Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (705)

Search Parameters:
Keywords = aroma-active compound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1664 KiB  
Article
Phenolic Evolution During Industrial Red Wine Fermentations with Different Sequential Air Injection Regimes
by Paula A. Peña-Martínez, Alvaro Peña-Neira and V. Felipe Laurie
Fermentation 2025, 11(8), 446; https://doi.org/10.3390/fermentation11080446 (registering DOI) - 31 Jul 2025
Abstract
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases [...] Read more.
During red wine production, managing the pomace cap is key for a successful fermentation, allowing the extraction of phenolics and other metabolites and providing the necessary oxygen for yeast activity. In recent years, automatic cap management systems based on the injection of gases have gained popularity, despite the limited scientific information regarding the outcomes of their use. This trial aimed to evaluate the composition of wine during industrial red wine fermentations using an automatic sequential air injection system (i.e., AirMixing MITM). Fourteen lots of Cabernet Sauvignon grapes were fermented using four air injection regimes, where the intensity and daily frequency of air injections were set to either low or high. As expected, the treatment combining high-intensity and high-frequency air injection produced the largest dissolved oxygen peaks reaching up to 1.9 mg L−1 per cycle, compared to 0.1 mg L−1 in the low-intensity and low-frequency treatment. Yet, in all cases, little to no accumulation of oxygen overtime was observed. Regarding phenolics, the highest intensity and frequency of air injections led to the fastest increase in total phenolics, anthocyanins, short polymeric pigments, and tannin concentration, although compositional differences among treatments equilibrate by the end of fermentation. The main differences in phenolic compounds observed during fermentation were mediated by temperature variation among wine tanks. Based on these findings, it is advisable to keep the characterizing kinetics of phenolic extraction and expand the study to the aroma evolution of wines fermented with this technology. Full article
(This article belongs to the Special Issue Biotechnology in Winemaking)
Show Figures

Figure 1

38 pages, 2064 KiB  
Systematic Review
Humulus lupulus (Hop)-Derived Chemical Compounds Present Antiproliferative Activity on Various Cancer Cell Types: A Meta-Regression Based Panoramic Meta-Analysis
by Georgios Tsionkis, Elisavet M. Andronidou, Panagiota I. Kontou, Ioannis A. Tamposis, Konstantinos Tegopoulos, Panagiotis Pergantas, Maria E. Grigoriou, George Skavdis, Pantelis G. Bagos and Georgia G. Braliou
Pharmaceuticals 2025, 18(8), 1139; https://doi.org/10.3390/ph18081139 - 31 Jul 2025
Viewed by 199
Abstract
Background/Objectives: Humulus lupulus (hops) are a perennial, dioecious plant widely cultivated for beer production, used for their distinguishing aroma and bitterness—traits that confer high added value status. Various hop-derived compounds have been reported to exhibit antioxidant, antimicrobial, antiproliferative and other bioactive effects. [...] Read more.
Background/Objectives: Humulus lupulus (hops) are a perennial, dioecious plant widely cultivated for beer production, used for their distinguishing aroma and bitterness—traits that confer high added value status. Various hop-derived compounds have been reported to exhibit antioxidant, antimicrobial, antiproliferative and other bioactive effects. This systematic review and meta-analysis assesses the impact of hop compounds on the viability of diverse cancer cell lines. Methods: A comprehensive literature search was performed following PRISMA guidelines. Data were synthesized via multivariate meta-analysis and meta-regression, using IC50 values as the effect size. Key variables included assay type (SRB, tetrazolium salt-based, crystal violet), exposure duration (24, 48, 72 h), specific hop compound and cancer cell line. Results: Of 622 articles identified, 61 met eligibility criteria, yielding 354 individual experiments. Meta-regression of xanthohumol (XN) IC50 values across SRB, tetrazolium and crystal violet assays revealed no statistically significant differences at 24 h (p = 0.77), 48 h (p = 0.35) and 72 h (p = 0.70), supporting the interchangeability of the methods. Meta-analysis confirmed that hop constituents inhibit cancer cell proliferation; XN emerged as the most potent flavonoid (IC50 = 16.89 μM at 72 h), while lupulone was the strongest compound overall (IC50 = 5.00 μM at 72 h). Crude hop extracts demonstrated greater antiproliferative selectivity for cancer versus non-cancer cells (IC50 = 35.23 vs. 43.80 μg/mL at 72 h). Conclusions: Hop compounds, and particularly bitter acids, demonstrate promising antiproliferative activity against cancer cells with comparatively low toxicity to healthy cells. Furthermore, our analysis confirms the comparability of SRB, tetrazolium-based and crystal violet assays, supporting the robust integration of antiproliferative data. Full article
Show Figures

Figure 1

18 pages, 1777 KiB  
Article
Machine Learning in Sensory Analysis of Mead—A Case Study: Ensembles of Classifiers
by Krzysztof Przybył, Daria Cicha-Wojciechowicz, Natalia Drabińska and Małgorzata Anna Majcher
Molecules 2025, 30(15), 3199; https://doi.org/10.3390/molecules30153199 - 30 Jul 2025
Viewed by 105
Abstract
The aim was to explore using machine learning (including cluster mapping and k-means methods) to classify types of mead based on sensory analysis and aromatic compounds. Machine learning is a modern tool that helps with detailed analysis, especially because verifying aromatic compounds is [...] Read more.
The aim was to explore using machine learning (including cluster mapping and k-means methods) to classify types of mead based on sensory analysis and aromatic compounds. Machine learning is a modern tool that helps with detailed analysis, especially because verifying aromatic compounds is challenging. In the first stage, a cluster map analysis was conducted, allowing for the exploratory identification of the most characteristic features of mead. Based on this, k-means clustering was performed to evaluate how well the identified sensory features align with logically consistent groups of observations. In the next stage, experiments were carried out to classify the type of mead using algorithms such as Random Forest (RF), adaptive boosting (AdaBoost), Bootstrap aggregation (Bagging), K-Nearest Neighbors (KNN), and Decision Tree (DT). The analysis revealed that the RF and KNN algorithms were the most effective in classifying mead based on sensory characteristics, achieving the highest accuracy. In contrast, the AdaBoost algorithm consistently produced the lowest accuracy results. However, the Decision Tree algorithm achieved the highest accuracy value (0.909), demonstrating its potential for precise classification based on aroma characteristics. The error matrix analysis also indicated that acacia mead was easier for the algorithms to identify than tilia or buckwheat mead. The results show the potential of combining an exploratory approach (cluster map with the k-means method) with machine learning. It is also important to focus on selecting and optimizing classification models used in practice because, as the results so far indicate, choosing the right algorithm greatly affects the success of mead identification. Full article
(This article belongs to the Special Issue Analytical Technologies and Intelligent Applications in Future Food)
Show Figures

Graphical abstract

22 pages, 3853 KiB  
Review
Aroma Formation, Release, and Perception in Aquatic Products Processing: A Review
by Weiwei Fan, Xiaoying Che, Pei Ma, Ming Chen and Xuhui Huang
Foods 2025, 14(15), 2651; https://doi.org/10.3390/foods14152651 - 29 Jul 2025
Viewed by 217
Abstract
Flavor, as one of the primary factors that attracts consumers, has always been a crucial indicator for evaluating the quality of food. From processing to final consumption, the conditions that affect consumers’ perception of the aroma of aquatic products can be divided into [...] Read more.
Flavor, as one of the primary factors that attracts consumers, has always been a crucial indicator for evaluating the quality of food. From processing to final consumption, the conditions that affect consumers’ perception of the aroma of aquatic products can be divided into three stages: aroma formation, release, and signal transmission. Currently, there are few reviews on the formation, release, and perception of aroma in aquatic products, which has affected the product development of aquatic products. This review summarizes aroma formation pathways, the effects of processing methods, characteristic volatile compounds, various identification techniques, aroma-release influencing factors, and the aroma perception mechanisms of aquatic products. The Maillard reaction and lipid oxidation are the main pathways for the formation of aromas in aquatic products. The extraction, identification, and quantitative analysis of volatile compounds reveal the odor changes in aquatic products. The composition of aquatic products and oral processing mainly influence the release of odorants. The characteristic odorants perceived from the nasal cavity should be given more attention. Moreover, the relationship between various olfactory receptors (ORs) and the composition of multiple aromatic compounds remains to be understood. It is necessary to clarify the relationship between nasal cavity metabolism and odor perception, reveal the binding and activation mode of ORs and odor molecules, and establish an accurate aroma prediction model. Full article
(This article belongs to the Section Food Engineering and Technology)
Show Figures

Figure 1

20 pages, 2015 KiB  
Article
Origanum majorana Extracts: A Preliminary Comparative Study on Phytochemical Profiles and Bioactive Properties of Valuable Fraction and By-Product
by Simone Bianchi, Rosaria Acquaviva, Claudia Di Giacomo, Laura Siracusa, Leeyah Issop-Merlen, Roberto Motterlini, Roberta Foresti, Donata Condorelli and Giuseppe Antonio Malfa
Plants 2025, 14(15), 2264; https://doi.org/10.3390/plants14152264 - 23 Jul 2025
Viewed by 280
Abstract
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often [...] Read more.
Origanum majorana L. (O. majorana) (Lamiaceae) is an aromatic Mediterranean plant widely used in food, cosmetics, and traditional medicine due to its aroma and rich content of bioactive compounds. While its leaves and flowers are commonly utilized, lignified stems are often discarded. This study compared hydroalcoholic extracts from the leaves and flowers (valuable fraction, VF) and stems (by-product, BP). Phytochemical analysis revealed qualitatively similar profiles, identifying 20 phenolic compounds, with Rosmarinic acid and Salvianolic acid B as the most and second most abundant, respectively. Antioxidant activity was evaluated in vitro using DPPH (IC50 [µg/mL]: VF 30.11 ± 3.46; BP 31.72 ± 1.46), H2O2 (IC50 [µg/mL]: VF 103.09 ± 4.97; BP 119.55 ± 10.58), and O2•− (IC50 [µg/mL]: VF 0.71 ± 0.062; BP 0.79 ± 0.070). Both extracts (20 µg/mL) fully restored oxidative balance in hemin-stressed AC16 cardiomyocytes, without altering the expression of catalase, heme-oxygenase 1, superoxide dismutase 2, or ferritin. Anti-inflammatory activity in LPS-stimulated RAW 264.7 macrophages showed that VF (IC50 400 µg/mL) reduced NO release to control levels, while BP achieved a ~60% reduction. Cytotoxicity was assessed on cancer cell lines: CaCo-2 (IC50 [µg/mL]: VF 154.1 ± 6.22; BP 305.2 ± 15.94), MCF-7 (IC50 [µg/mL]: VF 624.6 ± 10.27; BP 917.9 ± 9.87), and A549 (IC50 [µg/mL]: VF 720.8 ± 13.66; BP 920.2 ± 16.79), with no cytotoxicity on normal fibroblasts HFF-1 (IC50 > 1000 µg/mL for both extracts). Finally, both extracts slightly inhibited only CYP1A2 (IC50 [µg/mL]: VF 497.45 ± 9.64; BP 719.72 ± 11.37) and CYP2D6 (IC50 [µg/mL]: VF 637.15 ± 14.78, BP 588.70 ± 11.01). These results support the potential reuse of O. majorana stems as a sustainable source of bioactive compounds for nutraceutical and health-related applications. Full article
Show Figures

Figure 1

18 pages, 2803 KiB  
Article
Single-Gelator Structuring of Hemp Oil Using Agarose: Comparative Assembly, Electronic Nose Profiling, and Functional Performance of Hydroleogels Versus Oleogels in Shortbread Cookies
by Oliwia Paroń and Joanna Harasym
Polymers 2025, 17(14), 1988; https://doi.org/10.3390/polym17141988 - 20 Jul 2025
Viewed by 309
Abstract
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited [...] Read more.
This study demonstrates an innovative single-gelator approach using agarose (1% and 2% w/w) to structure cold-pressed hemp oil into functional fat replacers for shortbread cookies, achieving a 40% reduction in saturated fatty acids compared to butter. Comprehensive characterization revealed that hydroleogels exhibited superior crispiness (45.67 ± 3.86 N for 2% agarose hydroleogel—HOG 2%) but problematic water activity (0.39–0.61), approaching microbial growth thresholds. Conversely, oleogels showed lower crispiness (2.27–3.43 N) but optimal moisture control (aw = 0.12–0.16) and superior color stability during 10-day storage. Electronic nose analysis using 10 metal oxide sensors revealed that oleogel systems preserved characteristic aroma profiles significantly better than hydroleogels, with 2% agarose oleogel (OG 2%) showing 34% less aroma decay than pure hemp oil. The 2% agarose oleogel demonstrated optimal performance with minimal baking loss (5.87 ± 0.20%), excellent structural integrity, and stable volatile compound retention over storage. Morphological analysis showed that hemp oil cookies achieved the highest specific volume (2.22 ± 0.07 cm3/g), while structured systems ranged from 1.12 to 1.31 cm3/g. This work establishes agarose as a versatile single gelator for hemp oil structuring and validates electronic nose technology for the objective quality assessment of fat-replaced bakery products, advancing healthier food design through molecular approaches. Full article
(This article belongs to the Section Polymer Networks and Gels)
Show Figures

Figure 1

21 pages, 937 KiB  
Article
Influences of Non-Volatile Components on the Aroma of Strong-Aroma Baijiu by Gas Chromatography-Olfactometry and Recombination-Omission Test
by Yingqi Zhou, Yihong Wang, Jia Zheng, Siyi Pan, Xiaoyun Xu and Fang Yuan
Foods 2025, 14(14), 2490; https://doi.org/10.3390/foods14142490 - 16 Jul 2025
Viewed by 208
Abstract
Aroma is an important indicator for evaluating the quality of baijiu. In this study, we determined the aroma-active compounds in four representative brands of strong-aroma baijiu from Sichuan and Jianghuai regions through GC-MS/O, and GC-TOF-MS quantification. In addition, the non-volatile composition of four [...] Read more.
Aroma is an important indicator for evaluating the quality of baijiu. In this study, we determined the aroma-active compounds in four representative brands of strong-aroma baijiu from Sichuan and Jianghuai regions through GC-MS/O, and GC-TOF-MS quantification. In addition, the non-volatile composition of four baijiu samples was quantified by BSTFA derivatization and GC-MS. By constructing a full recombination model containing both volatile and non-volatile components, the effect of different groups of non-volatile compounds on the aroma of strong-aroma baijiu was evaluated through recombination-omission tests. A total of 72 aroma-active compounds and 59 non-volatile compounds were identified and quantified. The results indicated that pyrazines, furfural, and furan derivatives displayed higher aroma intensities in strong-aroma baijiu produced in Sichuan compared to that produced in Jianghuai. The recombination model that included both aroma-active and non-volatile compounds showed a closer resemblance to the original baijiu samples, underscoring the critical role these compounds play in shaping the dominant aroma profile of strong-aroma baijiu. Non-volatile compounds significantly influenced six aroma attributes: fruity, sweet, sauce, pit, acidic, and alcoholic notes. Omission tests revealed that among posorly volatile organic acids, monobasic acids had distinct effects on the aroma profile, while dibasic acids did not show any noticeable influence on the sensory characteristics. Full article
(This article belongs to the Special Issue Wine and Alcohol Products: Volatile Compounds and Sensory Properties)
Show Figures

Figure 1

17 pages, 2788 KiB  
Article
Characterization of Key Aroma Compounds in Aged Chinese Nongxiangxing Baijiu Based on Sensory and Quantitative Analysis: Emphasis on the Contribution of Trace Compounds
by Peiqi Li, Yuting Ling, Xiaomei Shen, Chengcheng Liang, Youhong Tang, Shan Chen, Lisa Zhou Wang, Shuang Chen, Anjun Li and Yan Xu
Molecules 2025, 30(14), 2963; https://doi.org/10.3390/molecules30142963 - 14 Jul 2025
Viewed by 277
Abstract
The characteristics and complexity of Baijiu are inseparable from the promotion of aging. While the impact of compounds such as alcohols, esters, and acids on the aroma of aged Baijiu has been extensively studied, the role of other trace compounds in the aging [...] Read more.
The characteristics and complexity of Baijiu are inseparable from the promotion of aging. While the impact of compounds such as alcohols, esters, and acids on the aroma of aged Baijiu has been extensively studied, the role of other trace compounds in the aging process should not be overlooked. To further investigate the relationship between volatile compounds and the aging of Nongxiangxing Baijiu, sensomics research methods were employed to analyze profiles of young and aged Nongxiangxing Baijiu. In this study, a total of 94 aroma compounds were analyzed in both young and aged Nongxiangxing Baijiu by GC-O/MS. Among these, 12 aroma compounds significantly associated with the aging process were identified by quantification and odor activity values (OAVs). Furthermore, the omission tests result showed that 4-methyl-2-methoxyphenol (2066.79 μg/L), benzaldehyde (3860.30 μg/L), β-phenylethanol (5638.85 μg/L), 3-(methylsulfanyl)propan-1-ol (8.82 μg/L), 3-(methylsulfanyl)propanal (15.91 μg/L), and linalool (17.36 μg/L) were key aroma compounds of aged Nongxiangxing Baijiu. This study reveals that trace compounds contribute to the distinct aroma complexity of aged Nongxiangxing Baijiu, providing a foundation to support aging process analysis. Full article
Show Figures

Figure 1

18 pages, 6714 KiB  
Article
Metabolomics and Sensory Evaluation Reveal the Aroma and Taste Profile of Northern Guangdong Black Tea
by Jialin Chen, Binghong Liu, Yide Zhou, Jiahao Chen, Yanchun Zheng, Hui Meng, Xindong Tan, Peng Zheng, Binmei Sun, Hongbo Zhao and Shaoqun Liu
Foods 2025, 14(14), 2466; https://doi.org/10.3390/foods14142466 - 14 Jul 2025
Viewed by 413
Abstract
The sensory quality of black tea is intrinsically linked to cultivar genetics, yet comprehensive characterization of flavor compounds in emerging northern Guangdong black tea (NGBT) remains limited. This study employed high-performance liquid chromatography-ultraviolet (HPLC-UV) and headspace solid-phase microextraction coupled with GC-MS (HS-SPME-GC-MS) to [...] Read more.
The sensory quality of black tea is intrinsically linked to cultivar genetics, yet comprehensive characterization of flavor compounds in emerging northern Guangdong black tea (NGBT) remains limited. This study employed high-performance liquid chromatography-ultraviolet (HPLC-UV) and headspace solid-phase microextraction coupled with GC-MS (HS-SPME-GC-MS) to analyze non-volatile and volatile compounds in five NGBT cultivars—Jinshahong (JSH), Danxia No.1 (DXY), Danxia No.2 (DXE), Yingde Black Tea (QTZ), and Yinghong No.9 (YHJ)—alongside sensory evaluation. Orthogonal partial least squares-discriminant analysis (OPLS-DA) identified key non-volatile discriminants (VIP > 1) ranked by contribution: total catechins > simple catechins > CG > EGCG > ester catechins > EGC. HS-SPME-GC-MS detected 97 volatiles, with eight aroma-active compounds exhibiting OAV > 1 and VIP > 1: Geraniol > Methyl salicylate > Linalool > β-Myrcene > Benzyl alcohol > (Z)-Linalool Oxide > Phenethyl alcohol > (Z)-Jasmone. These compounds drive cultivar-specific aromas in NGBTs. Findings establish a theoretical framework for evaluating cultivar-driven flavor quality and provide novel insights for targeted breeding and processing optimization of NGBTs. Full article
(This article belongs to the Section Foodomics)
Show Figures

Figure 1

24 pages, 3442 KiB  
Article
Antimicrobial Activity of Chemical Hop (Humulus lupulus) Compounds: A Systematic Review and Meta-Analysis
by Despina Kiofentzoglou, Elisavet M. Andronidou, Panagiota I. Kontou, Pantelis G. Bagos and Georgia G. Braliou
Appl. Sci. 2025, 15(14), 7806; https://doi.org/10.3390/app15147806 - 11 Jul 2025
Viewed by 641
Abstract
Humulus lupulus, commonly known as hop, is a climbing plant whose female cones impart beer’s characteristic bitterness and aroma and also serve as a preservative. In this study, we conducted a meta-analysis to investigate the antimicrobial activity of hop compounds and extracts [...] Read more.
Humulus lupulus, commonly known as hop, is a climbing plant whose female cones impart beer’s characteristic bitterness and aroma and also serve as a preservative. In this study, we conducted a meta-analysis to investigate the antimicrobial activity of hop compounds and extracts against various microorganisms by statistically synthesizing minimum inhibitory concentration (MIC) values. From the 2553 articles retrieved from the comprehensive literature search, 18 provided data on MIC values for six hop compounds, and three extract types tested against 55 microbial strains’ MIC values corresponded to 24 and 48 h incubation periods with compounds or extracts. The results indicate that xanthohumol (a flavonoid) and lupulone (a bitter acid) exhibit potent antimicrobial activity against most tested microorganisms, particularly food spoilage bacteria [21.92 (95%CI 9.02–34.83), and 12.40 (95%CI 2.66–22.14) μg/mL, respectively, for 24 h of treatment]. Furthermore, hydroalcoholic extracts demonstrated greater efficacy compared to supercritical CO2 (SFE) extracts, which showed limited antimicrobial effects against both probiotic and non-probiotic strains. These findings underscore the need for standardized, evidence-based protocols—including uniform microbial panels and consistent experimental procedures—to reliably evaluate the antimicrobial properties of hop-derived compounds and extracts. Taken together, our findings ultimately chart a path toward evidence based antimicrobial tests that could inform food-preservation strategies and inspire the development of plant-based antimicrobials. Full article
(This article belongs to the Special Issue Advances in Bioactive Compounds from Plants and Their Applications)
Show Figures

Figure 1

21 pages, 1691 KiB  
Article
Non-Destructive Determination of Starch Gelatinization, Head Rice Yield, and Aroma Components in Parboiled Rice by Raman and NIR Spectroscopy
by Ebrahim Taghinezhad, Antoni Szumny, Adam Figiel, Ehsan Sheidaee, Sylwester Mazurek, Meysam Latifi-Amoghin, Hossein Bagherpour, Natalia Pachura and Jose Blasco
Molecules 2025, 30(14), 2938; https://doi.org/10.3390/molecules30142938 - 11 Jul 2025
Viewed by 281
Abstract
Vibrational spectroscopy, including Raman and near-infrared techniques, enables the non-destructive evaluation of starch gelatinization, head rice yield, and aroma-active volatile compounds in parboiled rice subjected to varying soaking and drying conditions. Raman and NIR spectra were collected for rice samples processed under different [...] Read more.
Vibrational spectroscopy, including Raman and near-infrared techniques, enables the non-destructive evaluation of starch gelatinization, head rice yield, and aroma-active volatile compounds in parboiled rice subjected to varying soaking and drying conditions. Raman and NIR spectra were collected for rice samples processed under different conditions and integrated with reference analyses to develop and validate partial least squares regression and artificial neural network models. The optimized PLSR model demonstrated strong predictive performance, with R2 values of 0.9406 and 0.9365 for SG and HRY, respectively, and residual predictive deviations of 3.98 and 3.75 using Raman effective wavelengths. ANN models reached R2 values of 0.97 for both SG and HRY, with RPDs exceeding 4.2 using NIR effective wavelengths. In the aroma compound analysis, p-Cymene exhibited the highest predictive accuracy, with R2 values of 0.9916 for calibration, and 0.9814 for cross-validation. Other volatiles, such as 1-Octen-3-ol, nonanal, benzaldehyde, and limonene, demonstrated high predictive reliability (R2 ≥ 0.93; RPD > 3.0). Conversely, farnesene, menthol, and menthone showed poor predictability (R2 < 0.15; RPD < 0.4). Principal component analysis revealed that the first principal component explained 90% of the total variance in the Raman dataset and 71% in the NIR dataset. Hotelling’s T2 analysis identifies influential outliers and enhances model robustness. Optimal processing conditions for achieving maximum HRY and SG values were determined at 65 °C soaking for 180 min, followed by drying at 70 °C. This study underscores the potential of integrating vibrational spectroscopy with machine learning techniques and targeted wavelength selection for the high-throughput, accurate, and scalable quality evaluation of parboiled rice. Full article
(This article belongs to the Special Issue Vibrational Spectroscopy and Imaging for Chemical Application)
Show Figures

Figure 1

25 pages, 3228 KiB  
Article
Bio-Agronomic Assessment and Quality Evaluation of Sugarcane with Optimized Juice Fermentation in View of Producing Sicilian “Rum Agricole”
by Antonino Pirrone, Nicolò Iacuzzi, Antonio Alfonzo, Morgana Monte, Vincenzo Naselli, Federica Alaimo, Noemi Tortorici, Gabriele Busetta, Giuliana Garofalo, Raimondo Gaglio, Claudio De Pasquale, Nicola Francesca, Luca Settanni, Teresa Tuttolomondo and Giancarlo Moschetti
Appl. Sci. 2025, 15(14), 7696; https://doi.org/10.3390/app15147696 - 9 Jul 2025
Viewed by 354
Abstract
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process [...] Read more.
Sugarcane (Saccharum spp. L.), traditionally cultivated in tropical and subtropical regions, is being explored for its agronomic viability in Mediterranean climates. This study assessed the bio-agronomic performance of seven sugarcane varieties and two accessions grown in Sicily, to enhance the fermentation process to produce rum agricole, a spirit derived from fresh cane juice. Agronomic evaluations revealed significant varietal differences, with juice yields of 5850−14,312 L ha−1 and sugar yields of 1.84–5.33 t ha−1. Microbial control was achieved through the addition of lactic acid, which effectively suppressed undesirable bacterial growth and improved fermentation quality. Furthermore, the application of two selected Saccharomyces cerevisiae strains (MN113 and SPF21), isolated from high-sugar matrices such as manna and honey byproducts, affected the production of volatile compounds, particularly esters and higher alcohols. Sensory analysis confirmed a more complex aromatic profile in cane wines fermented with these selected yeasts, with overall acceptance scores reaching 7.5. Up to 29 aroma-active compounds were identified, including ethyl esters and higher alcohols. This research represents the first integrated approach combining lactic acid treatment and novel yeast strains for the fermentation of sugarcane juice in a Mediterranean context. The findings highlight the potential for high-quality rum agricole production in Sicily. Full article
(This article belongs to the Special Issue Food Chemistry, Analysis and Innovative Production Technologies)
Show Figures

Figure 1

20 pages, 1007 KiB  
Article
Fatty Acids Are Responsible for the Discrepancy of Key Aroma Compounds in Naturally Dried Red Goji Berries and Hot-Air-Dried Red Goji Berries
by Yan Zheng, Claudia Oellig, Walter Vetter, Vanessa Bauer, Yuan Liu, Yanping Chen and Yanyan Zhang
Foods 2025, 14(13), 2388; https://doi.org/10.3390/foods14132388 - 6 Jul 2025
Viewed by 388
Abstract
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract [...] Read more.
Red goji berries, reputed worldwide as “superfruit”, are commonly marketed after natural drying or hot-air drying. A sensomics approach was applied to the aroma analysis of red goji berries under two drying methods. Fifty-two aroma-active compounds were screened and identified by aroma extract dilution analysis (AEDA) coupled with gas chromatography with olfactometry (GC/O). The contents and the odor activity values (OAVs) of 49 aroma-active compounds were determined. Acetic acid was the predominant aroma compounds in both berries. Meanwhile, the key aroma compounds in both berries were (E)-2-nonenal, (Z)-4-heptenal, 3-methyl-2,4-nonanedione, hexanal, etc., which were lipid derivatives. Natural drying promoted the formation of some aldehydes that exhibited green and fatty notes. Hot-air drying facilitated the production of ketones with hay-like and cooked apple-like odor attributes due to the thermal reaction. The fatty acid patterns between naturally dried and hot-air-dried red goji berries differed not significantly and were dominated by linoleic acid, oleic acid, palmitic acid, etc. The knowledge of the impacts of different drying processes on the aroma quality in red goji berries is beneficial for the quality control and optimization of dried red goji berries. Full article
Show Figures

Figure 1

17 pages, 1910 KiB  
Article
Production of Lambic-like Fruit Sour Beer with Lachancea thermotolerans
by Rubén Bartolomé, Elena Alonso, Antonio Morata and Carmen López
Antioxidants 2025, 14(7), 826; https://doi.org/10.3390/antiox14070826 - 4 Jul 2025
Viewed by 462
Abstract
Consumer demand for low-alcohol acidic beers is driving the use of non-conventional yeasts in the brewing process. In this study, the addition of mixed berries and fermentation with L. thermotolerans L31 are performed in crafting a low-alcohol acidic beer. Four different beers were [...] Read more.
Consumer demand for low-alcohol acidic beers is driving the use of non-conventional yeasts in the brewing process. In this study, the addition of mixed berries and fermentation with L. thermotolerans L31 are performed in crafting a low-alcohol acidic beer. Four different beers were brewed in the primary stage with either Saccharomyces cerevisiae or L. thermotolerans and with or without added berry mixture. Beer was fermented for 8 days at 20 °C, stored, and bottled. pH, density, alcoholic content, bitterness, and color of final beer were analyzed for all samples using analytical methods. Volatile compounds, anthocyanin content, and antioxidant activity were also evaluated. Sensory analysis was performed and correlated (PCA) with the analytical results. The obtained data indicated that beers brewed with L. thermotolerans were significantly more acidic and less bitter than S. cerevisiae beers. No difference in alcoholic content was found. Fruity aroma-associated compounds were present in L. thermotolerans beers, which correlated with the sensory analysis. Fruit beers were also redder and showed higher anthocyanin content and stronger antioxidant activity due to the presence of anthocyanins such as cyanidin, delphinidin, and malvidin from fruit, and other antioxidant compounds. Full article
Show Figures

Graphical abstract

19 pages, 6125 KiB  
Article
Deterioration in the Quality of ‘Xuxiang’ Kiwifruit Pulp Caused by Frozen Storage: An Integrated Analysis Based on Phenotype, Color, Antioxidant Activity, and Flavor Compounds
by Chenxu Zhao, Junpeng Niu, Wei Wang, Yebo Wang, Linlin Cheng, Yonghong Meng, Yurong Guo and Shujie Song
Foods 2025, 14(13), 2322; https://doi.org/10.3390/foods14132322 - 30 Jun 2025
Viewed by 360
Abstract
Kiwifruit has attracted much attention in fruit and vegetable processing due to its high nutritional and economic value. However, there is a lack of systematic research on the effects of long-term frozen storage on the pulp quality of kiwifruit. Using kiwifruit pulp stored [...] Read more.
Kiwifruit has attracted much attention in fruit and vegetable processing due to its high nutritional and economic value. However, there is a lack of systematic research on the effects of long-term frozen storage on the pulp quality of kiwifruit. Using kiwifruit pulp stored at −20 °C for 0, 3, 6, 9, and 12 months as the research materials, the dynamic changes in the phenotype, color, antioxidant activity, and flavor compounds were comprehensively evaluated. The results showed that frozen storage caused a significant decline in the quality of the fruit pulp. Specifically, the contents of chlorophyll and carotenoids decreased and the color deteriorated (color difference increased); the turbidity and centrifugal sedimentation rates increased, and pH and viscosity changed in different stages. Additionally, antioxidant compounds, such as vitamin C and total phenols, were significantly reduced with the extension of storage duration, and the 2,2-diphenyl-1-picrylhydrazyl (DPPH)/2,2-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) free radical scavenging ability was decreased. The content of volatile aroma compounds diminished, leading to a notable shift in the flavor profile. Correlation analysis revealed that changes in volatile substances were significantly correlated with physical, chemical, and antioxidant indicators (p < 0.05). These correlations can serve as a key basis for assessing quality deterioration. This study systematically elucidated, for the first time, the mechanism of quality deterioration in kiwifruit pulp during frozen storage, thereby providing theoretical support for enterprises to optimize pulp grading strategies and the timing of by-product development. Hence, it is recommended that the duration of freezing should be limited to less than 9 months for kiwifruit pulp. Moreover, it is essential to consider varietal differences and new pretreatment technologies to further enhance the industrial utilization and economic value of frozen pulp. Full article
Show Figures

Figure 1

Back to TopTop