Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

Search Results (497)

Search Parameters:
Keywords = arctic ocean

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 6015 KB  
Article
Development and Application of a Polar Ice-Based Ecological Observation Buoy
by Xing Han, Guoxuan Liu, Liwei Kou and Yinke Dou
J. Mar. Sci. Eng. 2025, 13(12), 2387; https://doi.org/10.3390/jmse13122387 - 16 Dec 2025
Viewed by 222
Abstract
Addressing the current situation where in situ observations in the Arctic primarily target physical and a few biogeochemical parameters, leaving a gap in systematic direct observation of biological populations beneath sea ice, this study developed a polar ice-based ecological observation buoy system. Building [...] Read more.
Addressing the current situation where in situ observations in the Arctic primarily target physical and a few biogeochemical parameters, leaving a gap in systematic direct observation of biological populations beneath sea ice, this study developed a polar ice-based ecological observation buoy system. Building upon conventional meteorological and oceanographic hydrographic sensors, this system innovatively integrates an underwater imaging module and key technologies such as machine learning-based automatic fish target recognition and reliable dual-channel satellite data transmission in polar environments. Its successful deployment during the 2025 15th Chinese National Arctic Research Expedition verified the system’s stability. During the initial one-month operation period (designed for a monitoring cycle of not less than one year), the data return rates for conventional and image data reached 100% and 96.8%, respectively, achieving quasi-real-time continuous observation of physical and ecological parameters at the air–sea interface in the Arctic Ocean, and it is capable of acquiring not only physical parameters but also visual observations of under-ice fauna. The system successfully acquired and transmitted images containing suspected biological targets and reference objects, providing the first in situ, image-based biological observation dataset for the central Arctic Ocean. This work establishes a new methodological capability for direct ecological monitoring, offering essential equipment support for quantifying biological presence, studying population dynamics, and informing evidence-based polar ecosystem governance. Full article
(This article belongs to the Section Marine Ecology)
Show Figures

Figure 1

17 pages, 5774 KB  
Article
Different Modes of Wave Response over the Past Four Decades: Coastal vs. Open-Ocean Regions
by Ya-Lin Liang, Zhe-Wen Zheng and Jia-Yi Lin
Atmosphere 2025, 16(12), 1345; https://doi.org/10.3390/atmos16121345 - 27 Nov 2025
Viewed by 455
Abstract
Tropical cyclone-induced waves (TCWs) are projected to intensify under global warming, with recent evidence suggesting that their growth outpaces the increase in surface winds. Yet, how TCWs differ between coastal and open-ocean environments remains poorly understood. Here, we investigate TCW characteristics during two [...] Read more.
Tropical cyclone-induced waves (TCWs) are projected to intensify under global warming, with recent evidence suggesting that their growth outpaces the increase in surface winds. Yet, how TCWs differ between coastal and open-ocean environments remains poorly understood. Here, we investigate TCW characteristics during two climatic periods (1979–2000 and 2001–2023) using a coupled analysis of buoy observations and ERA5 reanalysis. Our results reveal a striking contrast: while open-ocean TCWs exhibited a pronounced intensification of up to 19% (~74 cm) over the past four decades, coastal TCWs show only a muted increase of 26 cm (~8%). This discrepancy is primarily linked to weaker wind forcing and a contraction of effective fetch in coastal regions. On a broader scale, global wave heights (GWs) demonstrate strong temporal and regional variability. The 1979–2000 period featured widespread increases exceeding 10 cm per decade, whereas 2001–2023 displayed pronounced regional disparities, with declines in the Pacific and Indian Oceans but increases in the North Atlantic, Southern Ocean, and Arctic. Notably, the Arctic exhibits a significant rise in extreme wave heights, consistent with reduced ice cover and enhanced wind-driven fetch, highlighting critical feedback to global warming. These findings underscore the importance of distinguishing coastal from open-ocean wave responses when assessing future hazards. By revealing the divergent trajectories of TCWs and GWs under climate change, our study provides a refined framework for understanding storm-induced risks and for improving projections of wave-driven coastal impacts. Full article
(This article belongs to the Section Climatology)
Show Figures

Figure 1

19 pages, 2617 KB  
Article
Snow and Sea Ice Melt Enhance Under-Ice pCO2 Undersaturation in Arctic Waters
by Josefa Verdugo, Eugenio Ruiz-Castillo, Søren Rysgaard, Wieter Boone, Tim Papakyriakou, Nicolas-Xavier Geilfus and Lise Lotte Sørensen
J. Mar. Sci. Eng. 2025, 13(12), 2257; https://doi.org/10.3390/jmse13122257 - 27 Nov 2025
Viewed by 328
Abstract
The decline in Arctic summer sea ice alters air–sea gas exchange. Because the Arctic Ocean accounts for 5%–14% of global oceanic carbon uptake, understanding how sea ice melt impacts the ocean’s carbon sink capacity is central to constraining future fluxes. In this study, [...] Read more.
The decline in Arctic summer sea ice alters air–sea gas exchange. Because the Arctic Ocean accounts for 5%–14% of global oceanic carbon uptake, understanding how sea ice melt impacts the ocean’s carbon sink capacity is central to constraining future fluxes. In this study, we focus on Young Sound-Tyrolerfjord in Northeast Greenland to examine the sea ice−ocean interaction during the transition from melt onset to melt pond drainage. High-frequency measurements of partial pressure of CO2 (pCO2) and seawater physical properties were taken 2.5 m below the sea ice. Our results reveal that pCO2 in the seawater was undersaturated (248–354 μatm) compared to the atmosphere (401 μatm), showing that the seawater has the potential to take up atmospheric CO2 as the sea ice breaks up. The pCO2 undersaturation was attributed to dilution resulting from mixing meltwater from snow and sea ice with the under-ice seawater. Additionally, the drainage of melt pond water that had been in contact with the atmosphere into the under-ice seawater further lowered pCO2. Melt pond drainage represents an initial connection between the atmosphere and under-ice seawater through meter-thick sea ice during the summer thaw. Our study demonstrates that snow and sea ice melt reduce pCO2 in under-ice seawater, enhancing its potential for atmospheric CO2 uptake during sea ice breakup. Full article
Show Figures

Figure 1

16 pages, 2424 KB  
Article
Concern for Highly Pathogenic Avian Influenza Spillover into Cetaceans
by Teresa Pérez-Sánchez, José Carlos Báez and Carolina Johnstone
Viruses 2025, 17(12), 1536; https://doi.org/10.3390/v17121536 - 24 Nov 2025
Viewed by 1189
Abstract
Influenza A virus (IAV) has a wide range of avian and mammalian hosts, leading to disease outbreaks and increasing the risk of panzootics and pandemics. Subtype H5N1 of clade 2.3.4.4b is causing the current high pathogenicity avian influenza (HPAI) panzootic. Environmental changes are [...] Read more.
Influenza A virus (IAV) has a wide range of avian and mammalian hosts, leading to disease outbreaks and increasing the risk of panzootics and pandemics. Subtype H5N1 of clade 2.3.4.4b is causing the current high pathogenicity avian influenza (HPAI) panzootic. Environmental changes are fuelling the spread of HPAI H5N1 in wildlife worldwide, with occasional spillover events from seabirds to cetaceans. Sampling difficulties and limited tests available for diagnosis are a challenge to cetacean virology research. Understanding the risk of HPAI outbreaks in cetaceans requires a comprehensive examination of events of IAV infection. Documented cases relate to IAV subtypes H1N3, H13N2, H13N9, and H5N1 and have been reported in cetaceans sampled in the Pacific, Atlantic, and Arctic Oceans. The number of H5N1 IAV isolated from cetaceans is increasing and affects six host species of the families Delphinidae and Phocoenidae of the suborder Odontoceti. The analysis of 40 molecular markers of viral adaptation to mammals in 21 H5N1 cetacean isolates reveals mutations are present in three viral proteins: hemagglutinin (HA), polymerase basic protein 2 (PB2), and nucleoprotein (NP). Phylogenetic analysis of HA and PB2 sequences isolated from cetaceans and co-occurring cases in seabirds and marine mammals do not support sustained transmission of the virus between cetaceans. IAV H5N1 appears to be reaching cetaceans after spillover from seabirds and other marine mammals. Increasing worldwide surveillance of IAV infection of cetaceans is crucial, as these marine mammals are sentinel species for human pandemic preparedness and key species for marine biodiversity conservation and ecosystem health. Full article
(This article belongs to the Special Issue Influenza Viruses in Wildlife 2026)
Show Figures

Figure 1

23 pages, 6605 KB  
Article
Wintertime Cross-Correlational Structures Between Sea Surface Temperature Anomaly and Atmospheric-and-Oceanic Fields in the East/Japan Sea Under Arctic Oscillation
by Gyuchang Lim and Jong-Jin Park
Fractal Fract. 2025, 9(11), 684; https://doi.org/10.3390/fractalfract9110684 - 23 Oct 2025
Cited by 1 | Viewed by 693
Abstract
The winter Arctic Oscillation (AO) modulates the East Asian climate and the East/Japan Sea (EJS) thermodynamics, yet the local, scale-dependent air–sea couplings remain unclear. Using 30 years of daily fields (1993–2022), we map at each grid point, the cross-persistence and scale-dependent cross-correlations between [...] Read more.
The winter Arctic Oscillation (AO) modulates the East Asian climate and the East/Japan Sea (EJS) thermodynamics, yet the local, scale-dependent air–sea couplings remain unclear. Using 30 years of daily fields (1993–2022), we map at each grid point, the cross-persistence and scale-dependent cross-correlations between sea surface temperature anomalies (SSTA) and (i) atmospheric anomalies, (ii) turbulent heat-flux anomalies (sensible and latent), and (iii) oceanic anomalies. Detrended Fluctuation/Cross-Correlation Analyses (DFA/DCCA, 5–50 days) yield the Hurst exponent (H, hXY) and the DCCA coefficient (ρdcca). Significance is assessed with iterative-AAFT surrogates and Benjamini–Hochberg false discovery rate (FDR). Three robust features emerge: (1) during AO+, the East Korean Bay–Subpolar Front corridor shows large SSTA variance and high long-term memory (H 1.5); (2) turbulent heat-flux anomalies are anti-phased with SSTA and show little cross-persistence; (3) among oceanic fields, SSHA and meridional geostrophic velocity provide the most AO-robust positive coupling. Within a fractal frame, DFA slopes (1<H<2) quantify local self-similarity; interpreting winter anomalies as fBm implies a fractal-dimension proxy D=3H, so AO+ hot spots exhibit D1.5. These fractal maps, together with ρdcca, offer a compact way to pre-locate marine-heatwave-prone regions. The grid-point, FDR-controlled DFA/DCCA approach is transferable to other marginal seas. Full article
(This article belongs to the Special Issue Time-Fractal and Fractional Models in Physics and Engineering)
Show Figures

Figure 1

14 pages, 4613 KB  
Article
Exploring Trends in Earth’s Precipitation Using Satellite-Gauge Estimates from NASA’s GPM-IMERG
by José J. Hernández Ayala and Maxwell Palance
Earth 2025, 6(4), 130; https://doi.org/10.3390/earth6040130 - 17 Oct 2025
Viewed by 1865
Abstract
Understanding global precipitation trends is critical for managing water resources, anticipating extreme events, and assessing the impacts of climate change. This study analyzes spatial and temporal patterns of precipitation from 1998 to 2024 using NASA’s Global Precipitation Measurement Mission (GPM) Integrated Multi-satellite Retrievals [...] Read more.
Understanding global precipitation trends is critical for managing water resources, anticipating extreme events, and assessing the impacts of climate change. This study analyzes spatial and temporal patterns of precipitation from 1998 to 2024 using NASA’s Global Precipitation Measurement Mission (GPM) Integrated Multi-satellite Retrievals for (IMERG) Version 7, which merges satellite observations with rain-gauge data at 0.1° resolution. A total of 324 monthly datasets were aggregated into annual and seasonal composites to evaluate annual and seasonal trends in global precipitation. The non-parametric Mann–Kendall test was applied at the pixel scale to detect statistically significant monotonic trends, and Sen’s slope estimator method was used to quantify the magnitude of change in mean annual and seasonal global precipitation. Results reveal robust and geographically consistent patterns: significant wetting trends are evident in high-latitude regions, with the Arctic and Southern Oceans showing the strongest increases across multiple seasons, including +0.04 mm/day in December–January–February for the Arctic Ocean and +0.04 mm/day in June–July–August for the Southern Ocean. Northern China also demonstrates persistent increases, aligned with recent intensification of extreme late-season precipitation. In contrast, significant drying trends are detected in the tropical East Pacific (up to −0.02 mm/day), northern South America, and some areas in central-southern Africa, highlighting regions at risk of sustained hydroclimatic stress. The North Atlantic south of Greenland emerges as a summer drying hotspot, consistent with Greenland Ice Sheet melt enhancing stratification and reducing precipitation. Collectively, the findings underscore a dual pattern of wetting at high latitudes and drying in tropical belts, emphasizing the role of polar amplification, ocean–atmosphere interactions, and climate variability in shaping Earth’s precipitation dynamics. Full article
Show Figures

Figure 1

18 pages, 1722 KB  
Article
Transformation of Phytoplankton Communities in the High Arctic: Ecological Properties of Species
by Larisa Pautova, Vladimir Silkin, Marina Kravchishina and Alexey Klyuvitkin
Diversity 2025, 17(10), 703; https://doi.org/10.3390/d17100703 - 8 Oct 2025
Viewed by 817
Abstract
During the 84th cruise of the R/V Akademik Mstislav Keldysh in August 2021, patterns of phytoplankton composition transformation were revealed along a northward gradient. The study involved three transects in the Fram Strait and adjacent Arctic waters: a southern transect (from the Barents [...] Read more.
During the 84th cruise of the R/V Akademik Mstislav Keldysh in August 2021, patterns of phytoplankton composition transformation were revealed along a northward gradient. The study involved three transects in the Fram Strait and adjacent Arctic waters: a southern transect (from the Barents Sea shelf to the Greenland shelf), a middle transect across the Fram Strait, and a northern transect along the ice edge. Ten species of diatoms and eleven of dinoflagellates were identified, and their ecological preferences were characterized by determining the minimum, maximum, mean, and median values for abundance, biomass, depth of the biomass maximum, salinity, temperature, and the concentrations and ratios of nitrogen, phosphorus, and silicon. Significant gradients in temperature, salinity, silicon, and nitrogen concentrations were recorded along the south–north direction in the study area. The phytoplankton community responds to these changing factors through restructuring. Dinoflagellates predominantly dominate the southern and middle transects, whereas large diatoms make a substantial contribution to the phytoplankton biomass in the northern transect. Diatom biomass is determined by nitrogen concentration. The dependence of dinoflagellate biomass on that of small flagellates confirms the importance of mixotrophic nutrition. A hypothesis is proposed that the most probable criterion for the selective selection of diatoms northward is the half-saturation constant for nitrogen uptake, while for dinoflagellates, it is temperature. Full article
(This article belongs to the Section Marine Diversity)
Show Figures

Figure 1

21 pages, 7702 KB  
Article
Mechanisms and Predictability of Beaufort Sea Ice Retreat Revealed by Coupled Modeling and Remote Sensing Data
by Hongtao Nie, Zijia Zheng, Shuo Wei, Wei Zhao and Xiaofan Luo
Remote Sens. 2025, 17(19), 3286; https://doi.org/10.3390/rs17193286 - 25 Sep 2025
Viewed by 687
Abstract
The Beaufort Sea has experienced significant sea ice retreat in recent decades, driven by both thermodynamic and dynamic processes. This study investigates the drivers and predictability of summer sea ice retreat in the Beaufort Sea by integrating an ocean–sea ice model with satellite-derived [...] Read more.
The Beaufort Sea has experienced significant sea ice retreat in recent decades, driven by both thermodynamic and dynamic processes. This study investigates the drivers and predictability of summer sea ice retreat in the Beaufort Sea by integrating an ocean–sea ice model with satellite-derived sea ice concentration data and atmospheric reanalysis products. Model diagnostics from 1994 to 2019 reveal that thermodynamic processes dominate annual sea ice loss (approximately 90%), with vertical heat flux accounting for roughly 85% of total oceanic heat input. The summer sea ice minimum area and the day of opening, derived from either model results and satellite observations, have a strong correlation with R2 = 0.60 and R2 = 0.77, respectively, enabling regression equations based solely on remote sensing data. Further multiple linear regression incorporating preceding winter (January to April) accumulated temperature and easterly wind yields moderately robust forecasts of minimum sea ice area (R2 = 0.49) during 1998–2020. Additionally, analysis of reanalysis wind data shows that the timing of minimum sea ice area is significantly influenced by the frequency and intensity of sub-seasonal easterly wind events during melt season. These results demonstrate the critical importance of remote sensing in monitoring Arctic sea ice variability and enhancing seasonal prediction capability under a rapidly changing climate. Full article
(This article belongs to the Section Ocean Remote Sensing)
Show Figures

Figure 1

13 pages, 12589 KB  
Article
When Big Rivers Started to Drain to the Arctic Basin: A View from the Kara Sea
by Victoria Ershova, Daniel Stockli, Carmen Gaina, Andrey Khudoley and Sergey Shimanskiy
Geosciences 2025, 15(9), 342; https://doi.org/10.3390/geosciences15090342 - 2 Sep 2025
Viewed by 765
Abstract
This study provides new constraints on the paleogeographic evolution of the Arctic during the Mesozoic. U–Pb geochronology of detrital zircon and rutile grains, together with (U–Th)/He zircon thermochronological data from the uppermost Middle Jurassic to Cretaceous strata of the Sverdrup well in the [...] Read more.
This study provides new constraints on the paleogeographic evolution of the Arctic during the Mesozoic. U–Pb geochronology of detrital zircon and rutile grains, together with (U–Th)/He zircon thermochronological data from the uppermost Middle Jurassic to Cretaceous strata of the Sverdrup well in the Kara Sea, reveals a major shift in sediment provenance. Two distinct age populations of detrital zircon define this transition: Group 1 (Middle Jurassic–Hauterivian) shows dominant Neoproterozoic–Cambrian (ca. 700–500 Ma) and Paleozoic (ca. 350–290 Ma) peaks, whereas Group 2 (Aptian–Albian) is characterized by prominent Paleoproterozoic (ca. 1980–1720 Ma), Paleozoic (ca. 350–255 Ma), and Early Mesozoic (ca. 240–115 Ma) ages. Corresponding variations in (U–Th)/He zircon ages—from a Triassic peak (~225 Ma) in Group 1 to a dominant Early Cretaceous peak (~140 Ma) in Group 2—support a switch from a proximal to more distal sediment source. We propose that the emergence of large continent-scale river systems transported clastic material from the southern margin of the Siberian Craton to the Arctic Ocean starting in the late Early Cretaceous. The development of a significant freshwater supply potentially initiated a thick low-salinity layer within the surface waters of the central Arctic Ocean, possibly leading to the onset of a strong salinity stratification of near-surface water masses as in the modern Arctic Ocean. Full article
(This article belongs to the Section Sedimentology, Stratigraphy and Palaeontology)
Show Figures

Figure 1

21 pages, 8381 KB  
Article
Wind-Induced Water Transport and Circulation Structure in the Laptev Sea–East Siberian Sea
by Xiangyun Liu, Yanjun Wu and Xiaoyu Wang
Atmosphere 2025, 16(9), 1001; https://doi.org/10.3390/atmos16091001 - 24 Aug 2025
Viewed by 958
Abstract
Variability in the Laptev Sea–East Siberian Sea circulation system modulates freshwater circulation in the Arctic Ocean, yet details of these wind-driven mechanisms remain poorly understood. Based on in situ observations from the 2018 Sino-Russian joint Arctic expedition, this study investigates the modulatory influence [...] Read more.
Variability in the Laptev Sea–East Siberian Sea circulation system modulates freshwater circulation in the Arctic Ocean, yet details of these wind-driven mechanisms remain poorly understood. Based on in situ observations from the 2018 Sino-Russian joint Arctic expedition, this study investigates the modulatory influence of wind on circulation structures and freshwater transport in the study area and examines the long-term variation characteristics of this circulation and its inherent connection with the Arctic wind. In situ measurements confirm two freshwater transport pathways: a coastal-current route and a geostrophic slope-current route. As the Beaufort High moves toward the Canadian Basin, it shifts wind patterns from anticyclonic to cyclonic, which regulates the transport of shelf water by influencing the prevailing wind direction. Furthermore, our analysis identifies two main modes of long-term changes in summer surface circulation: the first mode characterizes the coastal-current architecture, while the second mode delineates slope-current configurations. Crucially, large-scale modes of the Arctic wind play an important role in regulating circulation. Its first mode corresponds to the summer anticyclonic circulation pattern of the Arctic Ocean Oscillation, which drives the eastward strengthening of the coastal current, while the third mode presents a mechanism similar to the Arctic Dipole, which promotes the development of the slope current by enhancing the convergence of the polar current and wind. This has led to the long-term strengthening of the slope current. Full article
(This article belongs to the Section Biosphere/Hydrosphere/Land–Atmosphere Interactions)
Show Figures

Figure 1

16 pages, 3246 KB  
Article
High-Abundance Heterotrophic Bacteria Inhabit the 85° E Hydrothermal Plume of the Explosive Volcanic Zone at Gakkel Ridge, Arctic Ocean
by Juan Yu, Yejian Wang, Xiqiu Han, Hanlin Wang, Tao Zhang, Weiwei Ding, Chi Yang, Yinxia Fang and Jiabiao Li
Biology 2025, 14(8), 1036; https://doi.org/10.3390/biology14081036 - 12 Aug 2025
Cited by 1 | Viewed by 951
Abstract
While under-ice submarine hydrothermal systems provide critical insights into extremophile adaptations, the ecological impacts of explosive volcanism on these ecosystems remain poorly constrained. We successfully detected evidence of hydrothermal activities and explosive volcanism at 85° E, the eastern volcanic zone, ultra-slow spreading Gakkel [...] Read more.
While under-ice submarine hydrothermal systems provide critical insights into extremophile adaptations, the ecological impacts of explosive volcanism on these ecosystems remain poorly constrained. We successfully detected evidence of hydrothermal activities and explosive volcanism at 85° E, the eastern volcanic zone, ultra-slow spreading Gakkel Ridge. Hydrothermal plume, surface sediments, and volcanic glass samples were systematically collected to investigate the diversity of microbial communities. Our results revealed two distinct microbial regimes in hydrothermal plume: (1) chemoautotrophic bacteria (Sulfurimonas and SUP05_cluster), prevalent in global basaltic hydrothermal systems, potentially involved in carbon fixation through the CBB and rTCA cycles and (2) Alcanivorax (up to 82.5%), known for degrading hydrocarbons. Sediment profiles showed a depth-dependent decline of Alcanivorax, tightly coupled with TOC (1.05% to 0.45%, r = 0.75, p < 0.05). Additionally, the Alcanivorax MAGs demonstrated their potential in degrading various types of organic carbon, especially in alkane degradation. Strikingly, this pattern contrasts with hydrothermal plumes from effusive volcanic zones (Aurora and Polaris regions), where Alcanivorax was undetectable. We speculate that the surge of Alcanivorax in the 85° E hydrothermal plume was associated with the violent disturbances caused by explosive volcanism. This mechanism accelerates microbial-mediated carbon turnover rates compared to a stable hydrothermal ecosystem. Full article
Show Figures

Figure 1

28 pages, 7822 KB  
Article
Intelligent Optimization of Waypoints on the Great Ellipse Routes for Arctic Navigation and Segmental Safety Assessment
by Chenchen Jiao, Zhichen Liu, Jiaxin Hou, Jianan Luo and Xiaoxia Wan
J. Mar. Sci. Eng. 2025, 13(8), 1543; https://doi.org/10.3390/jmse13081543 - 11 Aug 2025
Cited by 1 | Viewed by 920
Abstract
A great ellipse route (GER), as one of the fundamental routes for ocean voyages, directly influences the actual voyage distance and the complexity of vessel maneuvering through the location and number of its waypoints. Against the backdrop of global warming, the melting of [...] Read more.
A great ellipse route (GER), as one of the fundamental routes for ocean voyages, directly influences the actual voyage distance and the complexity of vessel maneuvering through the location and number of its waypoints. Against the backdrop of global warming, the melting of Arctic sea ice has accelerated the opening of the Arctic shipping route. This paper addresses the issue of how to reasonably segment and adopt rhumb line routes to approximate the GER in the special navigational environment of the Arctic. Using historical routes, recommended routes, and geospatial data that have passed through the Arctic shipping lane as constraints, this paper proposes a waypoint optimization model based on an adaptive hybrid particle swarm optimization-genetic algorithm (AHPSOGA). Additionally, by integrating Arctic remote sensing ice condition data and the Polar Operational Limit Assessment Risk Indexing System (POLARIS), a safety assessment model tailored for this route has been developed, enabling the quantification of sea ice risks and dynamic evaluation of segment safety. Experimental results indicate that the proposed waypoint optimization model reduces the number of waypoints and voyage distance compared to recommended routes and conventional shipping industry methods. Furthermore, the AHPSOGA algorithm achieves a 16.41% and 19.19% improvement in convergence speed compared to traditional GA and PSO algorithms, respectively. In terms of computational efficiency, the average runtime is improved by approximately 12.00% and 14.53%, respectively. The risk levels of each segment of the optimized route are comparable to those of the recommended Northeast Passage route. This study provides an effective theoretical foundation and technical support for intelligent planning and decision-making for Arctic shipping routes. Full article
(This article belongs to the Special Issue Maritime Transportation Safety and Risk Management)
Show Figures

Figure 1

15 pages, 4650 KB  
Article
Decadal Breakdown of Northeast Pacific SST–Arctic Stratospheric Ozone Coupling
by Tailong Chen and Qixiang Liao
Remote Sens. 2025, 17(16), 2777; https://doi.org/10.3390/rs17162777 - 11 Aug 2025
Viewed by 744
Abstract
Using multiple reanalysis datasets, this study investigates the decadal variability in the relationship between Northeast Pacific Sea surface temperature (SST) and Arctic stratospheric ozone (ASO), with a focus on the role of atmospheric dynamics in mediating this connection. A significant decadal shift is [...] Read more.
Using multiple reanalysis datasets, this study investigates the decadal variability in the relationship between Northeast Pacific Sea surface temperature (SST) and Arctic stratospheric ozone (ASO), with a focus on the role of atmospheric dynamics in mediating this connection. A significant decadal shift is identified around the year 2000, characterized by a weakening of the previously strong negative correlation between January–February SST anomalies and February–March ASO. Prior to 2000 (1980–2000), warm SST in the northeastern Pacific suppressed upward planetary wave propagation, resulting in decreased stratospheric wave activity and a weakened Brewer–Dobson circulation. The weakened BD circulation reduced poleward transport of tropical ozone and heat, yielding a colder, ozone-poor polar vortex. The strong relationship enabled skillful seasonal predictability of ASO using SST precursors in a linear regression model. However, post-2000 (2001–2022), the weakened planetary wave response to SST anomalies resulted in a breakdown of this relationship, yielding non-significant predictive skill. The findings highlight the non-stationary nature of ocean-stratosphere coupling and underscore the importance of accounting for such decadal shifts in climate models to improve projections of Arctic ozone recovery and its surface climate impacts. Full article
Show Figures

Graphical abstract

18 pages, 4602 KB  
Article
Impact of Kara Sea Shelf Water on Seawater Parameters in Subsurface Layer of Laptev Sea
by Andrey Andreev, Irina Pipko, Svetlana Pugach and Igor Semiletov
J. Mar. Sci. Eng. 2025, 13(8), 1522; https://doi.org/10.3390/jmse13081522 - 8 Aug 2025
Viewed by 686
Abstract
Global climate changes impact the Arctic seas by decreasing the sea ice area and changing the inorganic and organic matter supply via rivers and coastal permafrost thawing. Therefore, climate change may affect biogeochemical processes in the Kara Sea (KS) and Laptev Sea (LS), [...] Read more.
Global climate changes impact the Arctic seas by decreasing the sea ice area and changing the inorganic and organic matter supply via rivers and coastal permafrost thawing. Therefore, climate change may affect biogeochemical processes in the Kara Sea (KS) and Laptev Sea (LS), which form the Arctic Transpolar Drift. This study explores the effect of the KS shelf water supply on seawater parameters in the LS in late summer and early fall 2007, 2008, 2018, 2019, and 2024 using ship-borne (temperature, salinity, dissolved oxygen, nutrients, and pH), satellite-derived (sea surface heights, geostrophic current velocities), and model (current velocities) data. The results demonstrate that an inflow of KS shelf water with salinity of 33.0–34.5, high Apparent Oxygen Utilization values (50–110 µM), and increased concentrations of the dissolved inorganic phosphorus (DIP~ 0.7–1.2 µM), dissolved inorganic nitrogen (DIN~ 4–12 µM) and silicic acid (DSi~ 10–18 µM) enriches the subsurface layer of the LS with nutrients. The distributions of Atlantic—derived water (ADW) and KS shelf water in the LS from August to October depend on water dynamics caused by wind and river discharge. High Lena River discharge and westerly (downwelling favorable) winds promoted the supply of the KS shelf water to the LS through Vilkitsky Strait. In the area of the central trough of the LS, the KS shelf water can be modified by mixing with ADW. Mixing ADW with high DIN/DIP ratios (DIN~ 10 µM at DIP of 0.80 µM) and KS shelf water with low DIN/DIP ratios (DIN~ 8 µM at DIP of 0.80 µM) leads to changes in the DIN vs. DIP ratio in the subsurface layer of the LS. Full article
(This article belongs to the Section Marine Environmental Science)
Show Figures

Figure 1

14 pages, 1859 KB  
Article
Into the Blue: An ERC Synergy Grant Resolving Past Arctic Greenhouse Climate States
by Jochen Knies, Gerrit Lohmann, Stijn De Schepper, Monica Winsborrow, Juliane Müller, Mohamed M. Ezat and Petra M. Langebroek
Challenges 2025, 16(3), 36; https://doi.org/10.3390/challe16030036 - 30 Jul 2025
Viewed by 1541
Abstract
The Arctic Ocean is turning blue. Abrupt Arctic warming and amplification is driving rapid sea ice decline and irreversible deglaciation of Greenland. The already emerging, substantial consequences for the planet and society are intensifying and yet, model-based projections lack validatory consensus. To date, [...] Read more.
The Arctic Ocean is turning blue. Abrupt Arctic warming and amplification is driving rapid sea ice decline and irreversible deglaciation of Greenland. The already emerging, substantial consequences for the planet and society are intensifying and yet, model-based projections lack validatory consensus. To date, we cannot anticipate how a blue Arctic will respond to and amplify an increasingly warmer future climate, nor how it will impact the wider planet and society. Climate projections are inconclusive as we critically lack key Arctic geological archives that preserved the answers. This “Arctic Challenge” of global significance can only be addressed by investigating the processes, consequences, and impacts of past “greenhouse” (warmer-than-present) climate states. To address this challenge, the ERC Synergy Grant project Into the Blue (i2B) is undertaking a program of research focused on retrieving new Arctic geological archives of past warmth and key breakthroughs in climate model performance to deliver a ground-breaking, synergistic framework to answer the central question: “Why and what were the global ramifications of a “blue” (ice-free) Arctic during past warmer-than-present climates?” Here, we present the proposed research plan that will be conducted as part of this program. Into the Blue will quantify cryosphere (sea ice and land ice) change in a warmer world that will form the scientific basis for understanding the dynamics of Arctic cryosphere and ocean changes to enable the quantitative assessment of the impact of Arctic change on ocean biosphere, climate extremes, and society that will underpin future cryosphere-inclusive IPCC assessments. Full article
Show Figures

Figure 1

Back to TopTop