0.981 | 0.986 | 0.983 | 0.986 |
BUJ | |||||
Value of reaction order, n | 0.302 | 0.308 | 0.321 | 0.324 | 0.324 |
Rate coefficient, k | 0.104 | 0.124 | 0.297 | 0.467 | 0.551 |
Correlation coefficient | 0.966 | 0.951 | 0.985 | 0.980 | 0.991 |
DG | |||||
Value of reaction order, n | 0.347 | 0.335 | 0.265 | 0.306 | 0.313 |
Rate coefficient, k | 0.062 | 0.115 | 0.209 | 0.322 | 0.456 |
Correlation coefficient | 0.998 | 0.991 | 0.984 | 0.986 | 0.992 |
HEL | |||||
Value of reaction order, n | 0.340 | 0.385 | 0.386 | 0.372 | 0.335 |
Rate coefficient, k | 0.101 | 0.119 | 0.308 | 0.402 | 0.591 |
Correlation coefficient | 0.966 | 0.988 | 0.983 | 0.986 | 0.959 |
NOW | |||||
Value of reaction order, n | 0.347 | 0.335 | 0.352 | 0.330 | 0.354 |
Rate coefficient, k | 0.062 | 0.115 | 0.294 | 0.421 | 0.462 |
Correlation coefficient | 0.998 | 0.991 | 0.987 | 0.990 | 0.993 |
Sample | BRZ | BUJ | DG | HEL | NOW |
---|---|---|---|---|---|
Activation energy, Ea [kJ mol−1] | 137.0 | 162.2 | 175.2 | 154.8 | 186.2 |
Correlation coefficient | 0.905 | 0.946 | 0.991 | 0.922 | 0.933 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kusiorowski, R.; Gerle, A.; Kujawa, M. Kinetic Analysis of Cement–Asbestos Materials’ Thermal Decomposition Process by an Ex Situ Technique. Fibers 2025, 13, 43. https://doi.org/10.3390/fib13040043
Kusiorowski R, Gerle A, Kujawa M. Kinetic Analysis of Cement–Asbestos Materials’ Thermal Decomposition Process by an Ex Situ Technique. Fibers. 2025; 13(4):43. https://doi.org/10.3390/fib13040043
Chicago/Turabian StyleKusiorowski, Robert, Anna Gerle, and Magdalena Kujawa. 2025. "Kinetic Analysis of Cement–Asbestos Materials’ Thermal Decomposition Process by an Ex Situ Technique" Fibers 13, no. 4: 43. https://doi.org/10.3390/fib13040043
APA StyleKusiorowski, R., Gerle, A., & Kujawa, M. (2025). Kinetic Analysis of Cement–Asbestos Materials’ Thermal Decomposition Process by an Ex Situ Technique. Fibers, 13(4), 43. https://doi.org/10.3390/fib13040043