Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (183)

Search Parameters:
Keywords = arctic precipitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1205 KiB  
Review
Patterns in Root Phenology of Woody Plants Across Climate Regions: Drivers, Constraints, and Ecosystem Implications
by Qiwen Guo, Boris Rewald, Hans Sandén and Douglas L. Godbold
Forests 2025, 16(8), 1257; https://doi.org/10.3390/f16081257 - 1 Aug 2025
Viewed by 162
Abstract
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions [...] Read more.
Root phenology significantly influences ecosystem processes yet remains poorly characterized across biomes. This study synthesized data from 59 studies spanning Arctic to tropical ecosystems to identify woody plants root phenological patterns and their environmental drivers. The analysis revealed distinct climate-specific patterns. Arctic regions had a short growing season with remarkably low temperature threshold for initiation of root growth (0.5–1 °C). Temperate forests displayed pronounced spring-summer growth patterns with root growth initiation occurring at 1–9 °C. Mediterranean ecosystems showed bimodal patterns optimized around moisture availability, and tropical regions demonstrate seasonality primarily driven by precipitation. Root-shoot coordination varies predictably across biomes, with humid continental ecosystems showing the highest synchronous above- and belowground activity (57%), temperate regions exhibiting leaf-before-root emergence (55%), and Mediterranean regions consistently showing root-before-leaf patterns (100%). Winter root growth is more widespread than previously recognized (35% of studies), primarily in tropical and Mediterranean regions. Temperature thresholds for phenological transitions vary with climate region, suggesting adaptations to environmental conditions. These findings provide a critical, region-specific framework for improving models of terrestrial ecosystem responses to climate change. While our synthesis clarifies distinct phenological strategies, its conclusions are drawn from data focused primarily on Northern Hemisphere woody plants, highlighting significant geographic gaps in our current understanding. Bridging these knowledge gaps is essential for accurately forecasting how belowground dynamics will influence global carbon sequestration, nutrient cycling, and ecosystem resilience under changing climatic regimes. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 255
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

14 pages, 1855 KiB  
Article
Response of Tree-Ring Oxygen Isotopes to Climate Variations in the Banarud Area in the West Part of the Alborz Mountains
by Yajun Wang, Shengqian Chen, Haichao Xie, Yanan Su, Shuai Ma and Tingting Xie
Forests 2025, 16(8), 1238; https://doi.org/10.3390/f16081238 - 28 Jul 2025
Viewed by 216
Abstract
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples [...] Read more.
Stable oxygen isotopes in tree rings (δ18O) serve as important proxies for climate change and offer unique advantages for climate reconstruction in arid and semi-arid regions. We established an annual δ18O chronology spanning 1964–2023 using Juniperus excelsa tree-ring samples collected from the Alborz Mountains in Iran. We analyzed relationships between δ18O and key climate variables: precipitation, temperature, Palmer Drought Severity Index (PDSI), vapor pressure (VP), and potential evapotranspiration (PET). Correlation analysis reveals that tree-ring δ18O is highly sensitive to hydroclimatic variations. Tree-ring cellulose δ18O shows significant negative correlations with annual total precipitation and spring PDSI, and significant positive correlations with spring temperature (particularly maximum temperature), April VP, and spring PET. The strongest correlation occurs with spring PET. These results indicate that δ18O responds strongly to the balance between springtime moisture supply (precipitation and soil moisture) and atmospheric evaporative demand (temperature, VP, and PET), reflecting an integrated signal of both regional moisture availability and energy input. The pronounced response of δ18O to spring evaporative conditions highlights its potential for capturing high-resolution changes in spring climatic conditions. Our δ18O series remained stable from the 1960s to the 1990s, but showed greater interannual variability after 2000, likely linked to regional warming and climate instability. A comparison with the δ18O variations from the eastern Alborz Mountains indicates that, despite some differences in magnitude, δ18O records from the western and eastern Alborz Mountains show broadly similar variability patterns. On a larger climatic scale, δ18O correlates significantly and positively with the Niño 3.4 index but shows no significant correlation with the Arctic Oscillation (AO) or the North Atlantic Oscillation (NAO). This suggests that ENSO-driven interannual variability in the tropical Pacific plays a key role in regulating regional hydroclimatic processes. This study confirms the strong potential of tree-ring oxygen isotopes from the Alborz Mountains for reconstructing hydroclimatic conditions and high-frequency climate variability. Full article
(This article belongs to the Section Forest Meteorology and Climate Change)
Show Figures

Figure 1

32 pages, 2003 KiB  
Article
Evolution of the Hydrobiological Communities of a Coastal Lake in the Novaya Zemlya Archipelago (Southern Island, Arctic Russia) in Relation to Climate Change Following the End of the Little Ice Age
by Larisa Nazarova, Andrey B. Krasheninnikov, Larisa A. Frolova, Olga V. Palagushkina, Larisa V. Golovatyuk, Liudmila S. Syrykh, Boris K. Biskaborn, Harald G. E. Fuchs and Maria V. Gavrilo
Water 2025, 17(13), 1868; https://doi.org/10.3390/w17131868 - 23 Jun 2025
Viewed by 1241
Abstract
There are very few data linking recent climatic changes to changes in biological communities in the Russian Arctic, and no palaeoecological data are available from the Novaya Zemlya archipelago (NZ). We studied chironomid, cladoceran, and diatom communities from a 165-year-old sediment core from [...] Read more.
There are very few data linking recent climatic changes to changes in biological communities in the Russian Arctic, and no palaeoecological data are available from the Novaya Zemlya archipelago (NZ). We studied chironomid, cladoceran, and diatom communities from a 165-year-old sediment core from a lake on Southern Island, NZ. Sixteen diatom and four cladoceran species new to NZ were found in the lake. Significant changes occurred in biological communities; species turnover was highest for diatoms (2.533 SD), followed by chironomids (1.781 SD) and cladocerans (0.614 SD). Biological communities showed a correlation with meteorologically recorded climate parameters. For chironomids, the strongest relationships were found for TJune, TJuly, and Tann. Both planktonic proxies, diatoms, and cladocerans showed a relationship with summer and annual air temperature and precipitation. The largest shifts in communities can be linked to recent climatic events, including the onset of steady warming following the variable conditions at the end of the LIA (ca. 1905), the cooling associated with the highest precipitation on record between 1950 and 1970, and, probably, the anthropogenic influence specific to Novaya Zemlya at this time. The new data provide a valuable basis for future ecological studies in one of the least explored and remote Arctic regions. Full article
Show Figures

Figure 1

12 pages, 3793 KiB  
Article
Semi-Annual Climate Modes in the Western Hemisphere
by Mark R. Jury
Climate 2025, 13(6), 111; https://doi.org/10.3390/cli13060111 - 27 May 2025
Viewed by 434
Abstract
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from [...] Read more.
Semi-annual climate oscillations in the Western Hemisphere (20 S–35 N, 150 W–20 E) were studied via empirical orthogonal function (EOF) eigenvector loading patterns and principal component time scores from 1980 to 2023. The spatial loading maximum for 850 hPa zonal wind extended from the north Atlantic to the east Pacific; channeling was evident over the southwestern Caribbean. The eigenvector loading maximum for precipitation reflected an equatorial trough, while the semi-annual SST formed a dipole with loading maxima in upwelling zones off Angola (10 E) and Peru (80 W). Weakened Caribbean trade winds and strengthened tropical convection correlated with a warm Atlantic/cool Pacific pattern (R = 0.46). Wavelet spectral analysis of principal component time scores found a persistent 6-month rhythm disrupted only by major El Nino Southern Oscillation events and anomalous mid-latitude conditions associated with negative-phase Arctic Oscillation. Historical climatologies revealed that 6-month cycles of wind, precipitation, and sea temperature were tightly coupled in the Western Hemisphere by heat surplus in the equatorial ocean diffused by meridional overturning Hadley cells. External forcing emerged in early 2010 when warm anomalies over Canada diverted the subtropical jet, suppressing subtropical trade winds and evaporative cooling and intensifying the equatorial trough across the Western Hemisphere. Climatic trends of increased jet-stream instability suggest that the semi-annual amplitude may grow over time. Full article
Show Figures

Figure 1

16 pages, 6912 KiB  
Article
The Interannual Cyclicity of Precipitation in Xinjiang During the Past 70 Years and Its Contributing Factors
by Wenjie Ma, Xiaokang Liu, Shasha Shang, Zhen Wang, Yuyang Sun, Jian Huang, Mengfei Ma, Meihong Ma and Liangcheng Tan
Atmosphere 2025, 16(5), 629; https://doi.org/10.3390/atmos16050629 - 21 May 2025
Viewed by 496
Abstract
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional [...] Read more.
Precipitation cyclicity plays a crucial role in regional water supply and climate predictions. In this study, we used observational data from 34 representative meteorological stations in the Xinjiang region, a major part of inland arid China, to characterize the interannual cyclicity of regional precipitation from 1951 to 2021 and analyze its contributing factors. The results indicated that the mean annual precipitation in Xinjiang (MAP_XJ) was dominated by a remarkably increasing trend over the past 70 years, which was superimposed by two bands of interannual cycles of approximately 3 years with explanatory variance of 56.57% (Band I) and 6–7 years with explanatory variance of 23.38% (Band II). This is generally consistent with previous studies on the cyclicity of precipitation in Xinjiang for both seasonal and annual precipitation. We analyzed the North Tropical Atlantic sea-surface temperature (NTASST), El Niño-Southern Oscillation (ENSO), North Atlantic Oscillation (NAO), Arctic Oscillation (AO), and Indian Summer Monsoon (ISM) as potential forcing factors that show similar interannual cycles and may contribute to the identified precipitation variability. Two approaches, multivariate linear regression and the Random Forest model, were employed to ascertain the relative significance of each factor influencing Bands I and II, respectively. The multivariate linear regression analysis revealed that the AO index contributed the most to Band I, with a significance score of −0.656, whereas the ENSO index with a one-year lead (ENSO−1yr) played a dominant role in Band II (significance score = 0.457). The Random Forest model also suggested that the AO index exhibited the highest significance score (0.859) for Band I, whereas the AO index with a one-year lead (AO−1yr) had the highest significance score (0.876) for Band II. Overall, our findings highlight the necessity of employing different methods that consider both the linear and non-linear response of climate variability to driving factors crucial for future climate prediction. Full article
(This article belongs to the Special Issue Desert Climate and Environmental Change: From Past to Present)
Show Figures

Figure 1

21 pages, 20411 KiB  
Article
Time-Lag Effects of Winter Arctic Sea Ice on Subsequent Spring Precipitation Variability over China and Its Possible Mechanisms
by Hao Wang, Wen Wang and Fuxiong Guo
Water 2025, 17(10), 1443; https://doi.org/10.3390/w17101443 - 10 May 2025
Viewed by 608
Abstract
Arctic sea ice variations exhibit relatively strong statistical associations with precipitation variability over northeastern and southern China. Using Arctic Ocean reanalysis data from the EU Copernicus Project, this study examines the time-lagged statistical relationships between winter Arctic sea ice conditions and subsequent spring [...] Read more.
Arctic sea ice variations exhibit relatively strong statistical associations with precipitation variability over northeastern and southern China. Using Arctic Ocean reanalysis data from the EU Copernicus Project, this study examines the time-lagged statistical relationships between winter Arctic sea ice conditions and subsequent spring precipitation variability over China through wavelet analysis and Granger causality tests. Singular value decomposition (SVD) identifies the Barents, Kara, East Siberian, and Chukchi Seas as key regions exhibiting strong associations with spring precipitation anomalies. Increased winter sea ice in the East Siberian and Chukchi Seas generates positive geopotential height anomalies over the Arctic and negative anomalies over Northeast Asia, adjusting upper-level jet streams and influencing precipitation patterns in Northeast China. Conversely, increased sea ice in the Barents–Kara Seas leads to persistent negative geopotential height anomalies simultaneously occurring over both the Arctic and South China regions, enhancing southern jet stream activity and intensifying warm-moist airflow at the 850 hPa level, thus favoring precipitation in southern China. Compared to considering only climate factors such as the Pacific Decadal Oscillation (PDO), El Niño–Southern Oscillation (ENSO), and Arctic Oscillation (AO), the inclusion of Arctic sea ice significantly enhances the influence of multiple climate factors on precipitation variability in China. Full article
(This article belongs to the Special Issue Climate Change and Hydrological Processes, 2nd Edition)
Show Figures

Figure 1

22 pages, 3538 KiB  
Article
Bivariate and Partial Wavelet Coherence for Revealing the Remote Impacts of Large-Scale Ocean-Atmosphere Oscillations on Drought Variations in Xinjiang, China
by Linchu Jiang, Meng Gao, Jicai Ning and Junhu Tang
Water 2025, 17(7), 957; https://doi.org/10.3390/w17070957 - 25 Mar 2025
Viewed by 450
Abstract
Xinjiang, an arid area located in the central part of the Eurasian continent with high evaporation and low precipitation, experiences frequent droughts. This study builds on previous research by incorporating five key ocean-atmosphere oscillations and using the one-month SPEI as a meteorological drought [...] Read more.
Xinjiang, an arid area located in the central part of the Eurasian continent with high evaporation and low precipitation, experiences frequent droughts. This study builds on previous research by incorporating five key ocean-atmosphere oscillations and using the one-month SPEI as a meteorological drought indicator. Monthly time series of precipitation and temperature from 53 meteorological stations are utilized to calculate the monthly SPEI time series, and the seasonal Kendall test analyzes trends. Despite increased precipitation, the drought conditions in Xinjiang worsened due to increased temperatures, especially in the south, during 1961–2017. The 53 monthly SPEI time series are clustered using the agglomerative hierarchical method, basically reflecting Xinjiang’s topographical and climatic diversity. However, classical correlation methods show a weak or negligible overall correlation between the SPEI and large-scale ocean-atmosphere oscillators. Therefore, the partial wavelet coherence (PWC) method was used to detect the scale-specific correlations. Both bivariate wavelet coherence (BWC) and PWC detected significant correlations between the SPEI and the ocean-atmosphere oscillators at some specific time scales. Our analyses indicate that southern Xinjiang droughts are more influenced by Pacific or Indian Ocean oscillators, while northern droughts are affected by Atlantic or Arctic climate variations. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

21 pages, 1829 KiB  
Review
Hidden Contaminants: The Presence of Per- and Polyfluoroalkyl Substances in Remote Regions
by Kuok Ho Daniel Tang
Environments 2025, 12(3), 88; https://doi.org/10.3390/environments12030088 - 13 Mar 2025
Cited by 1 | Viewed by 1303
Abstract
Per- and polyfluoroalkyl substances (PFAS) are increasingly detected in remote environments. This review aims to provide a comprehensive overview of the types and concentrations of PFAS found in the air, water, soil, sediments, ice, and precipitation across different remote environments globally. Most of [...] Read more.
Per- and polyfluoroalkyl substances (PFAS) are increasingly detected in remote environments. This review aims to provide a comprehensive overview of the types and concentrations of PFAS found in the air, water, soil, sediments, ice, and precipitation across different remote environments globally. Most of the recent studies on PFAS remote occurrence have been conducted for the Arctic, the Antarctica, and the remote regions of China. Elevated perfluorooctane sulfonate (PFOS) in Meretta and Resolute Lakes reflects the impact of local sources like airports, while PFAS in lakes located in remote regions such as East Antarctica and the Canadian High Arctic suggest atmospheric deposition as a primary PFAS input. Long-chain PFAS (≥C7) accumulate in sediments, while short-chain PFAS remain in water, as shown in Hulun Lake. Oceanic PFAS are concentrated in surface waters, driven by atmospheric deposition, with PFOA and PFOS dominating across oceans due to current emissions and legacy contamination. Coastal areas display higher PFAS levels from local sources. Arctic sediment analysis highlights atmospheric deposition and ocean transport as significant PFAS contributors. PFAS in Antarctic coastal areas suggest local biological input, notably from penguins. The Tibetan Plateau and Arctic atmospheric data confirm long-range transport, with linear PFAS favoring gaseous states, while branched PFAS are more likely to associate with particulates. Climatic factors like the Indian monsoon and temperature fluctuations affect PFAS deposition. Short-chain PFAS are prevalent in snowpacks, serving as temporary reservoirs. Mountainous regions, such as the Tibetan Plateau, act as cold traps, accumulating PFAS from atmospheric precursors. Future studies should focus on identifying and quantifying primary sources of PFAS. Full article
Show Figures

Figure 1

20 pages, 6877 KiB  
Article
Analyses of Variation Trends of Winter Cold Snaps in Subarctic and Arctic Alaska
by Xiaofeng Chang, Zhaohui Yang, Yimeng Zhu, Kaiwen Zhang and Changlei Dai
Sustainability 2025, 17(6), 2438; https://doi.org/10.3390/su17062438 - 11 Mar 2025
Viewed by 693
Abstract
Arctic Alaska is warming at twice the rate of the rest of the nation, severely impacting infrastructure built on permafrost. As winters warm, the effectiveness of thermosyphons used to stabilize foundations diminishes, increasing the risk of infrastructure failure. Because thermosyphons operate with the [...] Read more.
Arctic Alaska is warming at twice the rate of the rest of the nation, severely impacting infrastructure built on permafrost. As winters warm, the effectiveness of thermosyphons used to stabilize foundations diminishes, increasing the risk of infrastructure failure. Because thermosyphons operate with the highest efficiency during winter cold snaps, studying the variation trends and patterns of winter cold snaps in Alaska is particularly important. To address this issue, this study analyzes the historical temperature data of four selected locations in Subarctic and Arctic Alaska, including Bethel, Fairbanks, Nome, and Utqiagvik. The winter cold snap is defined as a period when the average daily temperature drops below a specific site’s mean winter air temperature. The frequency, duration, and intensity of the winter cold snaps are computed to reveal their trends. The results indicate that the mean annual air temperature (MAAT) shows a warming trend, accompanied by sudden warming after 1975 for all study sites. The long-term average monthly air temperature also indicates that the most significant warming occurs in the winter months from December to March. While the frequencies of winter cold snaps remain relatively unchanged, the mean intensity and duration of cold snaps show a declining trend. Most importantly, the most intense cold snap during which the thermosyphons are the most effective is becoming much milder over time for all study sites. This study focuses specifically on the impact of changes in winter cold spells on thermosyphon effectiveness while acknowledging the complexity of other influencing factors, such as temperature differences, design features, coolant properties, and additional climatic parameters (e.g., wind speed, precipitation, and humidity). The data for this study were obtained from the NOAA NCEI website. The findings of this study can serve as a valuable reference for the retrofit or design of foundations and for decision making in selecting appropriate foundation stabilizing measures to ensure the long-term stability and resilience of infrastructure in permafrost regions. Moreover, the insights gained from this research on freeze–thaw dynamics, which are also relevant to black soils, align with the journal’s focus on sustainable soil utilization and infrastructure resilience. Full article
Show Figures

Figure 1

21 pages, 4875 KiB  
Article
Late 20th Century Hypereutrophication of Northern Alberta’s Utikuma Lake
by Carling R. Walsh, Fabian Grey, R. Timothy Patterson, Maxim Ralchenko, Calder W. Patterson, Eduard G. Reinhardt, Dennis Grey, Henry Grey and Dwayne Thunder
Environments 2025, 12(2), 63; https://doi.org/10.3390/environments12020063 - 11 Feb 2025
Viewed by 918
Abstract
Eutrophication in Canadian lakes degrades water quality, disrupts ecosystems, and poses health risks due to potential development of harmful algal blooms. It also economically impacts the general public, industries like recreational and commercial fishing, and tourism. Analysis of a 140-year core record from [...] Read more.
Eutrophication in Canadian lakes degrades water quality, disrupts ecosystems, and poses health risks due to potential development of harmful algal blooms. It also economically impacts the general public, industries like recreational and commercial fishing, and tourism. Analysis of a 140-year core record from Utikuma Lake, northern Alberta, revealed the processes behind the lake’s current hypereutrophic conditions. End-member modeling analysis (EMMA) of the sediment grain size data identified catchment runoff linked to specific sedimentological processes. ITRAX X-ray fluorescence (XRF) elements/ratios were analyzed to assess changes in precipitation, weathering, and catchment runoff and to document changes in lake productivity over time. Five end members (EMs) were identified and linked to five distinct erosional and sedimentary processes, including moderate and severe precipitation events, warm and cool spring freshet, and anthropogenic catchment disturbances. Cluster analysis of EMMA and XRF data identified five distinct depositional periods from the late 19th century to the present, distinguished by characteristic rates of productivity, rainfall, weathering, and runoff linked to natural and anthropogenic drivers. The most significant transition in the record occurred in 1996, marked by an abrupt increase in both biological productivity and catchment runoff, leading to the hypereutrophic conditions that persist to the present. This limnological shift was primarily triggered by a sudden discharge from a decommissioned sewage treatment lagoon into the lake. Spectral and wavelet analysis confirmed the influence of the Arctic Oscillation, El Niño Southern Oscillation, North Atlantic Oscillation, and Pacific Decadal Oscillation on runoff processes in Utikuma Lake’s catchment. Full article
Show Figures

Figure 1

28 pages, 4267 KiB  
Article
Contrasting Changes in Lake Ice Thickness and Quality Due to Global Warming in the Arctic, Temperate, and Arid Zones and Highlands of Eurasia
by Galina Zdorovennova, Tatiana Efremova, Iuliia Novikova, Oxana Erina, Dmitry Sokolov, Dmitry Denisov, Irina Fedorova, Sergei Smirnov, Nikolay Palshin, Sergey Bogdanov, Roman Zdorovennov, Wenfeng Huang and Matti Leppäranta
Water 2025, 17(3), 365; https://doi.org/10.3390/w17030365 - 27 Jan 2025
Viewed by 1250
Abstract
Lake ice has a major impact on the functioning of lake ecosystems, the thermal and gas regimes of lakes, habitat conditions, socio-economic aspects of human life, local climate, etc. The multifaceted influence of lake ice makes it important to study its changes associated [...] Read more.
Lake ice has a major impact on the functioning of lake ecosystems, the thermal and gas regimes of lakes, habitat conditions, socio-economic aspects of human life, local climate, etc. The multifaceted influence of lake ice makes it important to study its changes associated with global warming, including lake ice phenology, ice thickness, and the snow–ice fraction. This article presents a study of lake ice changes in different regions of Eurasia: the Arctic (Lake Imandra in the Murmansk region and Lake Kilpisjärvi in Finland), the temperate zone (six small and medium lakes in Karelia, Mozhaysk Reservoir in the Moscow region, and Lake Pääjärvi in Finland), the arid zone (Lake Ulansuhai in China), and the highlands (lakes Arpi and Sevan in Armenia). In the study regions, a statistically significant increase in winter air temperature has been recorded over the past few decades. The number of days with thaw (air temperature above 0 °C) has increased, while the number of days with severe frost (air temperature below −10 °C and −20 °C) has decreased. The share of liquid or mixed precipitation in winter increases most rapidly in the temperate zone. For two Finnish lakes, lakes Vendyurskoe and Vedlozero in Karelia, and Mozhaysk Reservoir, a decrease in the duration of the ice period was revealed, with later ice-on and earlier ice-off. The most dramatic change occurred in the large high-mountain Lake Sevan, where the water area has no longer been completely covered with ice every winter. In contrast, the small high-mountain Lake Arpi showed no significant changes in ice phenology over a 50-year period. Changes in the ice composition with an increase in the proportion of white ice and a decrease in the proportion of black ice have occurred in some lakes. In the temperate lakes Pääjärvi and Vendyurskoe, inverse dependences of the thickness of black ice on the number of days with thaw and frost in December–March for the first lake and on the amount of precipitation in the first month of ice for the second were observed. In the arid study region of China, due to the very little winter precipitation (usually less than 10 mm) only black ice occurs, and significant interannual variability in its thickness has been identified. Full article
Show Figures

Figure 1

26 pages, 5133 KiB  
Article
Increasing Importance of Local Hydroclimatology During the Tundra Growing Season in the Yukon–Kuskokwim Delta
by Amy Hendricks, Uma Bhatt, Peter Bieniek, Christine Waigl, Rick Lader, Donald Walker, Gerald Frost, Martha Raynolds, John Walsh and Kyle Redilla
Water 2025, 17(1), 90; https://doi.org/10.3390/w17010090 - 1 Jan 2025
Cited by 1 | Viewed by 804
Abstract
Changing precipitation patterns in the Arctic is a key indicator of climate change, in addition to increasing land and ocean temperatures, but these patterns are not uniform across the circumpolar region. This regional analysis focuses on the Yukon–Kuskokwim Delta in southwestern Alaska and [...] Read more.
Changing precipitation patterns in the Arctic is a key indicator of climate change, in addition to increasing land and ocean temperatures, but these patterns are not uniform across the circumpolar region. This regional analysis focuses on the Yukon–Kuskokwim Delta in southwestern Alaska and addresses the following questions: (1) What is the baseline hydroclimatology during the growing season on the Yukon–Kuskokwim Delta? (2) What are the seasonal and intraseasonal trends of the hydroclimate variables in the YKD? (3) What are the implications of documented trends for the study region? Utilizing ECMWF’s ERA5 reanalysis dataset, we conducted a seasonal analysis for May through September for the years 1982–2022. While no strong trend emerged for total precipitation over the 41-year study period, differing trends were observed for large-scale and convective precipitation. The decline in large-scale precipitation is supported by a decrease in storm counts in the Bering Sea, as well as declining vertically integrated moisture convergence and moisture flux. By contrast, the increase in convective precipitation underscores the growing importance of the local hydrologic cycle, further supported by a significant rise in evaporation. These enhanced local hydroclimatological cycles have significant implications for wildfires and subsistence activities. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

30 pages, 4701 KiB  
Article
Arctic Weather Satellite Sensitivity to Supercooled Liquid Water in Snowfall Conditions
by Andrea Camplani, Paolo Sanò, Daniele Casella, Giulia Panegrossi and Alessandro Battaglia
Remote Sens. 2024, 16(22), 4164; https://doi.org/10.3390/rs16224164 - 8 Nov 2024
Cited by 1 | Viewed by 1660
Abstract
The aim of this study is to highlight the issue of missed supercooled liquid water (SLW) detection in the current radar/lidar derived products and to investigate the potential of the combined use of the EarthCARE mission and the Arctic Weather Satellite (AWS)—Microwave Radiometer [...] Read more.
The aim of this study is to highlight the issue of missed supercooled liquid water (SLW) detection in the current radar/lidar derived products and to investigate the potential of the combined use of the EarthCARE mission and the Arctic Weather Satellite (AWS)—Microwave Radiometer (MWR) observations to fill this observational gap and to improve snowfall retrieval capabilities. The presence of SLW layers, which is typical of snowing clouds at high latitudes, represents a significant challenge for snowfall retrieval based on passive microwave (PMW) observations. The strong emission effect of SLW has the potential to mask the snowflake scattering signal in the high-frequency channels (>90 GHz) exploited for snowfall retrieval, while the detection capability of the combined radar/lidar SLW product—which is currently used as reference for the PMW-based snowfall retrieval algorithm—is limited to the cloud top due to SLW signal attenuation. In this context, EarthCARE, which is equipped with both a radar and a lidar, and the AWS-MWR, whose channels cover a range from 50 GHz to 325.15 GHz, offer a unique opportunity to improve both SLW detection and snowfall retrieval. In the current study, a case study is analyzed by comparing available PMW observations with AWS-MWR simulated signals for different scenarios of SLW layers, and an extensive comparison of the CloudSat brightness temperature (TB) product with the corresponding simulated signal is carried out. Simulated TBs are obtained from a radiative transfer model applied to cloud and precipitation profiles derived from the algorithm developed for the EarthCARE mission (CAPTIVATE). Different single scattering models are considered. This analysis highlights the missed detection of SLW layers embedded by the radar/lidar product and the sensitivity of AWS-MWR channels to SLW. Moreover, the new AWS 325.15 GHz channels are very sensitive to snowflakes in the atmosphere, and unaffected by SLW. Therefore, their combination with EarthCARE radar/lidar measurements can be exploited to both improve snowfall retrieval capabilities and to constrain snowfall microphysical properties. Full article
(This article belongs to the Section Atmospheric Remote Sensing)
Show Figures

Figure 1

19 pages, 20524 KiB  
Article
Comparison of Multiple Methods for Supraglacial Melt-Lake Volume Estimation in Western Greenland During the 2021 Summer Melt Season
by Nathan Rowley, Wesley Rancher and Christopher Karmosky
Glacies 2024, 1(2), 92-110; https://doi.org/10.3390/glacies1020007 - 6 Nov 2024
Viewed by 1375
Abstract
Supraglacial melt-lakes form and evolve along the western edge of the Greenland Ice Sheet and have proven to play a significant role in ice sheet surface hydrology and mass balance. Prior methods to quantify melt-lake volume have relied upon Landsat-8 optical imagery, available [...] Read more.
Supraglacial melt-lakes form and evolve along the western edge of the Greenland Ice Sheet and have proven to play a significant role in ice sheet surface hydrology and mass balance. Prior methods to quantify melt-lake volume have relied upon Landsat-8 optical imagery, available at 30 m spatial resolution but with temporal resolution limited by satellite overpass times and cloud cover. We propose two novel methods to quantify the volume of meltwater stored in these lakes, including a high-resolution surface DEM (ArcticDEM) and an ablation model using daily averaged automated weather station data. We compare our methods to the depth-reflectance method for five supraglacial melt-lakes during the 2021 summer melt season. We find agreement between the depth-reflectance and DEM lake infilling methods, within +/−15% for most cases, but our ablation model underproduces by 0.5–2 orders of magnitude the volumetric melt needed to match our other methods, and with a significant lag in meltwater onset for routing into the lake basin. Further information regarding energy balance parameters, including insolation and liquid precipitation amounts, is needed for adequate ablation modelling. Despite the differences in melt-lake volume estimates, our approach in combining remote sensing and meteorological methods provides a framework for analysis of seasonal melt-lake evolution at significantly higher spatial and temporal scales, to understand the drivers of meltwater production and its influence on the spatial distribution and extent of meltwater volume stored on the ice sheet surface. Full article
Show Figures

Figure 1

Back to TopTop