Mechanisms and Predictability of Beaufort Sea Ice Retreat Revealed by Coupled Modeling and Remote Sensing Data
Abstract
Highlights
- Model results reveal that thermodynamic processes dominate Beaufort Sea ice retreat (~90%), with vertical heat flux as the primary driver, while both model and satellite-derived Day of Opening (DOO) strongly correlate with minimum sea ice area.
- Multiple regression using remote sensing and reanalysis data (sea ice concentration, temperature, and wind) provides skillful prediction of summer minimum sea ice area (R2 up to 0.49).
- Remote sensing products offer a robust basis for monitoring and forecasting Beaufort Sea summer sea ice variability.
- Improved seasonal prediction capability highlights the growing influence of weather events under thinning ice conditions in a warming Arctic.
Abstract
1. Introduction
2. Materials and Methods
2.1. Sea Ice Concentration and Sea Ice Area
2.2. Wind Speed, Air Temperature and Accumulated Temperature
2.3. The Ocean–Sea Ice Coupled Model
2.4. Diagnostics of Model Results
3. Results
3.1. Dominant Drivers of Sea Ice Retreat in the Beaufort Sea
3.2. Linkage Between the Minimum Sea Ice Area and the Day of Opening
3.3. Associations of the Day of Opening and Preceding Winter Accumulated Temperature and Wind
4. Predictability and Timing of Minimum Sea Ice Area
4.1. Predicting the Minimum Summer Sea Ice Area Based on Preceding Winter Accumulated Temperature and Wind Forcing
4.2. The Influence of Synoptic Processes on the Timing of Minimum Sea Ice Area
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
AT | Accumulated temperature |
CDR | Climate Data Record |
DOC | Day of Closing |
DOO | Day of Opening |
ECMWF | European Center for Medium-Range Weather Forecasts |
ERA5 | ECMWF Reanalysis version 5 |
NASA | National Aeronautics and Space Administration of United States |
NEMO | Nucleus for European Modelling of the Ocean |
NSIDC | National Snow and Ice Data center of USA |
OIFP | Outer ice-free period |
SIA | Sea ice area |
SIAmin | Minimum sea ice area |
SST | Sea surface temperature |
Tmin | Timing of minimum sea ice area |
References
- Meier, W.; Stroeve, J. An Updated Assessment of the Changing Arctic Sea Ice Cover. Oceanography 2022, 24, 162–173. [Google Scholar] [CrossRef]
- Serreze, M.C.; Meier, W.N. The Arctic’s sea ice cover: Trends, variability, predictability, and comparisons to the Antarctic. Ann. N. Y. Acad. Sci. 2019, 1436, 36–53. [Google Scholar]
- Babb, D.G.; Galley, R.J.; Kirillov, S.; Landy, J.C.; Howell, S.E.L.; Stroeve, J.C.; Meier, W.; Ehn, J.K.; Barber, D.G. The Stepwise Reduction of Multiyear Sea Ice Area in the Arctic Ocean Since 1980. J. Geophys. Res. Ocean. 2023, 128, e2023JC020157. [Google Scholar] [CrossRef]
- Sumata, H.; de Steur, L.; Divine, D.V.; Granskog, M.A.; Gerland, S. Regime shift in Arctic Ocean sea ice thickness. Nature 2023, 615, 443–449. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Bi, H.; Huang, H.; Liu, Y.; Liu, Y.; Liang, X.; Fu, M.; Zhang, Z. Satellite-observed trends in the Arctic sea ice concentration for the period 1979–2016. J. Oceanol. Limnol. 2019, 37, 18–37. [Google Scholar] [CrossRef]
- Crépin, A.; Karcher, M.; Gascard, J. Arctic Climate Change, Economy and Society (ACCESS): Integrated perspectives. Ambio 2017, 46, 341–354. [Google Scholar]
- Ardyna, M.; Arrigo, K.R. Phytoplankton dynamics in a changing Arctic Ocean. Nat. Clim. Change 2020, 10, 892–903. [Google Scholar] [CrossRef]
- Barber, D.G.; Hop, H.; Mundy, C.J.; Else, B.; Dmitrenko, I.A.; Tremblay, J.; Ehn, J.K.; Assmy, P.; Daase, M.; Candlish, L.M.; et al. Selected physical, biological and biogeochemical implications of a rapidly changing Arctic Marginal Ice Zone. Prog. Oceanogr. 2015, 139, 122–150. [Google Scholar] [CrossRef]
- Frey, K.E.; Moore, G.W.K.; Cooper, L.W.; Grebmeier, J.M. Divergent patterns of recent sea ice cover across the Bering, Chukchi, and Beaufort seas of the Pacific Arctic Region. Prog. Oceanogr. 2015, 136, 32–49. [Google Scholar] [CrossRef]
- Zhang, Y.; Wei, H.; Lu, Y.; Luo, X.; Hu, X.; Zhao, W. Dependence of Beaufort Sea Low Ice Condition in the Summer of 1998 on Ice Export in the Prior Winter. J. Clim. 2020, 33, 9247–9259. [Google Scholar] [CrossRef]
- Galley, R.J.; Else, B.G.T.; Prinsenberg, S.J.; Babb, D.; Barber, D.G. Summer Sea Ice Concentration, Motion, and Thickness Near Areas of Proposed Offshore Oil and Gas Development in the Canadian Beaufort Sea—2009. Arctic 2013, 66, 105–116. [Google Scholar]
- Cook, A.J.; Dawson, J.; Howell, S.E.L.; Holloway, J.E.; Brady, M. Sea ice choke points reduce the length of the shipping season in the Northwest Passage. Commun. Earth Environ. 2024, 5, 311–362. [Google Scholar] [CrossRef]
- Ma, L.; Fan, J.; Mou, X.; Qian, S.; Xu, J.; Cao, L.; Xu, B.; Yao, B.; Li, X.; Li, Y. Research on Operational Risk for Northwest Passage Cruise Ships Using POLARIS. J. Mar. Sci. Eng. 2025, 13, 1335. [Google Scholar] [CrossRef]
- Fossheim, M.; Primicerio, R.; Johannesen, E.; Ingvaldsen, R.B.; Aschan, M.M.; Dolgov, A.V. Recent warming leads to a rapid borealization of fish communities in the Arctic. Nat. Clim. Change 2015, 5, 673–677. [Google Scholar] [CrossRef]
- Varpe, Ø.; Daase, M.; Kristiansen, T. A fish-eye view on the new Arctic lightscape. ICES J. Mar. Sci. 2015, 72, 2532–2538. [Google Scholar] [CrossRef]
- Steele, M.; Dickinson, S.; Zhang, J.; Lindsay, R.W. Seasonal ice loss in the Beaufort Sea: Toward synchrony and prediction. J. Geophys. Res. Ocean. 2015, 120, 1118–1132. [Google Scholar]
- Babb, D.G.; Landy, J.C.; Barber, D.G.; Galley, R.J. Winter Sea Ice Export from the Beaufort Sea as a Preconditioning Mechanism for Enhanced Summer Melt: A Case Study of 2016. J. Geophys. Res. Ocean. 2019, 124, 6575–6600. [Google Scholar]
- Bailey, E.; Timmermans, M.L. Investigating the Relative Roles of Dynamics and Thermodynamics in Sea-Ice Volume Changes in the Canada Basin. J. Geophys. Res. Ocean. 2025, 130, e2024JC022075. [Google Scholar] [CrossRef]
- Lukovich, J.V.; Stroeve, J.C.; Crawford, A.; Hamilton, L.; Tsamados, M.; Heorton, H.; Massonnet, F. Summer Extreme Cyclone Impacts on Arctic Sea Ice. J. Clim. 2021, 34, 4817–4834. [Google Scholar] [CrossRef]
- Wang, Z.; Walsh, J.; Szymborski, S.; Peng, M. Rapid Arctic Sea Ice Loss on the Synoptic Time Scale and Related Atmospheric Circulation Anomalies. J. Clim. 2020, 33, 1597–1617. [Google Scholar] [CrossRef]
- Simmonds, I.; Burke, C.; Keay, K. Arctic Climate Change as Manifest in Cyclone Behavior. J. Clim. 2008, 21, 5777–5796. [Google Scholar] [CrossRef]
- Serreze, M.C.; Barrett, A.P. The Summer Cyclone Maximum over the Central Arctic Ocean. J. Clim. 2008, 21, 1048–1065. [Google Scholar] [CrossRef]
- Serreze, M.C.; Maslanik, J.A.; Scambos, T.A.; Fetterer, F.; Stroeve, J.; Knowles, K.; Fowler, C.; Drobot, S.; Barry, R.G.; Haran, T.M. A record minimum arctic sea ice extent and area in 2002. Geophys. Res. Lett. 2003, 30, 1110. [Google Scholar] [CrossRef]
- Meier, W.N.; Fetterer, F.; Windnagel, A.K.; Stewart, J.S. NOAA/NSIDC Climate Data Record of Passive Microwave Sea Ice Concentration; (G02202, Version 4). [Data Set]; National Snow and Ice Data Center: Boulder, CO, USA, 2021. [Google Scholar]
- Cavalieri, D.J.; Gloersen, P.; Campbell, W.J. Determination of sea ice parameters with the NIMBUS 7 SMMR. J. Geophys. Res. Atmos. 1984, 89, 5355–5369. [Google Scholar] [CrossRef]
- Comiso, J.C. Characteristics of Arctic winter sea ice from satellite multispectral microwave observations. J. Geophys. Res. Ocean. 1986, 91, 975–994. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Parkinson, C.L.; Gloersen, P.; Zwally, H.J. Sea Ice Concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data; (NSIDC-0051, Version 1). [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 1996. [Google Scholar]
- Comiso, J.C.; Nishio, F. Trends in the sea ice cover using enhanced and compatible AMSR-E, SSM/I, and SMMR data. J. Geophys. Res. Ocean. 2008, 113, C02S07. [Google Scholar] [CrossRef]
- Ogi, M.; Rigor, I.G.; McPhee, M.G.; Wallace, J.M. Summer retreat of Arctic sea ice: Role of summer winds. Geophys. Res. Lett. 2008, 35, L24701. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 monthly averaged data on single levels from 1940 to present. Copernic. Clim. Change Serv. (C3S) Clim. Data Store (CDS) 2023, 10. [Google Scholar] [CrossRef]
- Hallett, S.H.; Jones, R.J.A. Compilation of an accumulated temperature database for use in an environmental information system. Agric. For. Meteorol. 1993, 63, 21–34. [Google Scholar] [CrossRef]
- Madec, G.; the NEMO Team. NEMO Ocean Engine; Notes du Pôle de Modélisation, Institut Pierre-Simon Laplace (IPSL): Paris, France, 2016; Volume 27, p. 386. [Google Scholar]
- Rousset, C.; Vancoppenolle, M.; Madec, G.; Fichefet, T.; Flavoni, S.; Barthélemy, A.; Benshila, R.; Chanut, J.; Levy, C.; Masson, S.; et al. The Louvain-La-Neuve sea ice model LIM3.6: Global and regional capabilities. Geosci. Model Dev. 2015, 8, 2991–3005. [Google Scholar] [CrossRef]
- Vancoppenolle, M.; Fichefet, T.; Goosse, H.; Bouillon, S.; Madec, G.; Maqueda, M.A.M. Simulating the mass balance and salinity of Arctic and Antarctic sea ice. 1. Model description and validation. Ocean Model. 2009, 27, 33–53. [Google Scholar] [CrossRef]
- Madec, G.; Imbard, M. A global ocean mesh to overcome the North Pole singularity. Clim. Dyn. 1996, 12, 381–388. [Google Scholar] [CrossRef]
- Luo, X.; Hu, X.; Nie, H.; Zhao, W.; Zhang, Y.; Wang, Y.; Qin, Y.; Dong, C.; Lu, Y.; Wei, H. Evaluation of hindcast simulation with the ocean and sea-ice model covering the Arctic and adjacent oceans. Hangyang Xuebao 2019, 41, 1–13. (In Chinese) [Google Scholar]
- Dong, C.; Luo, X.; Nie, H.; Zhao, W.; Wei, H. Effect of compressive strength on the performance of the NEMO-LIM model in Arctic Sea ice simulation. J. Oceanol. Limnol. 2023, 41, 1–16. [Google Scholar] [CrossRef]
- Rigor, I.G.; Wallace, J.M.; Colony, R.L. Response of Sea Ice to the Arctic Oscillation. J. Clim. 2002, 15, 2648–2663. [Google Scholar] [CrossRef]
- Hu, X.; Sun, J.; Chan, T.O.; Myers, P.G. Thermodynamic and dynamic ice thickness contributions in the Canadian Arctic Archipelago in NEMO-LIM2 numerical simulations. Cryosphere 2018, 12, 1233–1247. [Google Scholar] [CrossRef]
- Lindsay, R.W.; Zhang, J. The Thinning of Arctic Sea Ice, 1988–2003: Have We Passed a Tipping Point? J. Clim. 2005, 18, 4879–4894. [Google Scholar] [CrossRef]
- Yang, Y.; Nie, H.; Zhang, Y.; Luo, X.; Wei, H.; Zhao, W. Interannual Variability in the Onset Time Distribution of the Open Water in the Kara Sea. J. Clim. 2024, 37, 1367–1381. [Google Scholar] [CrossRef]
- Woodgate, R.A. Increases in the Pacific inflow to the Arctic from 1990 to 2015, and insights into seasonal trends and driving mechanisms from year-round Bering Strait mooring data. Prog. Oceanogr. 2018, 160, 124–154. [Google Scholar] [CrossRef]
- Wang, Y.; Holt, B.; Erick Rogers, W.; Thomson, J.; Shen, H.H. Wind and wave influences on sea ice floe size and leads in the Beaufort and Chukchi Seas during the summer-fall transition 2014. J. Geophys. Res. Ocean. 2016, 121, 1502–1525. [Google Scholar] [CrossRef]
- Perovich, D.K.; Richter-Menge, J.A.; Jones, K.F.; Light, B. Sunlight, water, and ice: Extreme Arctic sea ice melt during the summer of 2007. Geophys. Res. Lett. 2008, 35, L11501. [Google Scholar] [CrossRef]
- Nikolopoulos, A.; Pickart, R.S.; Fratantoni, P.S.; Shimada, K.; Torres, D.J.; Jones, E.P. The western Arctic boundary current at 152°W: Structure, variability, and transport. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2009, 56, 1164–1181. [Google Scholar]
- Nghiem, S.V.; Hall, D.K.; Rigor, I.G.; Li, P.; Neumann, G. Effects of Mackenzie River discharge and bathymetry on sea ice in the Beaufort Sea. Geophys. Res. Lett. 2014, 41, 873–879. [Google Scholar] [CrossRef]
- Lin, P.; Pickart, R.S.; Fissel, D.B.; Borg, K.; Melling, H.; Wiese, F.K. On the nature of wind-forced upwelling and downwelling in Mackenzie Canyon, Beaufort Sea. Prog. Oceanogr. 2021, 198, 102674. [Google Scholar] [CrossRef]
- Zhao, J.; Zhu, D.; Shi, J. Seasonal Variations in Sea Ice and Its Main Driving Factors in the Chukchi Sea. Adv. Mar. Sci. 2003, 21, 123–131. [Google Scholar]
- Steele, M.; Bliss, A.C.; Peng, G.; Meier, W.N.; Dickinson, S. Arctic Sea Ice Seasonal Change and Melt/Freeze Climate Indicators from Satellite Data; (NSIDC-0747, Version 1). [Data Set]; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2019. [Google Scholar]
- Babb, D.G.; Galley, R.J.; Barber, D.G.; Rysgaard, S. Physical processes contributing to an ice free Beaufort Sea during September 2012. J. Geophys. Res. Ocean. 2016, 121, 267–283. [Google Scholar] [CrossRef]
- Maslanik, J.A.; Serreze, M.C.; Agnew, T. On the record reduction in 1998 western Arctic Sea-ice cover. Geophys. Res. Lett. 1999, 26, 1905–1908. [Google Scholar] [CrossRef]
- Perovich, D.K.; Richter-Menge, J.A.; Jones, K.F.; Light, B.; Elder, B.C.; Polashenski, C.; Laroche, D.; Markus, T.; Lindsay, R. Arctic sea-ice melt in 2008 and the role of solar heating. Ann. Glaciol. 2011, 52, 355–359. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, Y.; Nie, H.; Wei, H. Cause of Beaufort Sea low ice condition in the summer of 2019. Haiyang Xuebao 2022, 44, 92–101. (In Chinese) [Google Scholar]
- Dong, C.; Nie, H.; Luo, X.; Wei, H.; Zhao, W. Mechanisms for the link between onset and duration of open water in the Kara Sea. Acta Oceanol. Sin. 2021, 40, 119–128. [Google Scholar] [CrossRef]
- Gu, W.; Shi, P.; Liu, Y.; Xie, F.; Cai, X. The characteristics of temporal and spatial distribution of negative accumulated temperature in Bohai Sea and north Yellow Sea. J. Nat. Resour. 2002, 17, 168–173. [Google Scholar]
- Galley, R.J.; Babb, D.; Ogi, M.; Else, B.G.T.; Geilfus, N.X.; Crabeck, O.; Barber, D.G.; Rysgaard, S. Replacement of multiyear sea ice and changes in the open water season duration in the Beaufort Sea since 2004. J. Geophys. Res. Ocean. 2016, 121, 1806–1823. [Google Scholar] [CrossRef]
- Galley, R.J.; Key, E.; Barber, D.G.; Hwang, B.J.; Ehn, J.K. Spatial and temporal variability of sea ice in the southern Beaufort Sea and Amundsen Gulf: 1980–2004. J. Geophys. Res. Ocean. 2008, 113, 2007JC004553. [Google Scholar] [CrossRef]
- Hutchings, J.K.; Rigor, I.G. Role of ice dynamics in anomalous ice conditions in the Beaufort Sea during 2006 and 2007. J. Geophys. Res. Ocean. 2012, 117, 2011JC007182. [Google Scholar] [CrossRef]
- Keller, M.R.; Piatko, C.; Clemens-Sewall, M.V.; Eager, R.; Foster, K.; Gifford, C.; Rollend, D.; Sleeman, J. Short-Term (7 Day) Beaufort Sea Ice Extent Forecasting with Deep Learning. Artif. Intell. Earth Syst. 2023, 2, e220070. [Google Scholar] [CrossRef]
- Kim, Y.J.; Kim, H.; Han, D.; Lee, S.; Im, J. Prediction of monthly Arctic sea ice concentrations using satellite and reanalysis data based on convolutional neural networks. Cryosphere 2020, 14, 1083–1104. [Google Scholar] [CrossRef]
- Chen, S.; Li, K.; Fu, H.; Wu, Y.C.; Huang, Y. Sea Ice Extent Prediction with Machine Learning Methods and Subregional Analysis in the Arctic. Atmosphere 2023, 14, 1023. [Google Scholar] [CrossRef]
- Andersson, T.R.; Hosking, J.S.; Pérez-Ortiz, M.; Paige, B.; Elliott, A.; Russell, C.; Law, S.; Jones, D.C.; Wilkinson, J.; Phillips, T.; et al. Seasonal Arctic sea ice forecasting with probabilistic deep learning. Nat. Commun. 2021, 12, 5124. [Google Scholar] [CrossRef]
- Ren, Y.; Li, X. Predicting the Daily Sea Ice Concentration on a Subseasonal Scale of the Pan-Arctic During the Melting Season by a Deep Learning Model. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–15. [Google Scholar] [CrossRef]
- Blanchard-Wrigglesworth, E.; Barthélemy, A.; Chevallier, M.; Cullather, R.; Fučkar, N.; Massonnet, F.; Posey, P.; Wang, W.; Zhang, J.; Ardilouze, C.; et al. Multi-model seasonal forecast of Arctic sea-ice: Forecast uncertainty at pan-Arctic and regional scales. Clim. Dyn. 2017, 49, 1399–1410. [Google Scholar] [CrossRef]
- Bushuk, M.; Msadek, R.; Winton, M.; Vecchi, G.A.; Gudgel, R.; Rosati, A.; Yang, X. Skillful regional prediction of Arctic sea ice on seasonal timescales. Geophys. Res. Lett. 2017, 44, 4953–4964. [Google Scholar] [CrossRef]
- Cheng, S.; Chen, Y.; Aydoğdu, A.; Bertino, L.; Carrassi, A.; Rampal, P.; Jones, C.K.R.T. Arctic sea ice data assimilation combining an ensemble Kalman filter with a novel Lagrangian sea ice model for the winter 2019–2020. Cryosphere 2023, 17, 1735–1754. [Google Scholar] [CrossRef]
- Collow, T.W.; Wang, W.; Kumar, A.; Zhang, J. Improving Arctic Sea Ice Prediction Using PIOMAS Initial Sea Ice Thickness in a Coupled Ocean–Atmosphere Model. Mon. Weather Rev. 2015, 143, 4618–4630. [Google Scholar] [CrossRef]
- Yang, Q.; Mu, L.; Wu, X.; Liu, J.; Zheng, F.; Zhang, J.; Li, C. Improving Arctic sea ice seasonal outlook by ensemble prediction using an ice-ocean model. Atmos. Res. 2019, 227, 14–23. [Google Scholar]
- Yaremchuk, M.; Townsend, T.; Panteleev, G.; Hebert, D.; Allard, R. Advancing Short-Term Forecasts of Ice Conditions in the Beaufort Sea. J. Geophys. Res. Ocean. 2019, 124, 807–820. [Google Scholar]
- Lee, G.; Woo, S.; Baek, E.; Kim, J.; Kim, B.; Jeong, J. Statistical seasonal prediction of Arctic sea ice concentration based on spatiotemporal anomaly persistent method. Environ. Res. Lett. 2024, 19, 114060. [Google Scholar] [CrossRef]
- Wang, Y.; Yuan, X.; Bi, H.; Bushuk, M.; Liang, Y.; Li, C.; Huang, H. Reassessing seasonal sea ice predictability of the Pacific-Arctic sector using a Markov model. Cryosphere 2022, 16, 1141–1156. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, D.; Li, C.; Wang, L.; Wang, W. Arctic Sea Ice Seasonal Prediction by a Linear Markov Model. J. Clim. 2016, 29, 8151–8173. [Google Scholar] [CrossRef]
- Ballinger, T.J.; Walsh, J.E.; Bhatt, U.S.; Bieniek, P.A.; Tschudi, M.A.; Brettschneider, B.; Eicken, H.; Mahoney, A.R.; Richter Menge, J.; Shapiro, L.H. Unusual West Arctic Storm Activity During Winter 2020: Another Collapse of the Beaufort High? Geophys. Res. Lett. 2021, 48, e2021GL092518. [Google Scholar] [CrossRef]
- Ye, D.; Li, J.; Huang, F.; Sun, R.; Tang, X.; Li, R. Influence of the preceding August-September-October tropical cyclones over the Western North Pacific on the following spring sea ice in the Beaufort Sea: The bridging role of El Niño. Clim. Dyn. 2024, 62, 6253–6272. [Google Scholar]
- Peng, L.; Zhang, X.; Kim, J.H.; Cho, K.H.; Kim, B.M.; Wang, Z.; Tang, H. Role of Intense Arctic Storm in Accelerating Summer Sea Ice Melt: An In Situ Observational Study. Geophys. Res. Lett. 2021, 48, e2021GL092714. [Google Scholar] [CrossRef]
- Chang, X.; Yan, T.; Zuo, G.; Ji, Q.; Xue, M. Changes in Beaufort High and Their Impact on Sea Ice Motion in the Western Arctic during the Winters of 2001–2020s. J. Mar. Sci. Eng. 2024, 12, 165. [Google Scholar] [CrossRef]
- Rheinlænder, J.W.; Regan, H.; Rampal, P.; Boutin, G.; Ólason, E.; Davy, R. Breaking the Ice: Exploring the Changing Dynamics of Winter Breakup Events in the Beaufort Sea. J. Geophys. Res. Ocean. 2024, 129, e2023JC020395. [Google Scholar]
- Ardhuin, F.; Otero, M.; Merrifield, S.; Grouazel, A.; Terrill, E. Ice Breakup Controls Dissipation of Wind Waves Across Southern Ocean Sea Ice. Geophys. Res. Lett. 2020, 47, e2020GL087699. [Google Scholar] [CrossRef]
- Li, J.; Babanin, A.V.; Liu, Q.; Voermans, J.J.; Heil, P.; Tang, Y. Effects of Wave-Induced Sea Ice Break-Up and Mixing in a High-Resolution Coupled Ice-Ocean Model. J. Mar. Sci. Eng. 2021, 9, 365. [Google Scholar] [CrossRef]
- Li, S.; Babanin, A.; Liu, Q.; Liu, J.; Li, R.; Voermans, J. Effect of ocean surface waves on sea ice using coupled wave–ice–ocean modelling. Ocean Model 2025, 196, 102540. [Google Scholar] [CrossRef]
- Montiel, F.; Squire, V.A. Modelling wave-induced sea ice break-up in the marginal ice zone. Proc. R. Soc. A Math. Phys. Eng. Sci. 2017, 473, 20170258. [Google Scholar] [CrossRef]
- Voermans, J.J.; Rabault, J.; Filchuk, K.; Ryzhov, I.; Heil, P.; Marchenko, A.; Collins III, C.O.; Dabboor, M.; Sutherland, G.; Babanin, A.V. Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up. Cryosphere 2020, 14, 4265–4278. [Google Scholar] [CrossRef]
- Yang, C.; Liu, J.; Chen, D. Understanding the influence of ocean waves on Arctic sea ice simulation: A modeling study with an atmosphere–ocean–wave–sea ice coupled model. Cryosphere 2024, 18, 1215–1239. [Google Scholar] [CrossRef]
- Stone, K.A.; Solomon, S.; Kinnison, D.E. Prediction of Northern Hemisphere Regional Sea Ice Extent and Snow Depth Using Stratospheric Ozone Information. J. Geophys. Res. Atmos. 2020, 125, e2019JD031770. [Google Scholar] [CrossRef]
- Zhang, J.; Tian, W.; Pyle, J.A.; Keeble, J.; Abraham, N.L.; Chipperfield, M.P.; Xie, F.; Yang, Q.; Mu, L.; Ren, H.; et al. Responses of Arctic sea ice to stratospheric ozone depletion. Sci. Bull. 2022, 67, 1182–1190. [Google Scholar] [CrossRef]
Type | Days < 0 | Days ≤ 0σ | Days ≤ −1σ | Days ≤ −2σ |
---|---|---|---|---|
C1 | 94 | 26 * | 12 | 2 |
C2 | 86 | 24 | 9 | 1 |
C3 | 71 | 20 * | 7 | 2 |
Type | 3d Events | 4d Events | 5d Events | 6d Events | 7d Events |
---|---|---|---|---|---|
C1 | 10 | 8 | 7 | 6 | 5 * |
C2 | 9 | 8 | 6 | 5 | 4 |
C3 | 7 | 6 | 5 | 4 | 3 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nie, H.; Zheng, Z.; Wei, S.; Zhao, W.; Luo, X. Mechanisms and Predictability of Beaufort Sea Ice Retreat Revealed by Coupled Modeling and Remote Sensing Data. Remote Sens. 2025, 17, 3286. https://doi.org/10.3390/rs17193286
Nie H, Zheng Z, Wei S, Zhao W, Luo X. Mechanisms and Predictability of Beaufort Sea Ice Retreat Revealed by Coupled Modeling and Remote Sensing Data. Remote Sensing. 2025; 17(19):3286. https://doi.org/10.3390/rs17193286
Chicago/Turabian StyleNie, Hongtao, Zijia Zheng, Shuo Wei, Wei Zhao, and Xiaofan Luo. 2025. "Mechanisms and Predictability of Beaufort Sea Ice Retreat Revealed by Coupled Modeling and Remote Sensing Data" Remote Sensing 17, no. 19: 3286. https://doi.org/10.3390/rs17193286
APA StyleNie, H., Zheng, Z., Wei, S., Zhao, W., & Luo, X. (2025). Mechanisms and Predictability of Beaufort Sea Ice Retreat Revealed by Coupled Modeling and Remote Sensing Data. Remote Sensing, 17(19), 3286. https://doi.org/10.3390/rs17193286