The Impact of Hydration on Metabolic Outcomes: From Arginine-Vasopressin Signaling to Clinical Implications
Abstract
1. Introduction
2. Vasopressin (AVP) Signaling: Mechanisms and Pathways
3. AVP Impact on Metabolic Regulation: Insights from Knockout Studies
4. AVP Impact on Metabolic Regulation: Insights from Animal and Human Studies
4.1. AVP and Diabetes
4.2. AVP and Metabolic Syndrome
4.3. AVP and Obesity
4.4. AVP, Dyslipidemia and Hepatosteatosis
4.5. AVP and Cardiovascular Health
5. The Impact of Hydration on AVP and Metabolic Outcomes
5.1. Hypohydration and Metabolic Outcomes
5.2. Impact of Increased Hydration on Metabolic Outcomes
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviation
AVP | arginine-vasopressin peptide; |
T2D | type 2 diabetes; |
V1aR | vasopressin 1a receptor; |
V1bR | vasopressin 1b receptor; |
V2R | vasopressin 2 receptor; |
ACTH | adrenocorticotropic hormone; |
GI | gastrointestinal; |
NC diet | normal chow diet; |
HF diet | high-fat diet; |
GTT | glucose tolerance test; |
T1D | type 1 diabetes; |
IGF BP-1 | insulin-like growth factor-binding protein 1 |
IRAP | insulin-regulated aminopeptidase |
MASLD | metabolic dysfunction-associated steatotic liver disease; |
MASH | metabolic dysfunction-associated steatohepatitis; |
CHF | congestive heart failure; |
AMI | acute myocardial infarction; |
DESIR | Data from Epidemiological Study on the Insulin Resistance Syndrome |
MOS | Malmö Offspring Study |
IFG | impaired fasting glucose; |
HbA1c | glycated hemoglobin; |
LDL | low-density lipoprotein; |
BMI | body mass index; |
References
- Dmitrieva, N.I.; Boehm, M.; Yancey, P.H.; Enhörning, S. Long-term health outcomes associated with hydration status. Nat. Rev. Nephrol. 2024, 20, 275–294. [Google Scholar] [CrossRef]
- Vanhaecke, T.; Perrier, E.T.; Melander, O. A Journey through the Early Evidence Linking Hydration to Metabolic Health. Ann. Nutr. Metab. 2020, 76, 4–9. [Google Scholar] [CrossRef]
- Roussel, R.; Fezeu, L.; Bouby, N.; Balkau, B.; Lantieri, O.; Alhenc-Gelas, F.; Marre, M.; Bankir, L.; Data from an Epidemiological Study on the Insulin Resistance Syndrome. Low Water Intake and Risk for New-Onset Hyperglycemia. Diabetes Care 2011, 34, 2551–2554. [Google Scholar] [CrossRef] [PubMed]
- Kim, A.; Knudsen, J.G.; Madara, J.C.; Benrick, A.; Hill, T.G.; Abdul Kadir, L.; Miranda, C.; Lin, H.; James, T. Arginine-vasopressin mediates counter-regulatory glucagon release and is diminished in type 1 diabetes. eLife 2021, 10, e72919. [Google Scholar] [CrossRef] [PubMed]
- Makwana, R.; Loy, J.; Adebibe, M.; Devalia, K.; Andrews, P.L.; Sanger, G.J. Copeptin, a surrogate marker of arginine8 vasopressin, has no ability to modulate human and mouse gastric motility. Eur. J. Pharmacol. 2021, 892, 173740. [Google Scholar] [CrossRef]
- Nakamura, K.; Velho, G.; Bouby, N. Vasopressin and metabolic disorders: Translation from experimental models to clinical use. J. Intern. Med. 2017, 282, 298–309. [Google Scholar] [CrossRef]
- Watts, J.A.; Arroyo, J.P. Rethinking Vasopressin: New Insights into Vasopressin Signaling and Its Implications. Kidney360 2023, 4, 1174–1180. [Google Scholar] [CrossRef] [PubMed]
- Yoshimura, M.; Conway-Campbell, B.; Ueta, Y. Arginine vasopressin: Direct and indirect action on metabolism. Peptides 2021, 142, 170555. [Google Scholar] [CrossRef]
- Carroll, H.A.; James, L.J. Hydration, Arginine Vasopressin, and Glucoregulatory Health in Humans: A Critical Perspective. Nutrients 2019, 11, 1201. [Google Scholar] [CrossRef]
- Nakamura, K.; Aoyagi, T.; Hiroyama, M.; Kusakawa, S.; Mizutani, R.; Sanbe, A.; Yamauchi, J.; Kamohara, M.; Momose, K.; Tanoue, A. Both V1A and V1B vasopressin receptors deficiency result in impaired glucose tolerance. Eur. J. Pharmacol. 2009, 613, 182–188. [Google Scholar] [CrossRef]
- Yun, Y.; Guo, S.; Xie, X. V1bR enhances glucose-stimulated insulin secretion by paracrine production of glucagon which activates GLP-1 receptor. Cell Biosci. 2024, 14, 110. [Google Scholar] [CrossRef]
- Szczepanska-Sadowska, E.; Cudnoch-Jędrzejewska, A.; Żera, T. Molecular Interaction Between Vasopressin and Insulin in Regulation of Metabolism: Impact on Cardiovascular and Metabolic Diseases. Int. J. Mol. Sci. 2024, 25, 13307. [Google Scholar] [CrossRef] [PubMed]
- Nakhleh, A.; Shehadeh, N.; Mansour, B. GLP-1 receptor agonists may enhance the effects of desmopressin in individuals with AVP deficiency: A case series and proposed mechanism. Pituitary 2024, 27, 731–736. [Google Scholar] [CrossRef]
- Guillon, G.; Grazzini, E.; Andrez, M.; Breton, C.; Trueba, M.; Gal, C.S.-L.; Boccara, G.; Derick, S.; Chouinard, L.; Gallo-Payet, N. Vasopressin: A potent autocrine/paracrine regulator of mammal adrenal functions. Endocr. Res. 1998, 24, 703–710. [Google Scholar] [CrossRef]
- Aoyagi, T.; Kusakawa, S.; Sanbe, A.; Hiroyama, M.; Fujiwara, Y.; Yamauchi, J.; Tanoue, A. Enhanced effect of neuropeptide Y on food intake caused by blockade of the V1A vasopressin receptor. Eur. J. Pharmacol. 2009, 622, 32–36. [Google Scholar] [CrossRef] [PubMed]
- Mastropaolo, M.; Zizzo, M.G.; Auteri, M.; Mulè, F.; Serio, R. Arginine vasopressin, via activation of post-junctional V1 receptors, induces contractile effects in mouse distal colon. Regul. Pept. 2013, 187, 29–34. [Google Scholar] [CrossRef]
- Hiroyama, M.; Aoyagi, T.; Fujiwara, Y.; Birumachi, J.; Shigematsu, Y.; Kiwaki, K.; Tasaki, R.; Endo, F.; Tanoue, A. Hypermetabolism of Fat in V1a Vasopressin Receptor Knockout Mice. Mol. Endocrinol. 2007, 21, 247–258. [Google Scholar] [CrossRef] [PubMed]
- Aoyagi, T.; Birumachi, J.-I.; Hiroyama, M.; Fujiwara, Y.; Sanbe, A.; Yamauchi, J.; Tanoue, A. Alteration of Glucose Homeostasis in V1a Vasopressin Receptor-Deficient Mice. Endocrinology 2007, 148, 2075–2084. [Google Scholar] [CrossRef]
- Fujiwara, Y.; Hiroyama, M.; Sanbe, A.; Aoyagi, T.; Birumachi, J.; Yamauchi, J.; Tsujimoto, G.; Tanoue, A. Insulin hypersensitivity in mice lacking the V1b vasopressin receptor. J. Physiol. 2007, 584, 235–244. [Google Scholar] [CrossRef]
- Nakamura, K.; Yamashita, T.; Fujiki, H.; Aoyagi, T.; Yamauchi, J.; Mori, T.; Tanoue, A. Enhanced glucose tolerance in the Brattleboro rat. Biochem. Biophys. Res. Commun. 2011, 405, 64–67. [Google Scholar] [CrossRef]
- Taveau, C.; Chollet, C.; Waeckel, L.; Desposito, D.; Bichet, D.G.; Arthus, M.-F.; Magnan, C.; Philippe, E.; Paradis, V.; Foufelle, F.; et al. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia 2015, 58, 1081–1090. [Google Scholar] [CrossRef] [PubMed]
- Taveau, C.; Chollet, C.; Bichet, D.G.; Velho, G.; Guillon, G.; Corbani, M.; Roussel, R.; Bankir, L.; Melander, O.; Bouby, N. Acute and chronic hyperglycemic effects of vasopressin in normal rats: Involvement of V1A receptors. Am. J. Physiol. Metab. 2017, 312, E127–E135. [Google Scholar] [CrossRef] [PubMed]
- Spruce, B.A.; Mcculloch, A.J.; Burd, J.; Ørskov, H.; Heaton, A.; Baylis, P.H.; Alberti, K.G.M.M. The Effect Of Vasopressin Infusion On Glucose Metabolism In Man. Clin. Endocrinol. 1985, 22, 463–468. [Google Scholar] [CrossRef]
- Jansen, L.T.; Suh, H.; Adams, J.D.; Sprong, C.A.; Seal, A.D.; Scott, D.M.; Butts, C.L.; Melander, O.; Kirkland, T.W.; Vanhaecke, T.; et al. Osmotic stimulation of vasopressin acutely impairs glucose regulation: A counterbalanced, crossover trial. Am. J. Clin. Nutr. 2019, 110, 1344–1352. [Google Scholar] [CrossRef] [PubMed]
- Enhörning, S.; Wang, T.J.; Nilsson, P.M.; Almgren, P.; Hedblad, B.; Berglund, G.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Lindholm, E.; et al. Plasma Copeptin and the Risk of Diabetes Mellitus. Circulation 2010, 121, 2102–2108. [Google Scholar] [CrossRef]
- Roussel, R.; El Boustany, R.; Bouby, N.; Potier, L.; Fumeron, F.; Mohammedi, K.; Balkau, B.; Tichet, J.; Bankir, L.; Marre, M.; et al. Plasma Copeptin, AVP Gene Variants, and Incidence of Type 2 Diabetes in a Cohort from the Community. J. Clin. Endocrinol. Metab. 2016, 101, 2432–2439. [Google Scholar] [CrossRef]
- Wannamethee, S.G.; Welsh, P.; Papacosta, O.; Lennon, L.; Whincup, P.H.; Sattar, N. Copeptin, Insulin Resistance, and Risk of Incident Diabetes in Older Men. J. Clin. Endocrinol. Metab. 2015, 100, 3332–3339. [Google Scholar] [CrossRef]
- Abbasi, A.; Corpeleijn, E.; Meijer, E.; Postmus, D.; Gansevoort, R.T.; Gans, R.O.B.; Struck, J.; Hillege, H.L.; Stolk, R.P.; Navis, G.; et al. Sex differences in the association between plasma copeptin and incident type 2 diabetes: The Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia 2012, 55, 1963–1970. [Google Scholar] [CrossRef]
- Seelig, E.; Bilz, S.; Keller, U.; Meienberg, F.; Christ-Crain, M. Concentrations of the Stress Hormone Copeptin Increase upon Hypoglycaemia in Patients with Type 1 Diabetes Dependent of Hypoglycaemia Awareness. Ye J, editor. PLoS ONE 2013, 8, e72876. [Google Scholar] [CrossRef]
- Crowley, R.K.; Sherlock, M.; Agha, A.; Smith, D.; Thompson, C.J. Clinical insights into adipsic diabetes insipidus: A large case series. Clin. Endocrinol. 2007, 66, 475–482. [Google Scholar] [CrossRef]
- Ohara, N.; Takada, T.; Seki, Y.; Akiyama, K.; Yoneoka, Y. A 75-Year-Old Woman with a 5-Year History of Controlled Type 2 Diabetes Mellitus Presenting with Polydipsia and Polyuria and a Diagnosis of Central Diabetes Insipidus. Am. J. Case Rep. 2022, 24, e938482. [Google Scholar] [CrossRef] [PubMed]
- Burmazovic, S.; Henzen, C.; Brander, L.; Cioccari, L. One too many diabetes: The combination of hyperglycaemic hyperosmolar state and central diabetes insipidus. Endocrinol. Diabetes Metab. Case Rep. 2018, 2018, 1–4. [Google Scholar] [CrossRef]
- Shin, H.J.; Kim, J.H.; Yi, J.H.; Han, S.W.; Kim, H.J. Polyuria with the Concurrent manifestation of Central Diabetes Insipidus (CDI) & Type 2 Diabetes Mellitus (DM). Electrolyte Blood Press. 2012, 10, 26–30. [Google Scholar]
- Catrina, S.B.; Rotarus, R.; Botusan, I.R.; Coculescu, M.; Brismar, K. Desmopressin increases IGF-binding protein-1 in humans. Eur. J. Endocrinol. 2008, 158, 479–482. [Google Scholar] [CrossRef] [PubMed]
- Zelena, D.; Mergl, Z.; Makara, G.B. The role of vasopressin in diabetes mellitus-induced hypothalamo-pituitary-adrenal axis activation: Studies in Brattleboro rats. Brain Res. Bull. 2006, 69, 48–56. [Google Scholar] [CrossRef] [PubMed]
- Li, D.T.; Habtemichael, E.N.; Bogan, J.S. Vasopressin inactivation: Role of insulin-regulated aminopeptidase. Vitam. Horm. 2020, 113, 101–128. [Google Scholar]
- Student, J.; Sowers, J.; Lockette, W. THIRSTY FOR FRUCTOSE: Arginine Vasopressin, Fructose, and the Pathogenesis of Metabolic and Renal Disease. Front. Cardiovasc. Med. 2022, 9, 883365. [Google Scholar] [CrossRef]
- Andres-Hernando, A.; Jensen, T.J.; Kuwabara, M.; Orlicky, D.J.; Cicerchi, C.; Li, N.; Roncal-Jimenez, C.A.; Garcia, G.E.; Ishimoto, T.; Maclean, P.S.; et al. Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor. JCI Insight. 2021, 6, e140848. [Google Scholar] [CrossRef]
- Enhörning, S.; Struck, J.; Wirfält, E.; Hedblad, B.; Morgenthaler, N.G.; Melander, O. Plasma Copeptin, A Unifying Factor behind the Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2011, 96, E1065–E1072. [Google Scholar] [CrossRef]
- Brunkwall, L.; Ericson, U.; Nilsson, P.M.; Enhörning, S. High water intake and low urine osmolality are associated with favorable metabolic profile at a population level: Low vasopressin secretion as a possible explanation. Eur. J. Nutr. 2020, 59, 3715–3722. [Google Scholar] [CrossRef]
- Saleem, U.; Khaleghi, M.; Morgenthaler, N.G.; Bergmann, A.; Struck, J.; Mosley, T.H.; Kullo, I.J. Plasma Carboxy-Terminal Provasopressin (Copeptin): A Novel Marker of Insulin Resistance and Metabolic Syndrome. J. Clin. Endocrinol. Metab. 2009, 94, 2558–2564. [Google Scholar] [CrossRef] [PubMed]
- Enhörning, S.; Bankir, L.; Bouby, N.; Struck, J.; Hedblad, B.; Persson, M.; Morgenthaler, N.G.; Nilsson, P.M. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: The prospective Malmö Diet and Cancer Study cardiovascular cohort. Int. J. Obes. 2013, 37, 598–603. [Google Scholar] [CrossRef]
- Morimoto, I.; Yamamoto, S.; Kai, K.; Fujihira, T.; Morita, E.; Eto, S. Centrally Administered Murine-Leptin Stimulates the Hypothalamus-Pituitary- Adrenal Axis through Arginine-Vasopressin. Neuroendocrinology 2000, 71, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Langhans, W.; Delprete, E.; Scharrer, E. Mechanisms of vasopressin’s anorectic effect. Physiol. Behav. 1991, 49, 169–176. [Google Scholar] [CrossRef] [PubMed]
- Meyer, A.H.; Langhans, W.; Scharrer, E. Vasopressin reduces food intake in goats. Exp. Physiol. 1989, 74, 465–473. [Google Scholar] [CrossRef]
- Rothermel, J.; Kulle, A.; Holterhus, P.; Toschke, C.; Lass, N.; Reinehr, T. Copeptin in obese children and adolescents: Relationships to body mass index, cortisol and gender. Clin. Endocrinol. 2016, 85, 868–873. [Google Scholar] [CrossRef]
- Tuli, G.; Munarin, J.; Tessaris, D.; Einaudi, S.; Matarazzo, P.; de Sanctis, L. Distribution of plasma copeptin levels and influence of obesity in children and adolescents. Eur. J. Pediatr. 2021, 180, 119–126. [Google Scholar] [CrossRef]
- Fabian, E.; Stork, A.; Kobilková, J.; Fabianová, J. Inhibition of lipolysis by oxytocin and vasopressin. Acta. Univ. Carol. Med. Monogr. 1977, 77, 141–145. [Google Scholar]
- Takahashi-Tezuka, M.; Kobayashi, J.; Otabe, M.; Hirai, A.; Tashiro, J.; Bujo, H.; Morisaki, N.; Saito, Y.; Yoshida, S. A Clinical Feature of Hyperlipidemia in Patients with Central Diabetes Insipidus. Endocr. J. 2000, 47, 557–562. [Google Scholar] [CrossRef]
- Bargagli, M.; Anderegg, M.; Ferraro, P.M.; Fuster, D.G.; Daniel, G. Altered Lipid Metabolism in Autosomal Dominant Polycystic Kidney Disease Patients Treated with Tolvaptan. J. Am. Soc. Nephrol. 2022, 33, 160–161. [Google Scholar] [CrossRef]
- Barchetta, I.; Enhörning, S.; Cimini, F.A.; Capoccia, D.; Chiappetta, C.; Di Cristofano, C.; Silecchia, G.; Leonetti, F.; Melander, O.; Cavallo, M.G. Elevated plasma copeptin levels identify the presence and severity of non-alcoholic fatty liver disease in obesity. BMC Med. 2019, 17, 85. [Google Scholar] [CrossRef]
- Majumdar, S.; Thakur, M.B.; Ran, A. Comparative Evaluation of Serum Copeptin in Obesity with Non Alcoholic Fatty Liver Disease. J. Assoc Physicians India 2023, 71, 1. [Google Scholar]
- Suwała, S.; Junik, R. Metabolic-associated fatty liver disease and the role of hormones in its aetiopathogenesis. Endokrynol. Pol. 2024, 75, 237–252. [Google Scholar] [CrossRef] [PubMed]
- Enhörning, S.; Malan, L. Copeptin relates to a fatty liver and measures of obesity in a South African population with mixed ethnicities. Endocrine 2019, 65, 304–311. [Google Scholar] [CrossRef] [PubMed]
- Afsar, B. Pathophysiology of copeptin in kidney disease and hypertension. Clin. Hypertens. 2017, 23, 13. [Google Scholar] [CrossRef]
- Bosch, A.; Schmid, A.; Ott, C.; Kannenkeril, D.; Karg, M.V.; Ditting, T.; Veelken, R.; Uder, M.; E Schmieder, R. Copeptin Levels in Patients with Treatment-Resistant Hypertension Before and 6 Months After Renal Denervation. Am. J. Hypertension. 2020, 33, 182–189. [Google Scholar] [CrossRef]
- Mendes, M.; Dubourg, J.; Blanchard, A.; Bergerot, D.; Courand, P.-Y.; Forni, V.; Frank, M.; Bobrie, G.; Menard, J.; Azizi, M. Copeptin is increased in resistant hypertension. J. Hypertension. 2016, 34, 2458–2464. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, T.; Funayama, H.; Yoshimura, A.; Tsuruya, Y.; Saito, M.; Kawakami, M.; Ishikawa, S.-E. Possible vascular role of increased plasma arginine vasopressin in congestive heart failure. Int. J. Cardiol. 2006, 106, 191–195. [Google Scholar] [CrossRef]
- Goldsmith, S.R.; Gheorghiade, M. Vasopressin antagonism in heart failure. J. Am. Coll. Cardiol. 2005, 46, 1785–1791. [Google Scholar] [CrossRef]
- Tilley, D.G.; Zhu, W.; Myers, V.D.; Barr, L.A.; Gao, E.; Li, X.; Song, J.; Carter, R.L.; Makarewich, C.A.; Yu, D.; et al. β-adrenergic receptor-mediated cardiac contractility is inhibited via vasopressin type 1A-receptor-dependent signaling. Circulation 2014, 130, 1800–1811. [Google Scholar] [CrossRef]
- Yoshikawa, Y.; Shiomi, H.; Kuwahara, K.; Sowa, N.; Yaku, H.; Yamashita, Y.; Tazaki, J.; Imai, M.; Kato, T.; Saito, N.; et al. Utility of copeptin for predicting long-term clinical outcomes in patients with heart failure. J. Cardiol. 2019, 73, 379–385. [Google Scholar] [CrossRef] [PubMed]
- Tasevska, I.; Enhörning, S.; Persson, M.; Nilsson, P.M.; Melander, O. Copeptin predicts coronary artery disease cardiovascular and total mortality. Heart 2016, 102, 127–132. [Google Scholar] [CrossRef]
- Shi, Z.; Qian, C. Copeptin and the prognosis of patients with coronary artery disease: A meta-analysis. Ir. J. Med. Sci. 2023, 192, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Fenske, W.; Wanner, C.; Allolio, B.; Drechsler, C.; Blouin, K.; Lilienthal, J.; Krane, V.; Dialysis Study Investigators for the German Diabetes. Copeptin Levels Associate with Cardiovascular Events in Patients with ESRD and Type 2 Diabetes Mellitus. J. Am. Soc. Nephrol. 2011, 22, 782–790. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, L.; Dong, X.; Shen, B.; Xiang, F.; Cao, X.; Yu, J.; Wang, Y.; Ding, X.; Nie, Y. Copeptin associates with major adverse cardiovascular events in patients on maintenance hemodialysis. Clin. Chim. Acta 2025, 564, 119937. [Google Scholar] [CrossRef]
- Al-Atta, A.; Spray, L.; Mohammed, A.; Shmeleva, E.; Spyridopoulos, I. Arginine Vasopressin Plays a Role in Microvascular Dysfunction After ST-Elevation Myocardial Infarction. J. Am. Heart Assoc. 2023, 12, e030473. [Google Scholar] [CrossRef]
- Reinstadler, S.J.; Klug, G.; Feistritzer, H.J.; Mayr, A.; Harrasser, B.; Mair, J.; Bader, K.; Streil, K.; Hammerer-Lercher, A.; Esterhammer, R.; et al. Association of copeptin with myocardial infarct size and myocardial function after ST segment elevation myocardial infarction. Heart 2013, 99, 1525–1529. [Google Scholar] [CrossRef] [PubMed]
- Kelly, D.; Squire, I.B.; Khan, S.Q.; Quinn, P.; Struck, J.; Morgenthaler, N.G.; Davies, J.E.; Ng, L.L. C-Terminal Provasopressin (Copeptin) is Associated with Left Ventricular Dysfunction, Remodeling, and Clinical Heart Failure in Survivors of Myocardial Infarction. J. Card. Fail. 2008, 14, 739–745. [Google Scholar] [CrossRef]
- Roczek-Janowska, M.; Kacprzak, M.; Dzieciol, M.; Zielinska, M.; Chizynski, K. Prognostic value of copeptin in patients with acute myocardial infarction treated with percutaneous coronary intervention: A prospective cohort study. J. Thorac. Dis. 2021, 13, 4094–4103. [Google Scholar] [CrossRef]
- Khan, S.Q.; Dhillon, O.S.; O’Brien, R.J.; Struck, J.; Quinn, P.A.; Morgenthaler, N.G.; Squire, I.B.; Davies, J.E.; Bergmann, A.; Ng, L.L. C-Terminal Provasopressin (Copeptin) as a Novel and Prognostic Marker in Acute Myocardial Infarction: Leicester Acute Myocardial Infarction Peptide (LAMP) Study. Circulation 2007, 115, 2103–2110. [Google Scholar] [CrossRef]
- Voors, A.A.; Von Haehling, S.; Anker, S.D.; Hillege, H.L.; Struck, J.; Hartmann, O.; Bergmann, A.; Squire, I.; van Veldhuisen, D.J.; Dickstein, K.; et al. C-terminal provasopressin (copeptin) is a strong prognostic marker in patients with heart failure after an acute myocardial infarction: Results from the OPTIMAAL study. Eur. Hear. J. 2009, 30, 1187–1194. [Google Scholar] [CrossRef] [PubMed]
- Düring, J.; Annborn, M.; Cronberg, T.; Dankiewicz, J.; Devaux, Y.; Hassager, C.; Horn, J.; Kjaergaard, J.; Kuiper, M.; Nikoukhah, H.R.; et al. Copeptin as a marker of outcome after cardiac arrest: A sub-study of the TTM trial. Crit. Care 2020, 24, 185. [Google Scholar] [CrossRef] [PubMed]
- Keller, U.; Szinnai, G.; Bilz, S.; Berneis, K. Effects of changes in hydration on protein, glucose and lipid metabolism in man: Impact on health. Eur. J. Clin. Nutr. 2003, 57, S69–S74. [Google Scholar] [CrossRef] [PubMed]
- Johnson, E.C.; Bardis, C.N.; Jansen, L.T.; Adams, J.D.; Kirkland, T.W.; Kavouras, S.A. Reduced water intake deteriorates glucose regulation in patients with type 2 diabetes. Nutr. Res. 2017, 43, 25–32. [Google Scholar] [CrossRef]
- Lemetais, G.; Melander, O.; Vecchio, M.; Bottin, J.H.; Enhörning, S.; Perrier, E.T. Effect of increased water intake on plasma copeptin in healthy adults. Eur. J. Nutr. 2018, 57, 1883–1890. [Google Scholar] [CrossRef]
- Carroll, H.A.; Davis, M.G.; Papadaki, A. Higher plain water intake is associated with lower type 2 diabetes risk: A cross-sectional study in humans. Nutr. Res. 2015, 35, 865–872. [Google Scholar] [CrossRef]
- Carroll, H.A.; Betts, J.A.; Johnson, L. An investigation into the relationship between plain water intake and glycated Hb (HbA1c): A sex-stratified, cross-sectional analysis of the UK National Diet and Nutrition Survey (2008–2012). Br. J. Nutr. 2016, 116, 1770–1780. [Google Scholar] [CrossRef]
- Pan, A.; Malik, V.S.; Schulze, M.B.; Manson, J.E.; Willett, W.C.; Hu, F.B. Plain-water intake and risk of type 2 diabetes in young and middle-aged women. Am. J. Clin. Nutr. 2012, 95, 1454–1460. [Google Scholar] [CrossRef]
- Dennis, E.A.; Dengo, A.L.; Comber, D.L.; Flack, K.D.; Savla, J.; Davy, K.P.; Davy, B.M. Water Consumption Increases Weight Loss During a Hypocaloric Diet Intervention in Middle-aged and Older Adults. Obesity 2010, 18, 300–307. [Google Scholar] [CrossRef]
- Sedaghat, G.; Montazerifar, F.; Keykhaie, M.A.; Karajibani, M.; Shourestani, S.; Dashipour, A. Effect of pre-meal water intake on the serum levels of Copeptin, glycemic control, lipid profile and anthropometric indices in patients with type 2 diabetes mellitus: A randomized, controlled trial. J. Diabetes. Metab. Disord. 2021, 20, 171–177. [Google Scholar] [CrossRef]
- Nakamura, Y.; Watanabe, H.; Tanaka, A.; Yasui, M.; Nishihira, J.; Murayama, N. Effect of Increased Daily Water Intake and Hydration on Health in Japanese Adults. Nutrients 2020, 12, 1191. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xiao, X.; Zhang, X. Association between plain water intake and risk of hypertension: Longitudinal analyses from the China Health and Nutrition Survey. Front. Public Heal. 2024, 11, 1280653. [Google Scholar] [CrossRef]
- Enhörning, S.; Tasevska, I.; Roussel, R.; Bouby, N.; Persson, M.; Burri, P.; Bankir, L.; Melander, O. Effects of hydration on plasma copeptin, glycemia and gluco-regulatory hormones: A water intervention in humans. Eur. J. Nutr. 2019, 58, 315–324. [Google Scholar] [CrossRef] [PubMed]
- Enhörning, S.; Brunkwall, L.; Tasevska, I.; Ericson, U.; Persson Tholin, J.; Persson, M.; Lemetais, G.; Vanhaecke, T.; Dolci, A.; Perrier, E.T.; et al. Water Supplementation Reduces Copeptin and Plasma Glucose in Adults with High Copeptin: The H2O Metabolism Pilot Study. J. Clin. Endocrinol. Metab. 2019, 104, 1917–1925. [Google Scholar] [CrossRef] [PubMed]
Study Author | Objective | Study Design and Participants | Findings |
---|---|---|---|
Keller et al., 2003 [73] | Effect of hyper-, iso- and hypo-osmolality on protein, glucose and lipid metabolism. | Randomized crossover trial; 10 healthy males; | Hyperosmolality induced glycogenolysis while hypo-osmolality promoted lipolysis with glucose and protein-sparing effect. |
Johnson et. al., 2017 [74] | Effect of reduced water intake over 3 days on glucose regulation in T2D. | Randomized crossover trial; 9 males with T2D; | Reduced water intake acutely impaired glucose regulation. |
Carroll et al., 2019 [9] | Effect of acute hypohydration compared to euhydration on glucose regulation. | Randomized crossover trial; 16 healthy adults; | Acute mild hypohydration led to an increase in copeptin without a change in glucose regulation. |
Carroll et al., 2015 [76] | Association between water intake and T2D risk. | Observational (cross-sectional); Online survey 138 participants; | Water intake was negatively associated with T2D risk score. |
Roussel et al., 2011 [3] | Association between self-declared water intake and the risk for IFG/diabetes. | Observational longitudinal (cohort) study; 3615 participants; | Water intake was negatively associated with the risk of new-onset hyperglycemia. |
Carroll et al., 2016 [77] | Association between water intake and HbA1c. | Sex-stratified, cross-sectional analysis; 456 men and 579 women; | Higher water intake was associated with lower HbA1c in males, but not in females. |
Pan et al., 2012 [78] | Association of water intake and T2D incidence. | Observational (cohort) study; 82,902 women; | Water intake was not associated with the risk of T2D. |
Nakamura et al., 2020 [81] | Effect of increasing water intake over 12 weeks on fasting blood glucose levels and hydration status. | Randomized controlled trial; 57 healthy Japanese subjects; | Increased water intake decreased systolic blood pressure and increased body temperature, without an impact on fasting glucose. |
Dennis et al., 2010 [79] | Effect of pre-meal water consumption over 12 weeks on weight loss. | Randomized controlled trial; 48 individuals with overweight or obesity; | Pre-meal consumption of water led to greater weight loss compared to a hypocaloric diet alone. |
Brunkwall et al., 2020 [40] | Association between high water intake, low urine osmolality and metabolic profile. | Observational (cross-sectional) study; 2599 participants; | High water intake was associated with a favorable lipid profile. |
Sedaghat et al., 2021 [80] | Effects of pre-meal water intake over 8 weeks on copeptin, glucose and lipid regulation, and anthropometric indices. | Randomized controlled trial; 40 patients with T2D; | Pre-meal water intake was associated with a reduction in copeptin, fasting glucose levels, triglycerides, LDL, waist circumference and BMI. |
Li et al., 2024 [82] | Association between water intake and risk of hypertension | Longitudinal observational study; 3823 participants; | Inverse trend between water intake and the risk of hypertension development. |
Enhörning et al., 2019 [83] | Acute and medium-term effects of increased water intake over 1 week on copeptin levels and glucose. | Randomized crossover trial; 37 healthy volunteers; | Increased water intake decreased copeptin levels, did not change plasma glucose levels but reduced fasting glucagon. |
Enhörning et al., 2019 [84] | Effects of increased water intake over 6 weeks on copeptin and fasting glucose levels in potential responders. | Pilot interventional trial; 31 healthy volunteers with high copeptin; | Water supplementation in subjects with habitually low water intake reduced both copeptin and fasting glucose levels. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the Lithuanian University of Health Sciences. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Koceva, A.; Janež, A.; Jensterle, M. The Impact of Hydration on Metabolic Outcomes: From Arginine-Vasopressin Signaling to Clinical Implications. Medicina 2025, 61, 838. https://doi.org/10.3390/medicina61050838
Koceva A, Janež A, Jensterle M. The Impact of Hydration on Metabolic Outcomes: From Arginine-Vasopressin Signaling to Clinical Implications. Medicina. 2025; 61(5):838. https://doi.org/10.3390/medicina61050838
Chicago/Turabian StyleKoceva, Andrijana, Andrej Janež, and Mojca Jensterle. 2025. "The Impact of Hydration on Metabolic Outcomes: From Arginine-Vasopressin Signaling to Clinical Implications" Medicina 61, no. 5: 838. https://doi.org/10.3390/medicina61050838
APA StyleKoceva, A., Janež, A., & Jensterle, M. (2025). The Impact of Hydration on Metabolic Outcomes: From Arginine-Vasopressin Signaling to Clinical Implications. Medicina, 61(5), 838. https://doi.org/10.3390/medicina61050838