Hidden Contaminants: The Presence of Per- and Polyfluoroalkyl Substances in Remote Regions
Abstract
:1. Introduction
2. Review Methodology
3. Remote Occurrences of PFAS
3.1. Lakes and Associated Sediments
3.2. Oceans and Associated Sediments
3.3. Air
3.4. Ice and Snow
3.5. Water and Sediments Generally
3.6. Soil
4. Implications
4.1. Lakes and Associated Sediments
4.2. Oceans and Associated Sediments
4.3. Air, Ice and Snow
4.4. Soil
4.5. Limitations and Potential Bioaccumulation
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Cl-PFESA | Chlorinated polyfluorinated ether sulfonic acid |
EtFOSAA | N-ethyl perfluorooctane sulfonamidoacetic acid |
FBSA | Perfluorobutane sulfonamide |
FOSA/PFOSA | Fluorinated/perfluorooctane sulfonamide |
FOSE | Perfluorooctane sulfonamidoethanol |
FTA | Fluorotelomer acrylate |
FTS | Flurorotelomer sulfonate |
FTOH | Fluorotelomer alcohol |
HFPO | Hexafluoropropylene oxide |
HFPO-DA | 2-(Heptafluoropropoxy)propanoic acid |
MeFOSAA | N-methyl perfluorooctane sulfonamidoacetic acid |
PFAA | Perfluoroalkyl acid |
PFCA | Perfluoroalkyl carboxylic acid |
PFBA | Perfluorobutanoic acid |
PFBS | Perfluorobutane sulfonate |
PFDA | Perfluorodecanoic acid |
PFDoDA | Perfluorododecanoic acid |
PFECHS | Perfluoroethylcyclohexane sulfonate |
PFHpA | Perfluoroheptanoic acid |
PFHpS | Perfluoroheptane sulfonate |
PFHxA | Perfluorohexanoic acid |
PFHxS | Perfluorohexane sulfonate |
PFOA | Perfluorooctanoic acid |
PFOS | Perfluorooctane sulfonic acid |
PFNA | Perfluorononanoic acid |
PFPeA | Perfluoropentanoic acid |
PFSA | Perfluoroalkyl sulfonic acid |
PFTeDA | Perfluorotetradecanoic acid |
PFTrDA | Perfluorotridecanoic acid |
PFUnDA | Perfluoroundecanoic acid |
TFA | Trifluoroacetic acid |
References
- Gaines, L.G.T. Historical and current usage of per- and polyfluoroalkyl substances (PFAS): A literature review. Am. J. Ind. Med. 2023, 66, 353–378. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D. Per-and polyfluoroalkyl substances (PFAS) in wastewater streams: Occurrence and current treatment. Acad. Eng. 2023, 1. [Google Scholar] [CrossRef]
- Manojkumar, Y.; Pilli, S.; Rao, P.V.; Tyagi, R.D. Sources, occurrence and toxic effects of emerging per- and polyfluoroalkyl substances (PFAS). Neurotox. Teratol. 2023, 97, 107174. [Google Scholar] [CrossRef] [PubMed]
- Ao, J.; Yuan, T.; Xia, H.; Ma, Y.; Shen, Z.; Shi, R.; Tian, Y.; Zhang, J.; Ding, W.; Gao, L.; et al. Characteristic and human exposure risk assessment of per- and polyfluoroalkyl substances: A study based on indoor dust and drinking water in China. Environ. Pollut. 2019, 254, 112873. [Google Scholar] [CrossRef]
- Macorps, N.; Labadie, P.; Lestremau, F.; Assoumani, A.; Budzinski, H. Per- and polyfluoroalkyl substances (PFAS) in surface sediments: Occurrence, patterns, spatial distribution and contribution of unattributed precursors in French aquatic environments. Sci. Total Environ. 2023, 874, 162493. [Google Scholar] [CrossRef]
- Kourtchev, I.; Sebben, B.G.; Brill, S.; Barbosa, C.G.G.; Weber, B.; Ferreira, R.R.; D’Oliveira, F.A.F.; Dias-Junior, C.Q.; Popoola, O.A.M.; Williams, J.; et al. Occurrence of a “forever chemical” in the atmosphere above pristine Amazon Forest. Sci. Total Environ. 2024, 944, 173918. [Google Scholar] [CrossRef]
- Mroczko, O.; Preisendanz, H.E.; Wilson, C.; Mashtare, M.L.; Elliott, H.A.; Veith, T.L.; Soder, K.J.; Watson, J.E. Spatiotemporal patterns of PFAS in water and crop tissue at a beneficial wastewater reuse site in central Pennsylvania. J. Environ. Qual. 2022, 51, 1282–1297. [Google Scholar] [CrossRef]
- Drew, R.; Hagen, T.G.; Champness, D. Accumulation of PFAS by livestock—Determination of transfer factors from water to serum for cattle and sheep in Australia. Food Addit. Contam. Part A 2021, 38, 1897–1913. [Google Scholar] [CrossRef]
- Chu, S.; Letcher, R.J.; McGoldrick, D.J.; Backus, S.M. A New Fluorinated Surfactant Contaminant in Biota: Perfluorobutane Sulfonamide in Several Fish Species. Environ. Sci. Technol. 2016, 50, 669–675. [Google Scholar] [CrossRef]
- Olsen, G.W.; Mair, D.C.; Lange, C.C.; Harrington, L.M.; Church, T.R.; Goldberg, C.L.; Herron, R.M.; Hanna, H.; Nobiletti, J.B.; Rios, J.A.; et al. Per- and polyfluoroalkyl substances (PFAS) in American Red Cross adult blood donors, 2000–2015. Environ. Res. 2017, 157, 87–95. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, H.; Qin, X.; Gan, Z.; Kannan, K. PFOS and PFOA in paired urine and blood from general adults and pregnant women: Assessment of urinary elimination. Environ. Sci. Pollut. Res. 2015, 22, 5572–5579. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Meng, L.; Ma, D.; Cao, H.; Liang, Y.; Liu, H.; Wang, Y.; Jiang, G. The occurrence of PFAS in human placenta and their binding abilities to human serum albumin and organic anion transporter 4. Environ. Pollut. 2021, 273, 116460. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D. Environmental Co-existence of Microplastics and Perfluorochemicals: A Review of Their Interactions. Biointerface Res. Appl. Chem. 2023, 13, 587. [Google Scholar]
- Tang, K.H.D.; Li, R. Aged Microplastics and Antibiotic Resistance Genes: A Review of Aging Effects on Their Interactions. Antibiotics 2024, 13, 941. [Google Scholar] [CrossRef]
- Podder, A.; Sadmani, A.H.M.A.; Reinhart, D.; Chang, N.-B.; Goel, R. Per and poly-fluoroalkyl substances (PFAS) as a contaminant of emerging concern in surface water: A transboundary review of their occurrences and toxicity effects. J. Hazard. Mater. 2021, 419, 126361. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Dane, J.; Kanel, S.R.; Nadagouda, M.N.; Cawdrey, R.W.; Ambade, B.; Struckhoff, G.C.; Wilkin, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total Environ. 2022, 809, 151003. [Google Scholar] [CrossRef]
- Faust, J.A. PFAS on atmospheric aerosol particles: A review. Environ. Sci. Process. Impacts 2023, 25, 133–150. [Google Scholar] [CrossRef]
- Vendl, C.; Taylor, M.D.; Bräunig, J.; Ricolfi, L.; Ahmed, R.; Chin, M.; Gibson, M.J.; Hesselson, D.; Neely, G.G.; Lagisz, M.; et al. Profiling research on PFAS in wildlife: Systematic evidence map and bibliometric analysis. Ecol. Solut. Evid. 2024, 5, e12292. [Google Scholar] [CrossRef]
- Langberg, H.A.; Hale, S.E.; Breedveld, G.D.; Jenssen, B.M.; Jartun, M. A review of PFAS fingerprints in fish from Norwegian freshwater bodies subject to different source inputs. Environ. Sci. Process. Impacts 2022, 24, 330–342. [Google Scholar] [CrossRef]
- Death, C.; Bell, C.; Champness, D.; Milne, C.; Reichman, S.; Hagen, T. Per- and polyfluoroalkyl substances (PFAS) in livestock and game species: A review. Sci. Total Environ. 2021, 774, 144795. [Google Scholar] [CrossRef]
- Kucharzyk, K.H.; Darlington, R.; Benotti, M.; Deeb, R.; Hawley, E. Novel treatment technologies for PFAS compounds: A critical review. J. Environ. Manag. 2017, 204, 757–764. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D.; Kristanti, R.A. Bioremediation of perfluorochemicals: Current state and the way forward. Bioprocess Biosyst. Eng. 2022, 45, 1093–1109. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D. Phytoremediation of perfluorochemicals: A review of its advances, feasibility and limitations. Environ. Toxicol. Manag. 2023, 3, 1–7. [Google Scholar] [CrossRef]
- Sharma, S.; Shetti, N.P.; Basu, S.; Nadagouda, M.N.; Aminabhavi, T.M. Remediation of per- and polyfluoroalkyls (PFAS) via electrochemical methods. Chem. Eng. J. 2022, 430, 132895. [Google Scholar] [CrossRef]
- Lescord, G.L.; Kidd, K.A.; De Silva, A.O.; Williamson, M.; Spencer, C.; Wang, X.; Muir, D.C.G. Perfluorinated and Polyfluorinated Compounds in Lake Food Webs from the Canadian High Arctic. Environ. Sci. Technol. 2015, 49, 2694–2702. [Google Scholar] [CrossRef]
- Muir, D.; Bossi, R.; Carlsson, P.; Evans, M.; De Silva, A.; Halsall, C.; Rauert, C.; Herzke, D.; Hung, H.; Letcher, R.; et al. Levels and trends of poly- and perfluoroalkyl substances in the Arctic environment—An update. Emerg. Contam. 2019, 5, 240–271. [Google Scholar] [CrossRef]
- De Silva, A.O.; Spencer, C.; Scott, B.F.; Backus, S.; Muir, D.C.G. Detection of a Cyclic Perfluorinated Acid, Perfluoroethylcyclohexane Sulfonate, in the Great Lakes of North America. Environ. Sci. Technol. 2011, 45, 8060–8066. [Google Scholar] [CrossRef]
- Ahmed, M.B.; Johir, M.A.H.; McLaughlan, R.; Nguyen, L.N.; Xu, B.; Nghiem, L.D. Per- and polyfluoroalkyl substances in soil and sediments: Occurrence, fate, remediation and future outlook. Sci. Total Environ. 2020, 748, 141251. [Google Scholar] [CrossRef]
- Hubert, M.; Arp, H.P.H.; Hansen, M.C.; Castro, G.; Meyn, T.; Asimakopoulos, A.G.; Hale, S.E. Influence of grain size, organic carbon and organic matter residue content on the sorption of per- and polyfluoroalkyl substances in aqueous film forming foam contaminated soils—Implications for remediation using soil washing. Sci. Total Environ. 2023, 875, 162668. [Google Scholar] [CrossRef]
- MacInnis, J.J.; Lehnherr, I.; Muir, D.C.G.; Quinlan, R.; De Silva, A.O. Characterization of perfluoroalkyl substances in sediment cores from High and Low Arctic lakes in Canada. Sci. Total Environ. 2019, 666, 414–422. [Google Scholar] [CrossRef]
- Li, J.; Li, X.; Zhu, Y.; Wang, L.; Ren, S.; An, R.; Zhang, Q.; Wang, G. The first survey of legacy and emerging per- and polyfluoroalkyl substances (PFAS) in Hulun Lake, China: Occurrence, sources, and environmental impacts. Emerg. Contam. 2025, 11, 100431. [Google Scholar] [CrossRef]
- Dasu, K.; Xia, X.; Siriwardena, D.; Klupinski, T.P.; Seay, B. Concentration profiles of per- and polyfluoroalkyl substances in major sources to the environment. J. Environ. Manag. 2022, 301, 113879. [Google Scholar] [CrossRef] [PubMed]
- DeNicola, M.; Lin, Z.; Quiñones, O.; Vanderford, B.; Song, M.; Westerhoff, P.; Dickenson, E.; Hanigan, D. Per- and polyfluoroalkyl substances and organofluorine in lakes and waterways of the northwestern Great Basin and Sierra Nevada. Sci. Total Environ. 2023, 905, 166971. [Google Scholar] [CrossRef]
- Sharma, B.M.; Bharat, G.K.; Tayal, S.; Larssen, T.; Bečanová, J.; Karásková, P.; Whitehead, P.G.; Futter, M.N.; Butterfield, D.; Nizzetto, L. Perfluoroalkyl substances (PFAS) in river and ground/drinking water of the Ganges River basin: Emissions and implications for human exposure. Environ. Pollut. 2016, 208, 704–713. [Google Scholar] [CrossRef]
- Casas, G.; Iriarte, J.; D’Agostino, L.A.; Roscales, J.L.; Martinez-Varela, A.; Vila-Costa, M.; Martin, J.W.; Jiménez, B.; Dachs, J. Inputs, amplification and sinks of perfluoroalkyl substances at coastal Antarctica. Environ. Pollut. 2023, 338, 122608. [Google Scholar] [CrossRef]
- Cai, M.; Yang, H.; Xie, Z.; Zhao, Z.; Wang, F.; Lu, Z.; Sturm, R.; Ebinghaus, R. Per- and polyfluoroalkyl substances in snow, lake, surface runoff water and coastal seawater in Fildes Peninsula, King George Island, Antarctica. J. Hazard. Mater. 2012, 209–210, 335–342. [Google Scholar] [CrossRef]
- Shan, G.; Qian, X.; Chen, X.; Feng, X.; Cai, M.; Yang, L.; Chen, M.; Zhu, L.; Zhang, S. Legacy and emerging per- and poly-fluoroalkyl substances in surface seawater from northwestern Pacific to Southern Ocean: Evidences of current and historical release. J. Hazard. Mater. 2021, 411, 125049. [Google Scholar] [CrossRef]
- Yeung, L.W.Y.; Dassuncao, C.; Mabury, S.; Sunderland, E.M.; Zhang, X.; Lohmann, R. Vertical Profiles, Sources, and Transport of PFASs in the Arctic Ocean. Environ. Sci. Technol. 2017, 51, 6735–6744. [Google Scholar] [CrossRef]
- Lin, Y.; Jiang, J.-J.; Rodenburg, L.A.; Cai, M.; Wu, Z.; Ke, H.; Chitsaz, M. Perfluoroalkyl substances in sediments from the Bering Sea to the western Arctic: Source and pathway analysis. Environ. Int. 2020, 139, 105699. [Google Scholar] [CrossRef]
- Muir, D.; Miaz, L.T. Spatial and Temporal Trends of Perfluoroalkyl Substances in Global Ocean and Coastal Waters. Environ. Sci. Technol. 2021, 55, 9527–9537. [Google Scholar] [CrossRef]
- Ali, A.M.; Langberg, H.A.; Hale, S.E.; Kallenborn, R.; Hartz, W.F.; Mortensen, Å.-K.; Ciesielski, T.M.; McDonough, C.A.; Jenssen, B.M.; Breedveld, G.D. The fate of poly- and perfluoroalkyl substances in a marine food web influenced by land-based sources in the Norwegian Arctic. Environ. Sci. Process. Impacts 2021, 23, 588–604. [Google Scholar] [CrossRef]
- Han, T.; Chen, J.; Lin, K.; He, X.; Li, S.; Xu, T.; Xin, M.; Wang, B.; Liu, C.; Wang, J. Spatial distribution, vertical profiles and transport of legacy and emerging per- and polyfluoroalkyl substances in the Indian Ocean. J. Hazard. Mater. 2022, 437, 129264. [Google Scholar] [CrossRef] [PubMed]
- González-Gaya, B.; Dachs, J.; Roscales, J.L.; Caballero, G.; Jiménez, B. Perfluoroalkylated Substances in the Global Tropical and Subtropical Surface Oceans. Environ. Sci. Technol. 2014, 48, 13076–13084. [Google Scholar] [CrossRef] [PubMed]
- Hodgkins, L.M.; Mulligan, R.P.; McCallum, J.M.; Weber, K.P. Modelling the transport of shipborne per-and polyfluoroalkyl substances (PFAS) in the coastal environment. Sci. Total Environ. 2019, 658, 602–613. [Google Scholar] [CrossRef]
- Miranda, D.d.A.; Leonel, J.; Benskin, J.P.; Johansson, J.; Hatje, V. Perfluoroalkyl Substances in the Western Tropical Atlantic Ocean. Environ. Sci. Technol. 2021, 55, 13749–13758. [Google Scholar] [CrossRef]
- Joerss, H.; Xie, Z.; Wagner, C.C.; von Appen, W.-J.; Sunderland, E.M.; Ebinghaus, R. Transport of Legacy Perfluoroalkyl Substances and the Replacement Compound HFPO-DA through the Atlantic Gateway to the Arctic Ocean—Is the Arctic a Sink or a Source? Environ. Sci. Technol. 2020, 54, 9958–9967. [Google Scholar] [CrossRef]
- Kahkashan, S.; Wang, X.; Chen, J.; Bai, Y.; Ya, M.; Wu, Y.; Cai, Y.; Wang, S.; Saleem, M.; Aftab, J.; et al. Concentration, distribution and sources of perfluoroalkyl substances and organochlorine pesticides in surface sediments of the northern Bering Sea, Chukchi Sea and adjacent Arctic Ocean. Chemosphere 2019, 235, 959–968. [Google Scholar] [CrossRef]
- Casal, P.; Zhang, Y.; Martin, J.W.; Pizarro, M.; Jiménez, B.; Dachs, J. Role of Snow Deposition of Perfluoroalkylated Substances at Coastal Livingston Island (Maritime Antarctica). Environ. Sci. Technol. 2017, 51, 8460–8470. [Google Scholar] [CrossRef]
- Llorca, M.; Farré, M.; Tavano, M.S.; Alonso, B.; Koremblit, G.; Barceló, D. Fate of a broad spectrum of perfluorinated compounds in soils and biota from Tierra del Fuego and Antarctica. Environ. Pollut. 2012, 163, 158–166. [Google Scholar] [CrossRef]
- Wang, X.; Schuster, J.; Jones, K.C.; Gong, P. Occurrence and spatial distribution of neutral perfluoroalkyl substances and cyclic volatile methylsiloxanes in the atmosphere of the Tibetan Plateau. Atmos. Chem. Phys. 2018, 18, 8745–8755. [Google Scholar] [CrossRef]
- Zhao, Z.; Tang, J.; Mi, L.; Tian, C.; Zhong, G.; Zhang, G.; Wang, S.; Li, Q.; Ebinghaus, R.; Xie, Z.; et al. Perfluoroalkyl and polyfluoroalkyl substances in the lower atmosphere and surface waters of the Chinese Bohai Sea, Yellow Sea, and Yangtze River estuary. Sci. Total Environ. 2017, 599–600, 114–123. [Google Scholar] [CrossRef] [PubMed]
- Fang, X.; Wang, Q.; Zhao, Z.; Tang, J.; Tian, C.; Yao, Y.; Yu, J.; Sun, H. Distribution and dry deposition of alternative and legacy perfluoroalkyl and polyfluoroalkyl substances in the air above the Bohai and Yellow Seas, China. Atmos. Environ. 2018, 192, 128–135. [Google Scholar] [CrossRef]
- Lai, S.; Song, J.; Song, T.; Huang, Z.; Zhang, Y.; Zhao, Y.; Liu, G.; Zheng, J.; Mi, W.; Tang, J.; et al. Neutral polyfluoroalkyl substances in the atmosphere over the northern South China Sea. Environ. Pollut. 2016, 214, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Wang, Z.; Mi, W.; Möller, A.; Wolschke, H.; Ebinghaus, R. Neutral Poly-/perfluoroalkyl Substances in Air and Snow from the Arctic. Sci. Rep. 2015, 5, 8912. [Google Scholar] [CrossRef]
- Wong, F.; Hung, H.; Dryfhout-Clark, H.; Aas, W.; Bohlin-Nizzetto, P.; Breivik, K.; Mastromonaco, M.N.; Lundén, E.B.; Ólafsdóttir, K.; Sigurðsson, Á.; et al. Time trends of persistent organic pollutants (POPs) and Chemicals of Emerging Arctic Concern (CEAC) in Arctic air from 25 years of monitoring. Sci. Total Environ. 2021, 775, 145109. [Google Scholar] [CrossRef]
- Rauert, C.; Shoieb, M.; Schuster, J.K.; Eng, A.; Harner, T. Atmospheric concentrations and trends of poly- and perfluoroalkyl substances (PFAS) and volatile methyl siloxanes (VMS) over 7 years of sampling in the Global Atmospheric Passive Sampling (GAPS) network. Environ. Pollut. 2018, 238, 94–102. [Google Scholar] [CrossRef]
- Bossi, R.; Vorkamp, K.; Skov, H. Concentrations of organochlorine pesticides, polybrominated diphenyl ethers and perfluorinated compounds in the atmosphere of North Greenland. Environ. Pollut. 2016, 217, 4–10. [Google Scholar] [CrossRef]
- Ahrens, L.; Shoeib, M.; Del Vento, S.; Codling, G.; Halsall, C. Polyfluoroalkyl compounds in the Canadian Arctic atmosphere. Environ. Chem. 2011, 8, 399–406. [Google Scholar] [CrossRef]
- Hartz, W.F.; Björnsdotter, M.K.; Yeung, L.W.Y.; Hodson, A.; Thomas, E.R.; Humby, J.D.; Day, C.; Jogsten, I.E.; Kärrman, A.; Kallenborn, R. Levels and distribution profiles of Per- and Polyfluoroalkyl Substances (PFAS) in a high Arctic Svalbard ice core. Sci. Total Environ. 2023, 871, 161830. [Google Scholar] [CrossRef]
- Thackray, C.P.; Selin, N.E.; Young, C.J. A global atmospheric chemistry model for the fate and transport of PFCAs and their precursors. Environ. Sci. Process. Impacts 2020, 22, 285–293. [Google Scholar] [CrossRef]
- Miner, K.R.; Clifford, H.; Taruscio, T.; Potocki, M.; Solomon, G.; Ritari, M.; Napper, I.E.; Gajurel, A.P.; Mayewski, P.A. Deposition of PFAS ‘forever chemicals’ on Mt. Everest. Sci. Total Environ. 2021, 759, 144421. [Google Scholar] [CrossRef] [PubMed]
- Schellenberger, S.; Hill, P.J.; Levenstam, O.; Gillgard, P.; Cousins, I.T.; Taylor, M.; Blackburn, R.S. Highly fluorinated chemicals in functional textiles can be replaced by re-evaluating liquid repellency and end-user requirements. J. Clean. Prod. 2019, 217, 134–143. [Google Scholar] [CrossRef]
- MacInnis, J.J.; Lehnherr, I.; Muir, D.C.G.; St. Pierre, K.A.; St. Louis, V.L.; Spencer, C.; De Silva, A.O. Fate and Transport of Perfluoroalkyl Substances from Snowpacks into a Lake in the High Arctic of Canada. Environ. Sci. Technol. 2019, 53, 10753–10762. [Google Scholar] [CrossRef] [PubMed]
- MacInnis, J.J.; French, K.; Muir, D.C.G.; Spencer, C.; Criscitiello, A.; De Silva, A.O.; Young, C.J. Emerging investigator series: A 14-year depositional ice record of perfluoroalkyl substances in the High Arctic. Environ. Sci. Process. Impacts 2017, 19, 22–30. [Google Scholar] [CrossRef]
- Pickard, H.M.; Criscitiello, A.S.; Spencer, C.; Sharp, M.J.; Muir, D.C.G.; De Silva, A.O.; Young, C.J. Continuous non-marine inputs of per- and polyfluoroalkyl substances to the High Arctic: A multi-decadal temporal record. Atmos. Chem. Phys. 2018, 18, 5045–5058. [Google Scholar] [CrossRef]
- Casas, G.; Martinez-Varela, A.; Vila-Costa, M.; Jiménez, B.; Dachs, J. Rain Amplification of Persistent Organic Pollutants. Environ. Sci. Technol. 2021, 55, 12961–12972. [Google Scholar] [CrossRef]
- Xie, Z.; Wang, Z.; Magand, O.; Thollot, A.; Ebinghaus, R.; Mi, W.; Dommergue, A. Occurrence of legacy and emerging organic contaminants in snow at Dome C in the Antarctic. Sci. Total Environ. 2020, 741, 140200. [Google Scholar] [CrossRef]
- Chen, M.; Wang, C.; Gao, K.; Wang, X.; Fu, J.; Gong, P.; Wang, Y. Perfluoroalkyl substances in precipitation from the Tibetan Plateau during monsoon season: Concentrations, source regions and mass fluxes. Chemosphere 2021, 282, 131105. [Google Scholar] [CrossRef]
- Kirchgeorg, T.; Dreyer, A.; Gabrielli, P.; Gabrieli, J.; Thompson, L.G.; Barbante, C.; Ebinghaus, R. Seasonal accumulation of persistent organic pollutants on a high altitude glacier in the Eastern Alps. Environ. Pollut. 2016, 218, 804–812. [Google Scholar] [CrossRef]
- Codling, G.; Halsall, C.; Ahrens, L.; Del Vento, S.; Wiberg, K.; Bergknut, M.; Laudon, H.; Ebinghaus, R. The fate of per- and polyfluoroalkyl substances within a melting snowpack of a boreal forest. Environ. Pollut. 2014, 191, 190–198. [Google Scholar] [CrossRef]
- Plassmann, M.M.; Berger, U. Perfluoroalkyl carboxylic acids with up to 22 carbon atoms in snow and soil samples from a ski area. Chemosphere 2013, 91, 832–837. [Google Scholar] [CrossRef] [PubMed]
- Ahrens, L.; Rakovic, J.; Ekdahl, S.; Kallenborn, R. Environmental distribution of per- and polyfluoroalkyl substances (PFAS) on Svalbard: Local sources and long-range transport to the Arctic. Chemosphere 2023, 345, 140463. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Li, Y.; Bu, D.; Fu, J.; Wang, M.; Zhou, W.; Gu, L.; Fu, Y.; Cong, Z.; Hu, B.; et al. Trophic Magnification of Short-Chain Per- and Polyfluoroalkyl Substances in a Terrestrial Food Chain from the Tibetan Plateau. Environ. Sci. Technol. Lett. 2022, 9, 147–152. [Google Scholar] [CrossRef]
- Bangma, J.T.; Reiner, J.; Fry, R.C.; Manuck, T.; McCord, J.; Strynar, M.J. Identification of an Analytical Method Interference for Perfluorobutanoic Acid in Biological Samples. Environ. Sci. Technol. Lett. 2021, 8, 1085–1090. [Google Scholar] [CrossRef]
- Zhou, J.; Zhao, G.; Li, M.; Li, J.; Liang, X.; Yang, X.; Guo, J.; Wang, T.; Zhu, L. Three-dimensional spatial distribution of legacy and novel poly/perfluoroalkyl substances in the Tibetan Plateau soil: Implications for transport and sources. Environ. Int. 2022, 158, 107007. [Google Scholar] [CrossRef]
- Dai, S.; Zhang, G.; Dong, C.; Yang, R.; Pei, Z.; Li, Y.; Li, A.; Zhang, Q.; Jiang, G. Occurrence, bioaccumulation and trophodynamics of per- and polyfluoroalkyl substances (PFAS) in terrestrial and marine ecosystems of Svalbard, Arctic. Water Res. 2025, 271, 122979. [Google Scholar] [CrossRef]
- Sörengård, M.; Kikuchi, J.; Wiberg, K.; Ahrens, L. Spatial distribution and load of per- and polyfluoroalkyl substances (PFAS) in background soils in Sweden. Chemosphere 2022, 295, 133944. [Google Scholar] [CrossRef]
- Meng, J.; Wang, T.; Song, S.; Wang, P.; Li, Q.; Zhou, Y.; Lu, Y. Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China. Environ. Pollut. 2018, 238, 404–412. [Google Scholar] [CrossRef]
- Lee, Y.-M.; Lee, J.-Y.; Kim, M.-K.; Yang, H.; Lee, J.-E.; Son, Y.; Kho, Y.; Choi, K.; Zoh, K.-D. Concentration and distribution of per- and polyfluoroalkyl substances (PFAS) in the Asan Lake area of South Korea. J. Hazard. Mater. 2020, 381, 120909. [Google Scholar] [CrossRef]
- Cabrerizo, A.; Muir, D.C.G.; De Silva, A.O.; Wang, X.; Lamoureux, S.F.; Lafrenière, M.J. Legacy and Emerging Persistent Organic Pollutants (POPs) in Terrestrial Compartments in the High Arctic: Sorption and Secondary Sources. Environ. Sci. Technol. 2018, 52, 14187–14197. [Google Scholar] [CrossRef]
- Sim, W.; Park, H.; Yoon, J.-K.; Kim, J.-I.; Oh, J.-E. Characteristic distribution patterns of perfluoroalkyl substances in soils according to land-use types. Chemosphere 2021, 276, 130167. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Jiao, X.-C.; Gai, N.; Li, X.-J.; Wang, X.-C.; Lu, G.-H.; Piao, H.-T.; Rao, Z.; Yang, Y.-L. Perfluorinated compounds in soil, surface water, and groundwater from rural areas in eastern China. Environ. Pollut. 2016, 211, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Seo, S.-H.; Son, M.-H.; Shin, E.-S.; Choi, S.-D.; Chang, Y.-S. Matrix-specific distribution and compositional profiles of perfluoroalkyl substances (PFASs) in multimedia environments. J. Hazard. Mater. 2019, 364, 19–27. [Google Scholar] [CrossRef]
- Shan, G.; Xiang, Q.; Feng, X.; Wu, W.; Yang, L.; Zhu, L. Occurrence and sources of per- and polyfluoroalkyl substances in the ice-melting lakes of Larsemann Hills, East Antarctica. Sci. Total Environ. 2021, 781, 146747. [Google Scholar] [CrossRef] [PubMed]
- Tang, K.H.D. Interactions of microplastics with persistent organic pollutants and the ecotoxicological effects: A review. Trop. Aquat. Soil Pollut. 2021, 1, 24–34. [Google Scholar] [CrossRef]
- Choy, E.S.; Elliott, K.H.; Esparza, I.; Patterson, A.; Letcher, R.J.; Fernie, K.J. Potential disruption of thyroid hormones by perfluoroalkyl acids in an Arctic seabird during reproduction. Environ. Pollut. 2022, 305, 119181. [Google Scholar] [CrossRef]
- Herzke, D.; Nikiforov, V.; Yeung, L.W.Y.; Moe, B.; Routti, H.; Nygård, T.; Gabrielsen, G.W.; Hanssen, L. Targeted PFAS analyses and extractable organofluorine—Enhancing our understanding of the presence of unknown PFAS in Norwegian wildlife. Environ. Int. 2023, 171, 107640. [Google Scholar] [CrossRef]
- Kowalczyk, J.; Flor, M.; Karl, H.; Lahrssen-Wiederholt, M. Perfluoroalkyl substances (PFAS) in beaked redfish (Sebastes mentella) and cod (Gadus morhua) from arctic fishing grounds of Svalbard. Food Addit. Contam. Part B 2020, 13, 34–44. [Google Scholar] [CrossRef]
- Carlsson, P.; Crosse, J.D.; Halsall, C.; Evenset, A.; Heimstad, E.S.; Harju, M. Perfluoroalkylated substances (PFASs) and legacy persistent organic pollutants (POPs) in halibut and shrimp from coastal areas in the far north of Norway: Small survey of important dietary foodstuffs for coastal communities. Mar. Pollut. Bull. 2016, 105, 81–87. [Google Scholar] [CrossRef]
- Gebbink, W.A.; Bossi, R.; Rigét, F.F.; Rosing-Asvid, A.; Sonne, C.; Dietz, R. Observation of emerging per- and polyfluoroalkyl substances (PFASs) in Greenland marine mammals. Chemosphere 2016, 144, 2384–2391. [Google Scholar] [CrossRef]
- Boisvert, G.; Sonne, C.; Rigét, F.F.; Dietz, R.; Letcher, R.J. Bioaccumulation and biomagnification of perfluoroalkyl acids and precursors in East Greenland polar bears and their ringed seal prey. Environ. Pollut. 2019, 252, 1335–1343. [Google Scholar] [CrossRef]
- Roos, A.M.; Gamberg, M.; Muir, D.; Kärrman, A.; Carlsson, P.; Cuyler, C.; Lind, Y.; Bossi, R.; Rigét, F. Perfluoroalkyl substances in circum-ArcticRangifer: Caribou and reindeer. Environ. Sci. Pollut. Res. 2022, 29, 23721–23735. [Google Scholar] [CrossRef]
Lake and Location | Total PFAS (ng/L for Water and ng/g w.w for Sediment) | Source of Contamination |
---|---|---|
With local contamination | ||
Meretta Lake, Cornwallis Island, Canada | Up to 153 (water); 47 (sediment) | Nearby airport contamination |
Resolute Lake, Cornwallis Island, Canada | 26 (water); 64 (sediment) | Nearby airport contamination |
Hulun Lake, Inner Mongolia, China | 3.67–8.84 (water); 0.97–1.73 (sediment) | Industrial and consumer products |
Tahoe Keys Marina, Lake Tahoe, USA | 10–25 (water) | Urban runoff from South Lake Tahoe City |
With no local contamination | ||
Canadian Arctic Lakes | 0.027–0.754 (water) | Atmospheric deposition |
Sierra Nevada Alpine Lakes, USA | <1 ng/L (water) | No direct contamination |
Deception Island, Antarctica | 0.28–3.9 (water) | Atmospheric deposition |
East Antarctica (Larsemann Hills) Lakes | <0.027 (water) | Mainly atmospheric deposition, possible local discharge |
Lake Hazen, Ellesmere Island, Canada | 0.006–0.161 (sediment) | Atmospheric deposition |
Lake B35, Central Nunavut, Canada | 0.044–1.52 (sediment) | Historical atmospheric deposition |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tang, K.H.D. Hidden Contaminants: The Presence of Per- and Polyfluoroalkyl Substances in Remote Regions. Environments 2025, 12, 88. https://doi.org/10.3390/environments12030088
Tang KHD. Hidden Contaminants: The Presence of Per- and Polyfluoroalkyl Substances in Remote Regions. Environments. 2025; 12(3):88. https://doi.org/10.3390/environments12030088
Chicago/Turabian StyleTang, Kuok Ho Daniel. 2025. "Hidden Contaminants: The Presence of Per- and Polyfluoroalkyl Substances in Remote Regions" Environments 12, no. 3: 88. https://doi.org/10.3390/environments12030088
APA StyleTang, K. H. D. (2025). Hidden Contaminants: The Presence of Per- and Polyfluoroalkyl Substances in Remote Regions. Environments, 12(3), 88. https://doi.org/10.3390/environments12030088