Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (142)

Search Parameters:
Keywords = arsenic nanoparticles

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1126 KiB  
Article
Argovit™ Silver Nanoparticles Mitigate Sodium Arsenite-Induced Cytogenotoxicity Effects in Cultured Human Lymphocytes
by María del Carmen Jauregui Romo, Balam Ruiz Ruiz, Francisco Casilas-Figueroa, Nayeli Guadalupe Girón Vázquez, Roberto Luna Vázquez Gómez, Olivia Torres-Bugarín, Idalia Yazmín Castañeda Yslas, Alexey Pestryakov, Nina Bogdanchikova and María Evarista Arellano García
Toxics 2025, 13(7), 539; https://doi.org/10.3390/toxics13070539 - 27 Jun 2025
Viewed by 738
Abstract
Exposure to arsenic, a known environmental and occupational genotoxicant, poses significant health risks. Identifying agents capable of mitigating its effects is crucial for public health. This study evaluates the protective potential of Argovit™ silver nanoparticles (AgNPs) against cytotoxic and genotoxic damage induced by [...] Read more.
Exposure to arsenic, a known environmental and occupational genotoxicant, poses significant health risks. Identifying agents capable of mitigating its effects is crucial for public health. This study evaluates the protective potential of Argovit™ silver nanoparticles (AgNPs) against cytotoxic and genotoxic damage induced by sodium arsenite in ex vivo cultured human lymphocytes obtained from the whole blood of healthy donors. Lymphocytes were exposed to sodium arsenite (3.7 × 10−3 µg/mL) and Argovit™ AgNPs (3.6 × 10−3 µg/mL). The cytokinesis-block micronucleus (CBMN) assay was performed using a modified 144 h protocol to assess delayed effects across two cell cycles. Four groups were analyzed: untreated control, sodium arsenite only, AgNPs only, and sodium arsenite followed by AgNPs. Arsenite exposure increased cytotoxic and genotoxic biomarkers. In contrast, post-treatment with AgNPs significantly reduced these effects. All treatments were performed in duplicate, and data were analyzed using the Kruskal–Wallis test with Dunn’s post hoc comparison (p < 0.05). Statistical analysis confirmed the antigenotoxic and cytoprotective properties of Argovit™. These findings support its potential application as a mitigating agent in scenarios of environmental or occupational exposure to genotoxic compounds. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

27 pages, 5524 KiB  
Article
Unraveling Adsorption Mechanisms and Potential of Titanium Dioxide for Arsenic and Heavy Metal Removal from Water Sources
by Marko Šolić, Jasmina Nikić, Aleksandra Kulić Mandić, Tamara Apostolović, Malcolm Watson, Marijana Kragulj Isakovski and Snežana Maletić
Processes 2025, 13(6), 1618; https://doi.org/10.3390/pr13061618 - 22 May 2025
Viewed by 832
Abstract
Arsenic and heavy metal contamination in water presents serious environmental and public health challenges, requiring effective treatment technologies. Titanium dioxide (TiO2) nanoparticles offer promising adsorption potential due to their high surface area, mesoporosity, and chemical stability. This study investigates the removal [...] Read more.
Arsenic and heavy metal contamination in water presents serious environmental and public health challenges, requiring effective treatment technologies. Titanium dioxide (TiO2) nanoparticles offer promising adsorption potential due to their high surface area, mesoporosity, and chemical stability. This study investigates the removal of As(V), Cd(II), Cu(II), and Pb(II) by TiO2 under environmentally relevant conditions (pH 3 and 7), commonly encountered in industrial and natural waters. TiO2 was characterized using SEM, XRD, FTIR, BET, and pHpzc analysis, confirming a mesoporous structure with mixed anatase/rutile phases. Adsorption followed Elovich kinetics, with the Langmuir model providing the best fit to the isotherm data. At pH 3, adsorption capacities (qm) were of the following order: Pb(II) 30.80 mg g−1 > Cd(II) 10.02 mg g−1 > As(V) 8.45 mg g−1 > Cu(II) 2.73 mg g−1; at pH 7, they were as follows: Cd(II) 26.75 mg g−1 > Pb(II) 26.20 mg g−1 > As(V) 8.50 mg g−1 > Cu(II) 5.05 mg g−1. These results highlight a pH-dependent mechanism involving both chemisorption and physisorption. Principal Component Analysis (PCA) revealed that physicochemical properties, particularly electronegativity, significantly influenced removal efficiency. TiO2 showed high, selective, and pH-responsive adsorption properties, supporting its use in sustainable water treatment. Future work should address nanoparticle recovery, regeneration, and performance under continuous flow conditions. Full article
(This article belongs to the Special Issue Latest Research on Wastewater Treatment and Recycling)
Show Figures

Figure 1

25 pages, 11829 KiB  
Article
Engineered Magnetic-Functionalized Carbon Xerogels for Sustainable Arsenic Removal: Bridging Adsorption Efficiency with Regenerability
by Sasirot Khamkure, Prócoro Gamero-Melo, Audberto Reyes-Rosas, Alejandro Zermeño-González, José Luis Álvarez-Cruz, Elim Albiter Escobar, Gabriela Eleonora Moeller-Chávez and Victoria Bustos-Terrones
Gels 2025, 11(5), 323; https://doi.org/10.3390/gels11050323 - 26 Apr 2025
Viewed by 535
Abstract
This study developed iron-oxide-functionalized carbon xerogels for enhanced arsenic adsorption to mitigate global water contamination. The composites were synthesized by integrating magnetite nanoparticles (15–20 nm) into a resorcinol–formaldehyde matrix via sol–gel polycondensation, followed by controlled pyrolysis. Key parameters—magnetite/resorcinol ratios (0.03–0.07), carbonization conditions (temperature, [...] Read more.
This study developed iron-oxide-functionalized carbon xerogels for enhanced arsenic adsorption to mitigate global water contamination. The composites were synthesized by integrating magnetite nanoparticles (15–20 nm) into a resorcinol–formaldehyde matrix via sol–gel polycondensation, followed by controlled pyrolysis. Key parameters—magnetite/resorcinol ratios (0.03–0.07), carbonization conditions (temperature, heating rate, duration), and H2O2-induced surface modification—were optimized to maximize adsorption performance. Characterization (SEM/EDX, XRD, FTIR, BET, TEM) confirmed uniform magnetite dispersion (~5 wt%) and revealed that pyrolysis at 850 °C enhanced porosity (378.8 m2/g surface area) and refined surface chemistry. Adsorption kinetics followed Elovich (R2 = 0.9396) and Power Function (R2 = 0.9443) models, indicating chemisorption dominance. Response Surface Methodology optimized desorption parameters using a Central Composite Design with three factors and two center points with repetition. A kinetic study of As(V) desorption from carbon xerogels was conducted, yielding optimal conditions: 1.0 M KOH, 160 rpm agitation, and 90 min contact time. The adsorbent retained >88% regeneration efficiency over four cycles, demonstrating robust reusability. Synergistic effects of magnetite incorporation, tailored pyrolysis, and H2O2 modification significantly improved arsenic selectivity and capacity in complex matrices, while enabling magnetic recovery. Full article
Show Figures

Figure 1

22 pages, 4638 KiB  
Review
Fluorometric Sensing of Arsenic in Water: Recent Developments in Metal-Organic Framework-Based Sensors
by Soutick Nandi and Rana Dalapati
Processes 2025, 13(3), 923; https://doi.org/10.3390/pr13030923 - 20 Mar 2025
Viewed by 809
Abstract
Arsenic is a well-known, highly toxic carcinogen element that is widely found in nature, with numerous studies highlighting its hazardous impact on human health and the environment. Therefore, considering its toxicity and adverse health effects on mammals and the environment, rapid, sensitive, and [...] Read more.
Arsenic is a well-known, highly toxic carcinogen element that is widely found in nature, with numerous studies highlighting its hazardous impact on human health and the environment. Therefore, considering its toxicity and adverse health effects on mammals and the environment, rapid, sensitive, and effective methods for the recognition of arsenic are necessary. Over the past decade, a variety of fluorescent probes, such as small molecules, nanomaterials, gold nanoparticles (AuNPs), carbon dots (CDs), quantum dots (QDs), and more, have been designed and successfully employed for the recognition of lethal arsenic. Compared to other conventional sensor materials, sensors based on metal-organic frameworks (MOFs) are advantageous due to their simple preparation, easy functional group modulation, large specific surface area, and excellent chemical stability. In recent years, MOFs have been utilized as dual-functional materials for the detection and adsorptive removal of arsenic from water. This unique functionality distinguishes MOF-based materials from conventional sensors and arsenic adsorbents. Herein, we provide an overview of the state-of-the-art knowledge on the current development of MOFs for the fluorogenic detection of arsenic in aqueous media. Furthermore, the underlying detection mechanisms are also summarized in this review. The existing challenges in this field and potential remedial strategies for improving detection are elaborated upon in the relevant sections. Full article
Show Figures

Graphical abstract

31 pages, 2358 KiB  
Review
Pseudomonas aeruginosa Vaccine Development: Lessons, Challenges, and Future Innovations
by Rebeca Santamarina-Fernández, Víctor Fuentes-Valverde, Alis Silva-Rodríguez, Patricia García, Miriam Moscoso and Germán Bou
Int. J. Mol. Sci. 2025, 26(5), 2012; https://doi.org/10.3390/ijms26052012 - 25 Feb 2025
Cited by 1 | Viewed by 2195
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen with a multidrug-resistant profile that has become a critical threat to global public health. It is one of the main causes of severe nosocomial infections, including ventilator-associated pneumonia, chronic infections in patients with cystic fibrosis, and bloodstream [...] Read more.
Pseudomonas aeruginosa is an opportunistic pathogen with a multidrug-resistant profile that has become a critical threat to global public health. It is one of the main causes of severe nosocomial infections, including ventilator-associated pneumonia, chronic infections in patients with cystic fibrosis, and bloodstream infections in immunosuppressed individuals. Development of vaccines against P. aeruginosa is a major challenge owing to the high capacity of this bacterium to form biofilms, its wide arsenal of virulence factors (including secretion systems, lipopolysaccharides, and outer membrane proteins), and its ability to evade the host immune system. This review provides a comprehensive historical overview of vaccine development efforts targeting this pathogen, ranging from early attempts in the 1970s to recent advancements, including vaccines based on novel proteins and emerging technologies such as nanoparticles and synthetic conjugates. Despite numerous promising preclinical developments, very few candidates have progressed to clinical trials, and none have achieved final approval. This panorama highlights the significant scientific efforts undertaken and the inherent complexity of successfully developing an effective vaccine against P. aeruginosa. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

30 pages, 2107 KiB  
Review
Harnessing Non-Antibiotic Strategies to Counter Multidrug-Resistant Clinical Pathogens with Special Reference to Antimicrobial Peptides and Their Coatings
by Shyam Kumar Mishra, Tanzina Akter, Umme Laila Urmi, George Enninful, Manjulatha Sara, Jiawei Shen, Dittu Suresh, Liangjun Zheng, Elias Shiferaw Mekonen, Binod Rayamajhee, Francesco M. Labricciosa, Massimo Sartelli and Mark Willcox
Antibiotics 2025, 14(1), 57; https://doi.org/10.3390/antibiotics14010057 - 9 Jan 2025
Cited by 4 | Viewed by 5425
Abstract
Antimicrobial resistance is a critical global challenge in the 21st century, validating Sir Alexander Fleming’s warning about the misuse of antibiotics leading to resistant microbes. With a dwindling arsenal of effective antibiotics, it is imperative to concentrate on alternative antimicrobial strategies. Previous studies [...] Read more.
Antimicrobial resistance is a critical global challenge in the 21st century, validating Sir Alexander Fleming’s warning about the misuse of antibiotics leading to resistant microbes. With a dwindling arsenal of effective antibiotics, it is imperative to concentrate on alternative antimicrobial strategies. Previous studies have not comprehensively discussed the advantages and limitations of various strategies, including bacteriophage therapy, probiotics, immunotherapies, photodynamic therapy, essential oils, nanoparticles and antimicrobial peptides (AMPs) within a single review. This review addresses that gap by providing an overview of these various non-antibiotic antimicrobial strategies, highlighting their pros and cons, with a particular emphasis on antimicrobial peptides (AMPs). We explore the mechanism of action of AMPs against bacteria, viruses, fungi and parasites. While these peptides hold significant promise, their application in mainstream drug development is hindered by challenges such as low bioavailability and potential toxicity. However, advancements in peptide engineering and chemical modifications offer solutions to enhance their clinical utility. Additionally, this review presents updates on strategies aimed at improving the cost, stability and selective toxicity of AMPs through the development of peptidomimetics. These molecules have demonstrated effective activity against a broad range of pathogens, making them valuable candidates for integration into surface coatings to prevent device-associated infections. Furthermore, we discuss various approaches for attaching and functionalising these peptides on surfaces. Finally, we recommend comprehensive in vivo studies to evaluate the efficacy of AMPs and their mimetics, investigate their synergistic combinations with other molecules and assess their potential as coatings for medical devices. Full article
Show Figures

Figure 1

18 pages, 4750 KiB  
Article
Zinc Oxide Nanoparticle-Mediated Root Metabolic Reprogramming for Arsenic Tolerance in Soybean
by Muhammad Zeeshan, Anas Iqbal, Abdul Salam, Yuxin Hu, Aamir Hamid Khan, Xin Wang, Xiaoran Miao, Xiaoyuan Chen, Zhixiang Zhang and Peiwen Zhang
Plants 2024, 13(22), 3142; https://doi.org/10.3390/plants13223142 - 8 Nov 2024
Cited by 3 | Viewed by 1514
Abstract
Arsenate (AsV) is absorbed and accumulated by plants, which can affect their physiological activities, disrupt gene expression, alter metabolite content, and influence growth. Despite the potential of zinc oxide nanoparticles (ZnONPs) to mitigate the adverse effects of arsenic stress in plants, the underlying [...] Read more.
Arsenate (AsV) is absorbed and accumulated by plants, which can affect their physiological activities, disrupt gene expression, alter metabolite content, and influence growth. Despite the potential of zinc oxide nanoparticles (ZnONPs) to mitigate the adverse effects of arsenic stress in plants, the underlying mechanisms of ZnONPs-mediated detoxification of AsV, as well as the specific metabolites and metabolic pathways involved, remain largely unexplored. In this study, we demonstrated root metabolomic profiling of soybean germinating seedlings subjected to 25 μmol L−1 arsenate (Na2HAsO4) and ZnONPs at concentrations of 25 μmol L−1 (ZnO25) and 50 μmol L−1 (ZnO50). The objective of this study was to examine the effects on soybean root metabolomics under AsV toxicity. Metabolomic analysis indicated that 453, 501, and 460 metabolites were significantly regulated in response to AsV, ZnO25, and ZnO50 treatments, respectively, compared to the control. Pathway analysis of the differentially regulated metabolites (DRMs) revealed that the tricarboxylic acid (TCA) cycle, glutathione metabolism, proline and aldarate metabolism, and arginine and proline metabolism were the most statistically enriched pathways in ZnONPs-supplemented plants. These findings suggest that ZnONPs enhance the tolerance response to AsV. Collectively, our results support the hypothesis that ZnONPs fertilization could be a potential strategy for improving soybean crop resilience under AsV stress. Full article
Show Figures

Figure 1

15 pages, 6224 KiB  
Article
Green Synthesis of Metal Nanoparticles with Borojó (Borojoa patinoi) Extracts and Their Application in As Removal in Water Matrix
by Erika Murgueitio Herrera, Gissela Jacome, Carina Stael, Geovanna Arroyo, Andrés Izquierdo, Alexis Debut, Patricio Delgado and Gemma Montalvo
Nanomaterials 2024, 14(18), 1526; https://doi.org/10.3390/nano14181526 - 20 Sep 2024
Viewed by 2292
Abstract
The predominant aim of the current research was to generate a proposal for the removal of arsenic, a highly toxic pollutant, encountered within the Papallacta Lagoon in Ecuador. The average concentrations of As yielded ranges between 18 to 652 μg/L, through the use [...] Read more.
The predominant aim of the current research was to generate a proposal for the removal of arsenic, a highly toxic pollutant, encountered within the Papallacta Lagoon in Ecuador. The average concentrations of As yielded ranges between 18 to 652 μg/L, through the use of metallic nanoparticles. Sampling was performed in the lagoon with their respective geographic locations and “in situ” parameters. Nanoparticles of Mn3O4 NPs, Fe3O4 NPs, and CuO NPs were synthesized at a 0.5 M concentration, using the precipitation method, and borojó (Borojoa patinoi) extract was added as an anti-caking agent as well as antioxidant. The nanoparticles were characterized by visible spectrophotometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. After arsenic removal treatment using nanoparticles, a randomized experimental design of different concentrations (5 mg/L, 10 mg/L, 25 mg/L, 50 mg/L, 100 mg/L, and 150 mg/L) was applied at laboratory level. The average diameter of Fe3O4NPs ranged from 9 nm to 36 nm, Mn3O4 NPs were 15–20 nm, and CuO NPs ranged from 25 nm to 30 nm. Arsenic removal percentages using Fe3O4 NPs with a concentration of 150 mg/L was 87%; with Mn3O4 NPs, the removal was 70% and CuO NPs of about 63.5%. Finally, these nanoparticles could be used in a water treatment plant for the Papallacta Lagoon. Full article
(This article belongs to the Special Issue Advanced Nanomaterials for Water Remediation (2nd Edition))
Show Figures

Figure 1

14 pages, 1849 KiB  
Article
Tityus stigmurus-Venom-Loaded Cross-Linked Chitosan Nanoparticles Improve Antimicrobial Activity
by Fiamma Gláucia-Silva, João Vicente Pereira Torres, Manoela Torres-Rêgo, Alessandra Daniele-Silva, Allanny Alves Furtado, Sarah de Sousa Ferreira, Guilherme Maranhão Chaves, Francisco Humberto Xavier-Júnior, Karla Samara Rocha Soares, Arnóbio Antônio da Silva-Júnior and Matheus de Freitas Fernandes-Pedrosa
Int. J. Mol. Sci. 2024, 25(18), 9893; https://doi.org/10.3390/ijms25189893 - 13 Sep 2024
Cited by 2 | Viewed by 2511
Abstract
The rapid resistance developed by pathogenic microorganisms against the current antimicrobial pool represents a serious global public health problem, leading to the search for new antibiotic agents. The scorpion Tityus stigmurus, an abundant species in Northeastern Brazil, presents a rich arsenal of [...] Read more.
The rapid resistance developed by pathogenic microorganisms against the current antimicrobial pool represents a serious global public health problem, leading to the search for new antibiotic agents. The scorpion Tityus stigmurus, an abundant species in Northeastern Brazil, presents a rich arsenal of bioactive molecules in its venom, with high potential for biotechnological applications. However, venom cytotoxicity constitutes a barrier to the therapeutic application of its different components. The objective of this study was to produce T. stigmurus-venom-loaded cross-linked chitosan nanoparticles (Tsv/CN) at concentrations of 0.5% and 1.0% to improve their biological antimicrobial activity. Polymeric nanoparticles were formed with a homogeneous particle size and spherical shape. Experimental formulation parameters were verified in relation to mean size (<180 nm), zeta potential, polydispersity index and encapsulation efficiency (>78%). Tsv/CN 1.0% demonstrated an ability to increase the antimicrobial venom effect against Staphylococcus aureus bacteria, exhibiting an MIC value of 44.6 μg/mL. It also inhibited different yeast species of the Candida genus, and Tsv/CN 0.5% and 1.0% led to a greater inhibitory effect of C. tropicalis and C. parapsilosis strains, presenting MIC values between 22.2 and 5.5 µg/mL, respectively. These data demonstrate the biotechnological potential of these nanosystems to obtain a new therapeutic agent with potential antimicrobial activity. Full article
(This article belongs to the Section Macromolecules)
Show Figures

Figure 1

19 pages, 6338 KiB  
Article
Cytotoxicity and Genotoxicity Effects of a Magnetic Zeolite Composite in Daphnia magna (Straus, 1820)
by Jacquelyne Y. Zarria-Romero and Juan A. Ramos-Guivar
Int. J. Mol. Sci. 2024, 25(14), 7542; https://doi.org/10.3390/ijms25147542 - 9 Jul 2024
Cited by 2 | Viewed by 1268
Abstract
Zeolite type 5A combined with the magnetic properties of maghemite nanoparticles facilitate the rapid absorption of heavy metals, which makes them an interesting proposal for the remediation of water contaminated with lead and arsenic. However, the physicochemical analysis related to concentration and size [...] Read more.
Zeolite type 5A combined with the magnetic properties of maghemite nanoparticles facilitate the rapid absorption of heavy metals, which makes them an interesting proposal for the remediation of water contaminated with lead and arsenic. However, the physicochemical analysis related to concentration and size for the use of this magnetic zeolite composite (MZ0) in water bodies and the possible toxicological effects on aquatic fauna has not yet been carried out. The main objective of the research work is to determine lethal concentrations that cause damage to Daphnia magna based on LC50 tests, morphology, reproductive rate, and quantification of the expression of three genes closely involved in the morphological development of vital structures (Glass, NinaE, Pph13). To achieve this objective, populations of neonates and young individuals were used, and results showed that the LC50 for neonates was 11,314 mg L−1, while for young individuals, it was 0.0310 mg L−1. Damage to morphological development was evidenced by a decrease in eye size in neonates, an increase in eye size in young individuals, variations in the size of the caudal spine for both age groups, and slight increases in the heart size, body, and antenna for both age groups. The reproductive rate of neonates was not affected by the lower concentrations of MZ0, while in young individuals, the reproductive rate decreased by more than 50% from the minimum exposure concentration of MZ0. And for both ages, Glass gene expression levels decreased as the MZ0 concentration increased. Also, the MZ0 evidenced its affinity for the exoskeleton of D. magna, which was observed using both light microscopy and electron microscopy. It is concluded that MZ0 did not generate significant damage in the mortality, morphology, reproductive rate, or gene expression in D. magna at lower concentrations, demonstrating the importance of evaluating the possible impacts on different life stages of the cladoceran. Full article
(This article belongs to the Special Issue Toxicity of Nanoparticles)
Show Figures

Figure 1

17 pages, 3771 KiB  
Article
Arsenic Nanoparticles Trigger Apoptosis via Anoikis Induction in OECM-1 Cells
by Alejandra A. Covarrubias, Mauricio Reyna-Jeldes, Seidy Pedroso-Santana, Sabrina Marín, Carolina Madero-Mendoza, Cecilia Demergasso and Claudio Coddou
Int. J. Mol. Sci. 2024, 25(12), 6723; https://doi.org/10.3390/ijms25126723 - 18 Jun 2024
Cited by 2 | Viewed by 5002
Abstract
Arsenic compounds have been used as therapeutic alternatives for several diseases including cancer. In the following work, we obtained arsenic nanoparticles (AsNPs) produced by an anaerobic bacterium from the Salar de Ascotán, in northern Chile, and evaluated their effects on the human [...] Read more.
Arsenic compounds have been used as therapeutic alternatives for several diseases including cancer. In the following work, we obtained arsenic nanoparticles (AsNPs) produced by an anaerobic bacterium from the Salar de Ascotán, in northern Chile, and evaluated their effects on the human oral squamous carcinoma cell line OECM-1. Resazurin reduction assays were carried out on these cells using 1–100 µM of AsNPs, finding a concentration-dependent reduction in cell viability that was not observed for the non-tumoral gastric mucosa-derived cell line GES-1. To establish if these effects were associated with apoptosis induction, markers like Bcl2, Bax, and cleaved caspase 3 were analyzed via Western blot, executor caspases 3/7 via luminometry, and DNA fragmentation was analyzed by TUNEL assay, using 100 µM cisplatin as a positive control. OECM-1 cells treated with AsNPs showed an induction of both extrinsic and intrinsic apoptotic pathways, which can be explained by a significant decrease in P-Akt/Akt and P-ERK/ERK relative protein ratios, and an increase in both PTEN and p53 mRNA levels and Bit-1 relative protein levels. These results suggest a prospective mechanism of action for AsNPs that involves a potential interaction with extracellular matrix (ECM) components that reduces cell attachment and subsequently triggers anoikis, an anchorage-dependent type of apoptosis. Full article
(This article belongs to the Special Issue State-of-the-Art Molecular Biology in Chile, 2nd Edition)
Show Figures

Figure 1

16 pages, 5398 KiB  
Article
Exploring an Innovative Approach: Integrating Negative-Pressure Wound Therapy with Silver Nanoparticle Dressings in Skin Graft Procedures
by Abdalah Abu-Baker, Andrada-Elena Țigăran, Teodora Peligrad, Daniela-Elena Ion, Daniela-Elena Gheoca-Mutu, Adelaida Avino, Cristian-Sorin Hariga, Oriana Elena Moraru, Laura Răducu and Radu-Cristian Jecan
J. Pers. Med. 2024, 14(2), 206; https://doi.org/10.3390/jpm14020206 - 14 Feb 2024
Cited by 15 | Viewed by 2851
Abstract
Background: Skin grafting is a helpful instrument in a plastic surgeon’s arsenal. Several types of dressings were designed to facilitate the process of graft integration. Negative-pressure wound therapy is a proven dressing method, enhancing graft survival through several mechanisms: aspiration of secretions, stimulation [...] Read more.
Background: Skin grafting is a helpful instrument in a plastic surgeon’s arsenal. Several types of dressings were designed to facilitate the process of graft integration. Negative-pressure wound therapy is a proven dressing method, enhancing graft survival through several mechanisms: aspiration of secretions, stimulation of neoangiogenesis, and promotion of an anti-inflammatory environment. Silver nanoparticle dressings also bring multiple benefits by bearing an antimicrobial effect and providing a humid medium, which are favorable for epithelialization. The combination of NPWT (negative-pressure wound therapy) with AgNPs (silver nanoparticles) has not been widely studied. Materials and methods: This study aimed to compare the outcomes of silver nanoparticle sheets with the combination of negative-pressure wound therapy and silver nanoparticle dressings. We conducted a comparative prospective study on 80 patients admitted to the Plastic Surgery Department of “Prof. Dr. Agrippa Ionescu” Emergency Clinical Hospital between 1st of January 2020 and 31st of December 2022. The study population was randomized to receive either silver nanoparticle dressings or negative-pressure wound therapy (NPWT) combined with silver nanoparticle dressings. Various parameters were monitored, including patient comorbidities and graft-related data such as defect etiology, graft integration, and graft size. Dressings were changed, and graft status was evaluated at 7, 10, and 14 days postoperatively. Additionally, baseline C-reactive protein (CRP) levels were measured before surgery and 7, 10, and 14 days postoperatively. Results: The study demonstrated an enhanced integration of skin grafts at all evaluation stages when employing NPWT combined with AgNPs, particularly evident 10 days post operation. Significant variations in graft integration were also observed based on factors such as diabetes, cardiovascular disease, graft size, or the origin of the grafted defect. Moreover, dynamic C-reactive protein monitoring showed a statistically significant decrease in CRP levels 10 days post operation among patients treated with NPWT in conjunction with silver dressing, consistent with the nearly complete integration of skin grafts at this evaluation threshold. Conclusion: Several factors influence the postoperative evolution of split-skin grafts. Postoperative dressings target local factors to enhance graft integration further. Our research demonstrated that the innovative combination of NPWT-assisted dressings, complemented by a silver nanoparticle sheet, resulted in improved benefits for graft integration and the alleviation of systemic inflammation. Full article
Show Figures

Figure 1

19 pages, 1873 KiB  
Article
Induction of Oxidative Stress by Waterborne Copper and Arsenic in Larvae of European Seabass (Dicentrarchus labrax L.): A Comparison with Their Effects as Nanoparticles
by Rafael Torronteras, Margarita Díaz-de-Alba, María Dolores Granado-Castro, Estrella Espada-Bellido, Francisco Córdoba García, Antonio Canalejo and María Dolores Galindo-Riaño
Toxics 2024, 12(2), 141; https://doi.org/10.3390/toxics12020141 - 9 Feb 2024
Cited by 3 | Viewed by 2012
Abstract
The aim of this work was to compare the potential induction of oxidative stress and the antioxidant enzymatic response after a short-term waterborne exposure to copper (Cu) and arsenic (As) with that of the nanoparticles (NPs) of these elements (Cu-NPs and As-NPs) in [...] Read more.
The aim of this work was to compare the potential induction of oxidative stress and the antioxidant enzymatic response after a short-term waterborne exposure to copper (Cu) and arsenic (As) with that of the nanoparticles (NPs) of these elements (Cu-NPs and As-NPs) in fish larvae of the species Dicentrarchus labrax. Larvae were grouped in several tanks and exposed to different concentrations of contaminants (0 to 10 mg/L) for 24 or 96 h under laboratory conditions. Copper and arsenic concentrations were analysed in larval tissues using ICP-MS. A set of oxidative stress biomarkers, including the levels of hydroperoxides (HPs), and superoxide dismutase (SOD) and catalase (CAT) activities were assessed. The trace element concentrations (mg/kg d.w.) in larvae ranged as follows: 3.28–6.67 (Cu at 24 h) and 2.76–3.42 (Cu at 96 h); 3.03–8.31 (Cu-NPs at 24 h) and 2.50–4.86 (Cu-NPs at 96 h); 1.92–3.45 (As at 24 h) and 2.22–4.71 (As at 96 h); and 2.19–8.56 (As-NPs at 24 h) and 1.75–9.90 (As-NPs at 96 h). In Cu tests, the oxidative damage (ROOH levels) was induced from 0.1 mg/L at both exposure times, while for Cu-NPs, this damage was not observed until 1 mg/L, which was paralleled by concomitant increases in SOD activity. The CAT activity was also increased but at lower metal concentrations (0.01 mg/L and 0.1 mg/L for both chemical forms). No oxidative damage was observed for As or As-NPs after 24 h, but it was observed for As after 96 h of treatment with 0.01 mg/L. A decrease in SOD activity was observed for As after 24 h, but it turned out to be increased after 96 h. However, As-NPs did not alter SOD activity. The CAT activity was stimulated only at 96 h by As and at 24 h by As-NPs. Therefore, the two chemical forms of Cu exhibited a higher bioaccumulation and toxicity potential as compared to those of As. Importantly, the association of both Cu and As in NPs reduced the respective trace metal bioaccumulation, resulting also in a reduction in the toxic effects (mortality and biochemical). Furthermore, the assessment of oxidative stress-related biomarkers in seabass larvae appears to be a useful tool for biomonitoring environmental-occurring trace elements. Full article
(This article belongs to the Special Issue Toxicity of Contaminants on Aquatic Organisms II)
Show Figures

Figure 1

16 pages, 3914 KiB  
Article
Evaporation of Small Sessile Drop Deposited on a Horizontal Solid Surface: New Exact Solutions and Approximations
by Peter Lebedev-Stepanov and Olga Savenko
Colloids Interfaces 2024, 8(1), 2; https://doi.org/10.3390/colloids8010002 - 20 Dec 2023
Viewed by 2466
Abstract
Evaporating a liquid sessile drop deposited on a horizontal surface is an important object of applications (printing technologies, electronics, sensorics, medical diagnostics, hydrophobic coatings, etc.) and theoretical investigations (microfluidics, self-assembly of nanoparticles, crystallization of solutes, etc.). The arsenal of formulas for calculating the [...] Read more.
Evaporating a liquid sessile drop deposited on a horizontal surface is an important object of applications (printing technologies, electronics, sensorics, medical diagnostics, hydrophobic coatings, etc.) and theoretical investigations (microfluidics, self-assembly of nanoparticles, crystallization of solutes, etc.). The arsenal of formulas for calculating the slow evaporation of an axisymmetric drop of capillary dimensions deposited on a flat solid surface is reviewed. Characteristics such as vapor density, evaporation flux density, and total evaporation rate are considered. Exact solutions obtained in the framework of the Maxwellian model, in which the evaporation process of the drop is limited by vapor diffusion from the drop surface to the surrounding air, are presented. The summary covers both well-known results obtained during the last decades and new results published by us in the last few years, but practically unknown to the wider scientific community. The newest formulas, not yet published in refereed publications, concerning exact solutions for a number of specific contact angles are also presented. In addition, new approximate solutions are presented (total evaporation rate and mass loss per unit surface area per unit time in the whole range of contact angles θ[0, π), drop lifetime in constant contact radius evaporation regime and constant contact angle mode), which can be used in modeling without requiring significant computational resources. Full article
Show Figures

Figure 1

17 pages, 16840 KiB  
Article
Leachate Experiments to Evaluate Weathering of Waste Rock for Backfill Aquifers in Restored Coal Mine Pits, Powder River Basin, USA
by Julianna Martin and Jeff B. Langman
Geosciences 2024, 14(1), 4; https://doi.org/10.3390/geosciences14010004 - 20 Dec 2023
Cited by 2 | Viewed by 2330
Abstract
Restoration of open-pit mines may utilize waste rock for landscape reconstruction, which can include the construction of backfill aquifers. Weathering and contaminant transport may be different in backfill aquifers compared to the surrounding aquifer because of newly available mineral surfaces and transportable nano- [...] Read more.
Restoration of open-pit mines may utilize waste rock for landscape reconstruction, which can include the construction of backfill aquifers. Weathering and contaminant transport may be different in backfill aquifers compared to the surrounding aquifer because of newly available mineral surfaces and transportable nano- to micro-scale particles generated during mining. Waste rock from the Cordero Rojo open-pit coal mine in the Powder River Basin was exposed to benchtop leachate experiments for 20 weeks at temperatures of 5 °C and 20 °C. Collected leachate was analyzed for Eh, pH, specific conductance, alkalinity, and cation and anion concentrations as unfiltered and 0.45-μm and 0.2-μm filtered concentrations. During the experiment, leachate Eh and pH substantially varied during the first 55 days, which corresponds to a period of high specific conductance (>1000 µS/cm) and alkalinity (>200 mg/L). Correspondingly, anion and cation concentrations were the largest during this early weathering stage, and the filter fractions indicated multiple forms of transported elements. After this early weathering stage, column leachate evolved towards a weathering equilibrium of neutral, oxidizing, and low solute conditions indicated by positive Eh values, pH near 7, and specific conductance <500 μS/cm. This evolution was reflected in the decline and stabilization or non-detection of metal(loid) concentrations reflective of a shift to primarily bulk aluminosilicate weathering when coal- and salt-associated elements, such as arsenic, cadmium, and selenium, were not detected or at minimal concentrations. Over the course of the experiment, the solute trend of certain elements indicated particular weathering processes—cadmium and nanoparticle transport, selenium and salt dissolution, and arsenic and pyrite oxidation. The mining of overburden formations and use of the waste rock for backfill aquifers as part of landscape reconstruction will create newly available mineral surfaces and nanoparticles that will weather to produce solute concentrations not typically found in groundwater associated with the original overburden. Full article
(This article belongs to the Topic Groundwater Pollution Control and Groundwater Management)
Show Figures

Figure 1

Back to TopTop