Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (348)

Search Parameters:
Keywords = arginine peptides

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 3000 KiB  
Article
Metabolic Variations in Bamboo Shoot Boiled Liquid During Pediococcus pentosaceus B49 Fermentation
by Juqing Huang, Meng Sun, Xuefang Guan, Lingyue Zhong, Jie Li, Qi Wang and Shizhong Zhang
Foods 2025, 14(15), 2731; https://doi.org/10.3390/foods14152731 - 5 Aug 2025
Abstract
Bamboo shoot boiled liquid (BSBL), a processing byproduct containing soluble proteins, peptides, amino acids, carbohydrates, and phenolics, is typically discarded, causing resource waste and environmental issues. This study analyzed metabolic changes in BSBL during Pediococcus pentosaceus B49 fermentation. The result of partial least [...] Read more.
Bamboo shoot boiled liquid (BSBL), a processing byproduct containing soluble proteins, peptides, amino acids, carbohydrates, and phenolics, is typically discarded, causing resource waste and environmental issues. This study analyzed metabolic changes in BSBL during Pediococcus pentosaceus B49 fermentation. The result of partial least squares discriminant analysis (PLS-DA) revealed significant metabolite profile differences across fermentation times (0 h, 24 h, 48 h, 72 h, 96 h). The most substantial alterations occurred within the first 24 h, followed by stabilization. Compared to unfermented BSBL, fermented samples exhibited significantly elevated signal intensities for 5,7-dimethoxyflavone, cinnamic acid, 3,4-dihydro-2H-1-benzopyran-2-one, 6,8-dimethyl-4-hydroxycoumarin, and 2-hydroxycinnamic acid (p < 0.05), showing upward trends over time. Conversely, (+)-gallocatechin intensity decreased gradually. Bitter peptides, such as alanylisoleucine, isoleucylisoleucine, leucylvaline, and phenylalanylisoleucine, in BSBL exhibited a significant reduction following fermentation with P. pentosaceus B49 (p < 0.05). KEGG enrichment indicated tyrosine metabolism (ko00350) and arginine/proline metabolism (ko00330) as the most impacted pathways. These findings elucidate metabolic regulation in BSBL fermentation, supporting development of functional fermented bamboo products. Full article
Show Figures

Figure 1

19 pages, 3224 KiB  
Article
Supramolecular Co-Assembled Fmoc-FRGDF/Hyaluronic Acid Hydrogel for Quercetin Delivery: Multifunctional Bioactive Platform
by Xian-Ni Su, Yu-Yang Wang, Muhammed Fahad Khan, Li-Na Zhu, Zhong-Liang Chen, Zhuo Wang, Bing-Bing Song, Qiao-Li Zhao, Sai-Yi Zhong and Rui Li
Foods 2025, 14(15), 2629; https://doi.org/10.3390/foods14152629 - 26 Jul 2025
Viewed by 361
Abstract
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a [...] Read more.
Background: During food processing and storage, traditional protein-based delivery systems encounter significant challenges in maintaining the structural and functional integrity of bioactive compounds, primarily due to their temporal instability. Methods: In this study, a nanocomposite hydrogel was prepared through the co-assembly of a self-assembling peptide, 9-Fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF), and hyaluronic acid (HA). The stability of this hydrogel as a quercetin (Que) delivery carrier was systematically investigated. Furthermore, the impact of Que co-assembly on the microstructural evolution and physicochemical properties of the hydrogel was characterized. Concurrently, the encapsulation efficiency (EE%) and controlled release kinetics of Que were quantitatively evaluated. Results: The findings indicated that HA significantly reduced the storage modulus (G′) from 256.5 Pa for Fmoc-FRGDF to 21.1 Pa with the addition of 0.1 mg/mL HA. Despite this reduction, HA effectively slowed degradation rates; specifically, residue rates of 5.5% were observed for Fmoc-FRGDF alone compared to 14.1% with 0.5 mg/mL HA present. Notably, Que enhanced G′ within the ternary complex, increasing it from 256.5 Pa in Fmoc-FRGDF to an impressive 7527.0 Pa in the Que/HA/Fmoc-FRGDF hydrogel containing 0.1 mg/mL HA. The interactions among Que, HA, and Fmoc-FRGDF involved hydrogen bonding, electrostatic forces, and hydrophobic interactions; furthermore, the co-assembly process strengthened the β-sheet structure while significantly promoting supramolecular ordering. Interestingly, the release profile of Que adhered to the Korsmeyer–Peppas pharmacokinetic equations. Conclusions: Overall, this study examines the impact of polyphenol on the rheological properties, microstructural features, secondary structure conformation, and supramolecular ordering within peptide–polysaccharide–polyphenol ternary complexes, and the Fmoc-FRGDF/HA hydrogel system demonstrates a superior performance as a delivery vehicle for maintaining quercetin’s bioactivity, thereby establishing a multifunctional platform for bioactive agent encapsulation and controlled release. Full article
Show Figures

Figure 1

19 pages, 1187 KiB  
Article
Derivatizing Agent Selection for Hydrophilic Lysine- and Arginine-Containing Tetradecapeptide Analysis in Human Plasma by RP HPLC-MS/MS
by Margarita A. Tokareva, Evgeny S. Melnikov, Elizaveta N. Fisher, Tatiana A. Rodina, Igor E. Shohin and Maria V. Belova
Analytica 2025, 6(3), 23; https://doi.org/10.3390/analytica6030023 - 10 Jul 2025
Viewed by 261
Abstract
The application of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) in the analysis of peptide therapeutics demonstrates its capacity to achieve high sensitivity and selectivity, which are essential qualities for the expanding peptide therapeutic industry. Given the challenges posed by hydrophilic peptides [...] Read more.
The application of high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) in the analysis of peptide therapeutics demonstrates its capacity to achieve high sensitivity and selectivity, which are essential qualities for the expanding peptide therapeutic industry. Given the challenges posed by hydrophilic peptides in reversed-phase chromatography, we investigated the necessity of a derivatization procedure to improve chromatographic separation and quasimolecular ion fragmentation during MS/MS detection. We investigated how eight different derivatizing agents react with a hydrophilic lysine- and arginine-containing human ezrin peptide-1 (HEP-1) to identify the most suitable one. The results showed that the reaction of HEP-1 with propionic anhydride proceeds most rapidly and completely, providing a high and reproducible yield of the product, which has sufficient retention on the RP column. The 4-propionylated derivative of HEP-1, compared to the other derivatives considered, demonstrates the most pronounced MS/MS fragmentation. The retention time of 2.42 min allows the separation of the substance from the interfering components of the blood plasma matrix and provides a limit of quantification of 5.00 ng/mL, which allows the use of this derivatizing agent for subsequent applications in pharmacokinetic studies, and this approach can improve the analytical parameters of similar peptides in other HPLC-MS/MS studies. Full article
(This article belongs to the Section Chromatography)
Show Figures

Figure 1

16 pages, 2685 KiB  
Article
Preparation, Characterization, and In Vitro Stability Analysis of Deer Sinew Peptide-Zinc Chelate
by Shan Yang, Tianyuan Liu, Weijia Chen, Ying Zong, Jianan Geng, Yan Zhao, Zhongmei He and Rui Du
Foods 2025, 14(12), 2131; https://doi.org/10.3390/foods14122131 - 18 Jun 2025
Viewed by 437
Abstract
Novel peptide-zinc chelates (DSPs-Zn) with a zinc content of 186.94 mg/g were synthesized from deer tendon peptides at pH 6, 60 °C, 60 min, and peptide-zinc mass ratio of 1:3. Ultraviolet-visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the [...] Read more.
Novel peptide-zinc chelates (DSPs-Zn) with a zinc content of 186.94 mg/g were synthesized from deer tendon peptides at pH 6, 60 °C, 60 min, and peptide-zinc mass ratio of 1:3. Ultraviolet-visible absorption spectroscopy (UV) and Fourier transform infrared spectroscopy (FTIR) demonstrated that the chelation sites of the deer tendon polypeptides (DSPs) with zinc ions were located at the carboxyl oxygen and amino nitrogen atoms of the peptides. Amino acid analysis showed that aspartic acid, glutamic acid, lysine, and arginine play important roles in the chelation process. In vitro simulated gastrointestinal digestion studies showed that DSPs-zinc exhibited higher stability than zinc sulfate and zinc gluconate in the pH range 2–8 and in a simulated gastrointestinal digestion environment. The above experimental results suggest that DSPs-Zn has the potential to be used as a novel zinc nutritional supplement. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Graphical abstract

19 pages, 1427 KiB  
Article
Citrullinated ENO1 Vaccine Enhances PD-1 Blockade in Mice Implanted with Murine Triple-Negative Breast Cancer Cells
by Ricardo A. León-Letelier, Alejandro M. Sevillano-Mantas, Yihui Chen, Soyoung Park, Jody Vykoukal, Johannes F. Fahrmann, Edwin J. Ostrin, Candace Garrett, Rongzhang Dou, Yining Cai, Fu-Chung Hsiao, Jennifer B. Dennison, Eduardo Vilar, Banu K. Arun, Samir Hanash and Hiroyuki Katayama
Vaccines 2025, 13(6), 629; https://doi.org/10.3390/vaccines13060629 - 11 Jun 2025
Viewed by 1137
Abstract
Background/Objectives:Cancer vaccine targets mostly include mutations and overexpressed proteins. However, cancer-associated post-translational modifications (PTMs) may also induce immune responses. Previously, our group established the enzyme protein arginine deiminase type-2 (PADI2), which catalyzes citrullination modification, is highly expressed in triple-negative breast cancer (TNBC), [...] Read more.
Background/Objectives:Cancer vaccine targets mostly include mutations and overexpressed proteins. However, cancer-associated post-translational modifications (PTMs) may also induce immune responses. Previously, our group established the enzyme protein arginine deiminase type-2 (PADI2), which catalyzes citrullination modification, is highly expressed in triple-negative breast cancer (TNBC), promoting antigenicity. Methods: Here, we show the workflow of designing citrullinated enolase 1 (citENO1) vaccine peptides identified from breast cancer cells by mass spectrometry and demonstrate TNBC vaccine efficacy in the mouse model. Immunized mice with citENO1 peptides or the corresponding unmodified peptides, plus Poly I:C as an adjuvant, were orthotopically implanted with a TNBC murine cell line. Results: Vaccination with citENO1, but not unmodified ENO1 (umENO1), induced a greater percentage of activated CD8+ PD-1+ T cells and effector memory T cells in skin-draining lymph nodes (SDLNs). Remarkably, the citENO1 vaccine delayed tumor growth and prolonged overall survival, which was further enhanced by PD-1 blockade. Conclusions: Our data suggest that cancer-restricted post-translational modifications provide a source of vaccines that induce an anti-cancer immune response. Full article
(This article belongs to the Special Issue Personalised Cancer Vaccines)
Show Figures

Figure 1

17 pages, 1965 KiB  
Article
The Role of Long-Range Non-Specific Electrostatic Interactions in Inhibiting the Pre-Fusion Proteolytic Processing of the SARS-CoV-2 S Glycoprotein by Heparin
by Yi Du, Yang Yang, Son N. Nguyen and Igor A. Kaltashov
Biomolecules 2025, 15(6), 778; https://doi.org/10.3390/biom15060778 - 28 May 2025
Viewed by 497
Abstract
The proteolytic processing of the SARS-CoV-2 spike glycoprotein by host cell membrane-associated proteases is a key step in both the entry of the invading virus into the cell and the release of the newly generated viral particles from the infected cell. Because of [...] Read more.
The proteolytic processing of the SARS-CoV-2 spike glycoprotein by host cell membrane-associated proteases is a key step in both the entry of the invading virus into the cell and the release of the newly generated viral particles from the infected cell. Because of the critical importance of this step for the viral infectivity cycle, it has been a target of extensive efforts aimed at identifying highly specific protease inhibitors as potential antiviral agents. An alternative strategy to disrupt the pre-fusioviden processing of the SARS-CoV-2 S glycoprotein aims to protect the substrate rather than directly inhibit the proteases. In this work, we focused on furin, a serine protease located primarily in the Golgi apparatus, but also present on the cell membrane. Its cleavage site within the S glycoprotein is located within the stalk region of the latter and comprises an arginine-rich segment (SPRRARS), which fits the definition of the Cardin–Weintraub glycosaminoglycan recognition motif. Native mass spectrometry (MS) measurements confirmed the binding of a hexadecameric peptide representing the loop region at the S1/S2 interface and incorporating the furin cleavage site (FCS) to heparin fragments of various lengths, as well as unfractionated heparin (UFH), although at the physiological ionic strength, only UFH remains tightly bound to the FCS. The direct LC/MS monitoring of FCS digestion with furin revealed a significant impact of both heparin fragments and UFH on the proteolysis kinetics, although only the latter had IC50 values that could be considered physiologically relevant (0.6 ± 0.1 mg/mL). The results of this work highlight the importance of the long-range and relatively non-specific electrostatic interactions in modulating physiological and pathological processes and emphasize the multi-faceted role played by heparin in managing coronavirus infections. Full article
(This article belongs to the Special Issue Molecular Mechanism and Detection of SARS-CoV-2)
Show Figures

Figure 1

13 pages, 3591 KiB  
Article
Synergistic Engineering of the Twin-Arginine Translocation (Tat) Pathway and Membrane Capacity Enhances Extracellular Production of Amylosucrase in Bacillus licheniformis
by Caizhe Wang, Dandan Niu, Yongqing Zhou, Hui Liu, Nokuthula Peace Mchunu, Meng Zhang, Suren Singh and Zhengxiang Wang
Microorganisms 2025, 13(6), 1179; https://doi.org/10.3390/microorganisms13061179 - 22 May 2025
Viewed by 387
Abstract
Amylosucrase (AS) is a highly versatile enzyme with significant potential for industrial applications, including functional food production and glycosylation of bioactive compounds. However, its large-scale production is hampered by low secretion efficiency in microbial hosts. This study focuses on engineering the twin-arginine translocation [...] Read more.
Amylosucrase (AS) is a highly versatile enzyme with significant potential for industrial applications, including functional food production and glycosylation of bioactive compounds. However, its large-scale production is hampered by low secretion efficiency in microbial hosts. This study focuses on engineering the twin-arginine translocation (TAT) pathway and optimizing membrane resource allocation in Bacillus licheniformis to enhance the extracellular production of Neisseria polysaccharea amylosucrase (NpAS). The investigation integrates three targeted strategies: optimizing the hydrophobic region adjacent to the TAT signal peptide, modifying TAT translocases via site-directed mutagenesis, and improving inter-pathway membrane resource redistribution by deleting non-essential Sec pathway components. Among the engineered strains, BLΔDF93S-2.0AS1 achieved an extracellular enzyme activity of 706.10 U/L, equating to a 2.01-fold improvement over the parental strain. These results emphasize the potential of combining multifaceted engineering strategies to optimize heterologous protein secretion systems. Full article
(This article belongs to the Special Issue Advances in Microbial Cell Factories, 3rd Edition)
Show Figures

Figure 1

17 pages, 996 KiB  
Review
The Impact of Hydration on Metabolic Outcomes: From Arginine-Vasopressin Signaling to Clinical Implications
by Andrijana Koceva, Andrej Janež and Mojca Jensterle
Medicina 2025, 61(5), 838; https://doi.org/10.3390/medicina61050838 - 1 May 2025
Viewed by 1080
Abstract
Arginine-vasopressin peptide (AVP) plays a critical role in water balance and osmoregulation. However, emerging evidence suggests that AVP’s actions may expand beyond its traditional role, significantly influencing metabolic regulation, including glucose homeostasis, insulin sensitivity, lipid metabolism and energy balance. Elevated AVP levels are [...] Read more.
Arginine-vasopressin peptide (AVP) plays a critical role in water balance and osmoregulation. However, emerging evidence suggests that AVP’s actions may expand beyond its traditional role, significantly influencing metabolic regulation, including glucose homeostasis, insulin sensitivity, lipid metabolism and energy balance. Elevated AVP levels are seen in various metabolic conditions, such as insulin resistance, metabolic syndrome, type 2 diabetes (T2D) and obesity, further highlighting its potential role as a metabolic regulator. As AVP levels are regulated by hydration status, studies have proposed that chronic hypohydration and persistently elevated AVP levels may contribute to metabolic dysfunction, where increased hydration and therefore AVP suppression may lead to potential metabolic improvements. By analyzing data from animal studies, human observational research and interventional trials, this review evaluates the current evidence on the potential causal relationships and impact of AVP on metabolic regulation, as well as exploring the role of hydration in AVP-mediated metabolic outcomes. Full article
(This article belongs to the Section Endocrinology)
Show Figures

Figure 1

16 pages, 3022 KiB  
Article
Insights into the Mechanism Underpinning Composite Molecular Docking During the Self-Assembly of Fucoidan Biopolymers with Peptide Nanofibrils
by Rui Li, Min-Rui Tai, Xian-Ni Su, Hong-Wu Ji, Jian-Ping Chen, Xiao-Fei Liu, Bing-Bing Song, Sai-Yi Zhong, David. R. Nisbet, Colin J. Barrow and Richard J. Williams
Mar. Drugs 2025, 23(4), 169; https://doi.org/10.3390/md23040169 - 15 Apr 2025
Cited by 1 | Viewed by 624
Abstract
Composite hydrogels with improved mechanical and chemical properties can be formed by non-covalently decorating the nanofibrillar structures formed by the self-assembly of peptides with fucoidan. Nevertheless, the precise interactions, and the electrochemical and thermodynamic stability of these composite materials have not been determined. [...] Read more.
Composite hydrogels with improved mechanical and chemical properties can be formed by non-covalently decorating the nanofibrillar structures formed by the self-assembly of peptides with fucoidan. Nevertheless, the precise interactions, and the electrochemical and thermodynamic stability of these composite materials have not been determined. Here, we present a thermodynamic analysis of the interacting forces that drive the formation of a composite fucoidan/9-fluorenylmethoxycarbonyl-phenylalanine-arginine-glycine-aspartic acid-phenylalanine (Fmoc-FRGDF) hydrogel. The results showed that the co-assembly of fucoidan and Fmoc-FRGDF was spontaneous and exothermic. The melting point increased from 87.0 °C to 107.7 °C for Fmoc-FRGDF with 8 mg/mL of added fucoidan. A complex network of hydrogen bonds formed between the molecules of Fmoc-FRGDF, and electrostatic, hydrogen bond, and van der Waals interactions were the main interactions driving the co-assembly of fucoidan and Fmoc-FRGDF. Furthermore, the sulfate group of fucoidan formed a strong salt bridge with the arginine of Fmoc-FRGDF. This study provides useful biomedical engineering design parameters for the inclusion of other highly soluble biopolymers into these types of hydrogel vectors. Full article
(This article belongs to the Special Issue Marine Polysaccharides-Based Biomaterials)
Show Figures

Figure 1

16 pages, 11788 KiB  
Article
Plasma Metabolic Profiles of Chronic and Recurrent Uveitis Treated by Artesunate in Lewis Rats
by Xinyi Gong, Jingchuan Fan, Hui Huang, Fei Xu, Kaijiao Hu, Jianping Liu, Yi Tan and Feilan Chen
Biomedicines 2025, 13(4), 821; https://doi.org/10.3390/biomedicines13040821 - 28 Mar 2025
Viewed by 2736
Abstract
Background/Objectives: Identifying effective and safe treatment options for non-infectious uveitis remains challenging due to chronic and relapsing ocular inflammation. Previous studies have shown that artesunate (ART) plays an immunosuppressive role in several classic autoimmune diseases, including uveitis. However, its impact on the [...] Read more.
Background/Objectives: Identifying effective and safe treatment options for non-infectious uveitis remains challenging due to chronic and relapsing ocular inflammation. Previous studies have shown that artesunate (ART) plays an immunosuppressive role in several classic autoimmune diseases, including uveitis. However, its impact on the plasma metabolic profile of recurrent autoimmune uveitis remains unclear. This study aims to explore the effect of ART on the plasma metabolic features of recurrent experimental autoimmune uveitis (EAU) in a Lewis rat. Methods: Rats were clinically and pathologically evaluated for the development of recurrent EAU induced by inter-photoreceptor retinoid-binding protein (IRBP) R16 peptide-specific T-cells (tEAU). The disruptive effects of ART on tEAU were investigated to evaluate the potential role of rat recurrent EAU. Differentially expressed metabolites were identified in the plasma of rats by untargeted metabolomics analysis after ART treatment. The differential metabolites were applied to subsequent pathway analysis and biomarker analysis by MetaboAnalyst. Results: ART can significantly alleviate the severity of clinical signs and pathological injuries of eyeballs with tEAU. Both non-supervised principal component analysis and orthogonal partial least-squares discriminant analysis showed 84 differential metabolites enriched in 16 metabolic pathways in the tEAU group compared with heathy controls and 51 differential metabolites enriched in 17 metabolic pathways, including arginine and proline metabolism, alanine metabolism, and aminoacyl-tRNA biosynthesis, in the ART-treated group compared with the tEAU group. Particularly, upregulated L-alanine levels in both alanine metabolism and aminoacyl-tRNA biosynthesis were associated with T-cell activation, while elevated spermidine and N-acetyl putrescine levels in arginine and proline metabolism related to T-cell differentiation proved to be valuable biomarkers for ART treatment. Conclusions: Our study demonstrates that ART treatment can alleviate recurrent uveitis by altering the plasma metabolic characteristics associated with T-cell activation and differentiation, which might provide novel insights for potential therapeutic treatments. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

15 pages, 2214 KiB  
Article
Engineered Lysin-Derived Peptide as a Potent Antimicrobial for Acne Vulgaris
by Uri Sela, Ryan D. Heselpoth and Vincent A. Fischetti
Antibiotics 2025, 14(4), 344; https://doi.org/10.3390/antibiotics14040344 - 27 Mar 2025
Viewed by 1124
Abstract
Background/Objectives: Acne vulgaris is a skin disorder that affects millions worldwide, with Cutibacterium acnes playing a key role in its inflammation. Antibiotics reduce C. acnes and inflammation, but growing antibiotic resistance has limited their efficacy. Additionally, other common acne treatments with bactericidal [...] Read more.
Background/Objectives: Acne vulgaris is a skin disorder that affects millions worldwide, with Cutibacterium acnes playing a key role in its inflammation. Antibiotics reduce C. acnes and inflammation, but growing antibiotic resistance has limited their efficacy. Additionally, other common acne treatments with bactericidal activity, like benzoyl peroxide, cause irritation, dryness, and peeling. To fulfill the unmet need for alternative therapies, our strategy focused on identifying potent phage lysins and/or their derived cationic peptides. Methods: The C-terminal cationic antimicrobial peptide of the Prevotella intermedia phage lysin PlyPi01 was synthesized along with several sequence-engineered variants in an attempt to enhance their bactericidal efficacy. In vitro bacterial killing assays evaluated the potency of the lysin-derived peptide derivatives against C. acnes and Staphylococcus aureus, another skin bacterium associated with acne. Antibacterial activity was assessed both in conditions simulating the human skin and in combination with retinoids. Results: The variant peptide P156 was engineered by adding arginine residues at both the N- and C-terminal ends of the parental peptide PiP01. P156 was highly potent and eradicated all tested strains of C. acnes and S. aureus. P156 acted rapidly (>5-log kill in 10 min), further reducing the potential of resistance development. Additionally, P156 maintained its potency under conditions (e.g., temperature, pH, and salt concentration) observed on the skin surface and in hair follicles, as well as in combination with retinoid—all without being toxic to human cells. Conclusions: These collective findings position P156 as a promising topical drug for clinical applications to control acne vulgaris. Full article
Show Figures

Figure 1

22 pages, 2201 KiB  
Article
Enhancing Antimicrobial Peptides from Frog Skin: A Rational Approach
by Silvana Aguilar, Daniel Moreira, Ana Laura Pereira Lourenço, Natalia Wilke, Matías A. Crosio, Andreanne Vasconcelos, Eder Alves Barbosa, Elizabete C. I. Bispo, Felipe Saldanha-Araujo, Marcelo H. S. Ramada, Franco M. Escobar, Cristina V. Torres, José R. S. A. Leite and Mariela M. Marani
Biomolecules 2025, 15(3), 449; https://doi.org/10.3390/biom15030449 - 20 Mar 2025
Cited by 1 | Viewed by 1259
Abstract
Antimicrobial resistance is a global health threat, which has been worsened by the slow development of new antibiotics. The rational design of natural-derived antimicrobial peptides (AMPs) offers a promising alternative for enhancing the efficacy of AMPs and accelerating drug discovery. This paper describes [...] Read more.
Antimicrobial resistance is a global health threat, which has been worsened by the slow development of new antibiotics. The rational design of natural-derived antimicrobial peptides (AMPs) offers a promising alternative for enhancing the efficacy of AMPs and accelerating drug discovery. This paper describes the rational design of improved peptide derivatives starting from hylin-Pul3, a peptide previously isolated from the frog Boana pulchella, by optimizing its hydrophobicity, cationicity, and amphipathicity. In silico screening identified six promising candidates: dHP3-31, dHP3-50, dHP3-50.137, dHP3-50.190, dHP3-84, and dHP3-84.39. These derivatives exhibited enhanced activity against Gram-negative bacteria, emphasizing the role of cationicity and the strategic arginine incorporation. Hemolytic assays revealed the derivatives’ improved selectivity, particularly for the derivatives with “imperfect amphipathicity”. In fibroblast assays, dHP3-84 was well-tolerated, while dHP3-84.39 promoted cell proliferation. Antioxidant assays (ABTS assays) highlighted the Trp-containing derivatives’ (dHP3-50.137, dHP3-31) significant activity. The lipid membrane interaction studies showed that hylin-Pul3 disrupts membranes directly, while dHP3-84.39, dHP3-50, and dHP3-50.137 promote vesicle aggregation. Conversely, dHP3-84 did not induce membrane disruption or aggregation, suggesting an intracellular mode of action. Machine learning models were effective in predicting bioactivity, as these predicted AMPs showed enhanced selectivity and potency. Among them, dHP3-84 demonstrated broad-spectrum potential. These findings highlight the value of rational design, in silico screening, and structure–activity studies in optimizing AMPs for therapeutic applications. Full article
Show Figures

Figure 1

20 pages, 2107 KiB  
Article
Inhibitory Effect of Antimicrobial Peptides Bac7(17), PAsmr5-17 and PAβN on Bacterial Growth and Biofilm Formation of Multidrug-Resistant Acinetobacter baumannii
by Johanna Rühl-Teichner, Daniela Müller, Ivonne Stamm, Stephan Göttig, Ursula Leidner, Torsten Semmler and Christa Ewers
Microorganisms 2025, 13(3), 639; https://doi.org/10.3390/microorganisms13030639 - 11 Mar 2025
Viewed by 935
Abstract
Acinetobacter (A.) baumannii is a major nosocomial pathogen in human and veterinary medicine. The emergence of certain international clones (ICs), often with multidrug-resistant (MDR) phenotypes and biofilm formation (BF), facilitates its spread in clinical environments. The global rise in antimicrobial resistance [...] Read more.
Acinetobacter (A.) baumannii is a major nosocomial pathogen in human and veterinary medicine. The emergence of certain international clones (ICs), often with multidrug-resistant (MDR) phenotypes and biofilm formation (BF), facilitates its spread in clinical environments. The global rise in antimicrobial resistance demands alternative treatment strategies, such as antimicrobial peptides (AMPs). In this study, 45 human and companion animal MDR-A. baumannii isolates, belonging to the globally spread IC1, IC2 and IC7, were tested for antimicrobial resistance and biofilm-associated genes (BAGs) and their capacity for BF. Of these, 13 were used to test the inhibitory effect of AMPs on bacterial growth (BG) and BF through the application of a crystal violet assay. The two novel AMP variants Bac7(17) (target cell inactivation) and Pasmr5-17 (efflux pump inhibition) and the well-known AMP phenylalanine-arginine-β-naphthylamide (PAβN) were tested at concentrations of 1.95 to 1000 µg/mL. Based on whole-genome sequence data, identical patterns of BAGs were detected within the same IC. AMPs inhibited BG and BF in a dose-dependent manner. Bac7(17) and PAsmr5-17 were highly effective against BG, with growth inhibition (GI) of >99% (62.5 and 125 µg/mL, respectively). PAβN achieved only 95.7% GI at 1000 µg/mL. Similar results were obtained for BF. Differences between the ICs were found for both GI and BF when influenced by AMPs. PAsmr5-17 had hardly any inhibitory effect on the BF of IC1 isolates, but for IC2 and IC7 isolates, 31.25 µg/mL was sufficient. Our data show that the susceptibility of animal MDR-A. baumannii to AMPs most likely resembles that of human isolates, depending on their assignment to a particular IC. Even low concentrations of AMPs had a significant effect on BG. Therefore, AMPs represent a promising alternative in the treatment of MDR-A. baumannii, either as the sole therapy or in combination with antibiotics. Full article
(This article belongs to the Special Issue Therapeutic Potential of Antimicrobial Peptides)
Show Figures

Figure 1

19 pages, 3367 KiB  
Article
Differentiation of Isomeric TAT1-CARNOSINE Peptides by Energy-Resolved Mass Spectrometry and Principal Component Analysis
by Alicia Maroto, Olivier Briand, Alessia Distefano, Filiz Arioz, Olivier Monasson, Elisa Peroni, Giuseppe Grasso, Christine Enjalbal and Antony Memboeuf
Molecules 2025, 30(4), 853; https://doi.org/10.3390/molecules30040853 - 12 Feb 2025
Viewed by 998
Abstract
L-carnosine (Car) is an endogenous dipeptide with significant potential in drug discovery for neurodegenerative diseases, while TAT1, a small arginine-rich peptide derived from the HIV-1 trans-activator protein (TAT), is known to stimulate proteasome activity. In this study, three isomeric peptides were synthesised by [...] Read more.
L-carnosine (Car) is an endogenous dipeptide with significant potential in drug discovery for neurodegenerative diseases, while TAT1, a small arginine-rich peptide derived from the HIV-1 trans-activator protein (TAT), is known to stimulate proteasome activity. In this study, three isomeric peptides were synthesised by incorporating the Car moiety at the N-terminus, C-terminus, or central position of the TAT1 sequence. To differentiate these isomers, high-resolution and energy-resolved CID MS/MS experiments were conducted. The resulting MS/MS spectra showed a high degree of similarity among the peptides, predominantly characterised by fragment ion peaks arising from arginine-specific neutral losses. Energetic analysis was similarly inconclusive in resolving the isomers. However, Principal Component Analysis (PCA) enabled clear differentiation of the three peptides by considering the entire MS/MS spectra rather than focusing solely on precursor ion intensities or major fragment peaks. PCA loadings revealed distinct fragment ions for each peptide, albeit with lower intensities, providing insights into consecutive fragmentation patterns. Some of these specific peaks could also be attributed to scrambling during fragmentation. These results demonstrate the potential of PCA as a simple chemometric tool for semi-automated peak identification in complex MS/MS spectra. Full article
(This article belongs to the Special Issue Design, Synthesis, and Analysis of Potential Drugs, 3rd Edition)
Show Figures

Figure 1

16 pages, 1673 KiB  
Article
The Effects of Dried Apple Pomace on Fermentation Quality and Proteolysis of Alfalfa Silages
by Tongtong Dai, Jiangyu Long, Guanjun Zhang, Xianjun Yuan and Zhihao Dong
Agronomy 2025, 15(2), 438; https://doi.org/10.3390/agronomy15020438 - 11 Feb 2025
Viewed by 828
Abstract
This work aimed to evaluate the effects of dried apple pomace (DAP) on the fermentation characteristics and proteolysis of alfalfa silages. The alfalfa was ensiled with (1) no additives (control), (2) 5% DAP, (3) 10% DAP and (4) 15% DAP based on fresh [...] Read more.
This work aimed to evaluate the effects of dried apple pomace (DAP) on the fermentation characteristics and proteolysis of alfalfa silages. The alfalfa was ensiled with (1) no additives (control), (2) 5% DAP, (3) 10% DAP and (4) 15% DAP based on fresh weight (FW) for 1, 3, 7, 14, 30 and 60 days, respectively. With the increasing proportion of DAP, lactic acid bacteria (LAB) count, lactic acid (LA) and dry matter (DM) content linearly (p < 0.05) increased, while the pH, the content of acetic acid (AA), propionic acid (PA), butyric acid (BA) and ammonia nitrogen (NH3-N) linearly (p < 0.05) decreased during ensiling. The 10% and 15% DAP silages had significantly (p < 0.05) lower aerobic bacteria (AB), yeast and enterobacteria counts than the control during ensiling. The contents of nonprotein nitrogen (NPN), peptide nitrogen (peptide-N) and free amino acid nitrogen (FAA-N) and activities of carboxypeptidase, aminopeptidase and acid proteinase linearly (p < 0.05) decreased as DAP proportion increased during ensiling. On day 60, the addition of DAP significantly (p < 0.05) decreased the contents of tryptamine, phenylethylamine, putrescine, cadaverine, histamine, tyramine, spermidine, spermine and total biogenic amines compared with the control. As the DAP ratio increased, the contents of threonine, valine, isoleucine, leucine, phenylalanine, lysine, histidine, arginine, aspartic acid, serine, glutamic, total amino acids, crude protein (CP) and water-soluble carbohydrates (WSCs) linearly (p < 0.05) increased, while the contents of glycine, alanine, cysteine, and proline linearly (p < 0.05) decreased on day 60. Overall, the addition of 15% DAP was optimal as indicated by better fermentation quality and less proteolysis than other treatments. Full article
(This article belongs to the Section Grassland and Pasture Science)
Show Figures

Figure 1

Back to TopTop