Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = arbovirus–host interactions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1447 KiB  
Review
Emerging Arthropod-Borne Viruses Hijack the Host Cell Cytoskeleton During Neuroinvasion
by Flora De Conto
Viruses 2025, 17(7), 908; https://doi.org/10.3390/v17070908 - 26 Jun 2025
Viewed by 374
Abstract
Arthropod-borne viral infections, ranging from asymptomatic to fatal diseases, are expanding from endemic to nonendemic areas. Climate change, deforestation, and globalization favor their spread. Although arboviral manifestations mainly determine the onset of generalized symptoms, distinct clinical signs have been assessed, depending on the [...] Read more.
Arthropod-borne viral infections, ranging from asymptomatic to fatal diseases, are expanding from endemic to nonendemic areas. Climate change, deforestation, and globalization favor their spread. Although arboviral manifestations mainly determine the onset of generalized symptoms, distinct clinical signs have been assessed, depending on the particular arthropod-borne virus (arbovirus) involved in the infectious process. A number of arboviruses cause neuroinvasive diseases in vertebrate hosts, with acute to chronic outcomes. Long-term neurological sequelae can include cognitive dysfunction and Parkinsonism. To increase knowledge of host interactions with arboviruses, in-depth investigations are needed to highlight how arboviruses exploit a host cell for efficient infection and clarify the molecular alterations underlying human brain diseases. This review focuses on the involvement of host cytoskeletal networks and associated signalling pathways in modulating the neurotropism of emerging arboviruses. A better understanding at the molecular level of the potential for emerging infectious diseases is fundamental for prevention and outbreak control. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Figure 1

17 pages, 1305 KiB  
Review
The Application and Challenges of Brain Organoids in Exploring the Mechanism of Arbovirus Infection
by Baoqiu Cui, Zhijie Wang, Anum Farid, Zeyu Wang, Kaiyue Wei, Naixia Ren, Fengtang Yang and Hong Liu
Microorganisms 2025, 13(6), 1281; https://doi.org/10.3390/microorganisms13061281 - 30 May 2025
Viewed by 593
Abstract
Arboviruses, transmitted by blood-sucking arthropods, are responsible for significant human and animal diseases, including fever, hemorrhagic fever, and encephalitis, posing a serious threat to global public health. Nevertheless, research on the mechanisms of arbovirus infection and the development of therapeutic interventions has been [...] Read more.
Arboviruses, transmitted by blood-sucking arthropods, are responsible for significant human and animal diseases, including fever, hemorrhagic fever, and encephalitis, posing a serious threat to global public health. Nevertheless, research on the mechanisms of arbovirus infection and the development of therapeutic interventions has been impeded. This delay is primarily due to the limitations inherent in current in vitro research models, including cell cultures and animal models. The simplicity of cell types and interspecies differences present significant obstacles to advancing our understanding of arbovirus infection mechanisms and the development of effective drugs. Human brain organoids, derived from human pluripotent stem cells or human embryonic stem cells and cultured in three-dimensional systems, more accurately replicate the extensive neuronal cellular diversity and key characteristics of human neurodevelopment. These organoids serve as an ideal model for investigating the intricate interactions between viruses and human hosts, and providing a novel platform for the development of antiviral drugs. In this review, we summarize how brain organoid models complement classical approaches to accelerate research into the infection mechanisms of arboviruses, with a particular focus on the types of neural cells, key factors, and cellular signaling pathways involved in the arbovirus infection of brain organoids that have been reported. Furthermore, we examine the development of brain organoids, address their current limitations, and propose future directions to enhance the application of brain organoids in the study of arboviral infectious diseases. Full article
(This article belongs to the Collection Feature Papers in Medical Microbiology)
Show Figures

Figure 1

10 pages, 2122 KiB  
Article
Exploring the Interactions between Human microRNAs and the Ilheus Virus Genome
by Joyhare Barbosa Souza and Samir Mansour Moraes Casseb
SynBio 2023, 1(3), 194-203; https://doi.org/10.3390/synbio1030014 - 26 Oct 2023
Viewed by 1734
Abstract
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a fundamental role in the regulation of gene expression in humans. There has been a growing interest in investigating the interactions between human miRNAs and viruses to better understand the underlying mechanisms of the [...] Read more.
MicroRNAs (miRNAs) are small non-coding RNA molecules that play a fundamental role in the regulation of gene expression in humans. There has been a growing interest in investigating the interactions between human miRNAs and viruses to better understand the underlying mechanisms of the immune response and viral pathogenesis. The Ilheus virus, an arbovirus transmitted by mosquitoes, is known to cause disease in humans, with symptoms ranging from mild fever to severe neurological complications. This scientific article aims to explore the potential role of human miRNAs in their association with the genome of the Ilheus virus. Previous research has indicated that miRNAs can affect viral replication and the host’s immune response, playing a critical role in modulating the virus–host interaction. Here, we will investigate the possible interactions between specific human miRNAs and regions of the Ilheus virus genome, focusing on identifying miRNAs that may impact viral replication or the host’s immune response. A search for potential human miRNAs associated with the viral genome of ILHV was conducted through database searches such as miRBase. For the elucidation of targets regulated by these miRNAs, the TargetScan program was adopted. Functional enrichment analysis, inferring the function of genes regulated by miRNAs, was provided by the DAVID software. To elucidate the secondary structure, tools hosted in the RNAFold repositories were employed. In summary, our research has identified miRNAs linked to crucial sections of the Ilheus virus genome. These miRNAs can potentially regulate genes associated with neurological and immune functions. This highlights the intricate interplay between human miRNAs and the Ilheus virus genome, suggesting a pivotal role for these molecules in the host’s response to viral infections. Full article
(This article belongs to the Special Issue Feature Paper Collection in Synthetic Biology)
Show Figures

Figure 1

13 pages, 1268 KiB  
Article
Agua Salud Alphavirus Infection, Dissemination and Transmission in Aedes aegypti Mosquitoes
by Swati V. Jagtap, Jorn Brink, Svea C. Frank, Marlis Badusche, Mayke Leggewie, Vattipally B. Sreenu, Janina Fuss, Esther Schnettler and Mine Altinli
Viruses 2023, 15(5), 1113; https://doi.org/10.3390/v15051113 - 3 May 2023
Cited by 6 | Viewed by 2707
Abstract
Mosquitoes are competent vectors for many important arthropod-borne viruses (arboviruses). In addition to arboviruses, insect-specific viruses (ISV) have also been discovered in mosquitoes. ISVs are viruses that replicate in insect hosts but are unable to infect and replicate in vertebrates. They have been [...] Read more.
Mosquitoes are competent vectors for many important arthropod-borne viruses (arboviruses). In addition to arboviruses, insect-specific viruses (ISV) have also been discovered in mosquitoes. ISVs are viruses that replicate in insect hosts but are unable to infect and replicate in vertebrates. They have been shown to interfere with arbovirus replication in some cases. Despite the increase in studies on ISV–arbovirus interactions, ISV interactions with their hosts and how they are maintained in nature are still not well understood. In the present study, we investigated the infection and dissemination of the Agua Salud alphavirus (ASALV) in the important mosquito vector Aedes aegypti through different infection routes (per oral infection, intrathoracic injection) and its transmission. We show here that ASALV infects the female Ae. aegypti and replicates when mosquitoes are infected intrathoracically or orally. ASALV disseminated to different tissues, including the midgut, salivary glands and ovaries. However, we observed a higher virus load in the brain than in the salivary glands and carcasses, suggesting a tropism towards brain tissues. Our results show that ASALV is transmitted horizontally during adult and larval stages, although we did not observe vertical transmission. Understanding ISV infection and dissemination dynamics in Ae. aegypti and their transmission routes could help the use of ISVs as an arbovirus control strategy in the future. Full article
(This article belongs to the Special Issue Insect-Specific Viruses 2.0)
Show Figures

Figure 1

16 pages, 2682 KiB  
Article
Dengue Exposure and Wolbachia wMel Strain Affects the Fertility of Quiescent Eggs of Aedes aegypti
by Martha Thieme Petersen, Dinair Couto-Lima, Gabriela Azambuja Garcia, Márcio Galvão Pavan, Mariana Rocha David and Rafael Maciel-de-Freitas
Viruses 2023, 15(4), 952; https://doi.org/10.3390/v15040952 - 12 Apr 2023
Cited by 6 | Viewed by 2700
Abstract
(1) Background: The deployment of the bacterium Wolbachia to reduce arbovirus transmission is ongoing in several countries worldwide. When Wolbachia-carrying Aedes aegypti are released and established in the field, females may feed on dengue-infected hosts. The effects of simultaneous exposure on life-history [...] Read more.
(1) Background: The deployment of the bacterium Wolbachia to reduce arbovirus transmission is ongoing in several countries worldwide. When Wolbachia-carrying Aedes aegypti are released and established in the field, females may feed on dengue-infected hosts. The effects of simultaneous exposure on life-history traits of Ae. aegypti to Wolbachia wMel strain and dengue-1 virus DENV-1 remain unclear. (2) Methods: We monitored 4 groups (mosquitoes with either DENV-1 or Wolbachia, coinfected with DENV-1 and Wolbachia, as well as negative controls) to estimate Ae. aegypti survival, oviposition success, fecundity, collapsing and fertility of quiescent eggs for 12 weeks. (3) Results: Neither DENV-1 nor Wolbachia had a significant impact on mosquito survival nor on mosquito fecundity, although the last parameter showed a tendency to decrease with ageing. There was a significant decrease in oviposition success in individuals carrying Wolbachia. Wolbachia infection and storage time significantly increased egg collapse parameter on the egg viability assay, while DENV-1 had a slight protective effect on the first four weeks of storage. (4) Conclusions: Despite limitations, our results contribute to better understanding of the tripartite interaction of virus, bacteria and mosquito that may take place in field conditions and aid in guaranteeing the Wolbachia strategy success. Full article
(This article belongs to the Special Issue Mosquito-Borne Virus Ecology 2.0)
Show Figures

Figure 1

10 pages, 1545 KiB  
Opinion
Discovery of the Role of Tick Salivary Glands in Enhancement of Virus Transmission—Beginning of an Exciting Story
by Pavlína Bartíková, Iveta Štibrániová and Mária Kazimírová
Pathogens 2023, 12(2), 334; https://doi.org/10.3390/pathogens12020334 - 16 Feb 2023
Cited by 2 | Viewed by 2847
Abstract
There is increasing evidence that arthropod-borne pathogens exploit saliva of their vectors during the transmission process to vertebrate hosts. Extensive research of the composition of tick saliva and its role in blood-feeding and transmission of pathogens started in the late 1980s and led [...] Read more.
There is increasing evidence that arthropod-borne pathogens exploit saliva of their vectors during the transmission process to vertebrate hosts. Extensive research of the composition of tick saliva and its role in blood-feeding and transmission of pathogens started in the late 1980s and led to a number of discoveries on the composition and function of salivary molecules, some of which are associated with pathogen transmission. The study by Jones et al. published in 1989 can be ranked among the pioneer works in this field as it demonstrated for the first time the role of tick salivary glands in enhancement of transmission of a tick-borne virus. Thogoto virus was used in the model and subsequently similar results were obtained for tick-borne encephalitis virus. After a relatively silent period of almost 20 years, interest in tick–arbovirus–host interactions emerged again in the 2010s. However, no particular salivary molecule(s) enhancing virus transmission has (have) been identified to date. Intensive research in this field will certainly lead to new discoveries with future implications in the control of transmission of dangerous tick-borne viruses. Full article
(This article belongs to the Special Issue 10th Anniversary of Pathogens—Classic Papers in Tick Research)
Show Figures

Figure 1

40 pages, 4757 KiB  
Systematic Review
Arboviruses in Mammals in the Neotropics: A Systematic Review to Strengthen Epidemiological Monitoring Strategies and Conservation Medicine
by Cinthya García-Romero, Gabriel Alberto Carrillo Bilbao, Juan-Carlos Navarro, Sarah Martin-Solano and Claude Saegerman
Viruses 2023, 15(2), 417; https://doi.org/10.3390/v15020417 - 1 Feb 2023
Cited by 10 | Viewed by 4734
Abstract
Arthropod-borne viruses (arboviruses) are a diverse group of ribonucleic acid (RNA) viruses, with the exception of African swine fever virus, that are transmitted by hematophagous arthropods to a vertebrate host. They are the important cause of many diseases due to their ability to [...] Read more.
Arthropod-borne viruses (arboviruses) are a diverse group of ribonucleic acid (RNA) viruses, with the exception of African swine fever virus, that are transmitted by hematophagous arthropods to a vertebrate host. They are the important cause of many diseases due to their ability to spread in different environments and their diversity of vectors. Currently, there is no information on the geographical distribution of the diseases because the routes of transmission and the mammals (wild or domestic) that act as potential hosts are poorly documented or unknown. We conducted a systematic review from 1967 to 2021 to identify the diversity of arboviruses, the areas, and taxonomic groups that have been monitored, the prevalence of positive records, and the associated risk factors. We identified forty-three arboviruses in nine mammalian orders distributed in eleven countries. In Brazil, the order primates harbor the highest number of arbovirus records. The three most recorded arboviruses were Venezuelan equine encephalitis, Saint Louis encephalitis and West Nile virus. Serum is the most used sample to obtain arbovirus records. Deforestation is identified as the main risk factor for arbovirus transmission between different species and environments (an odds ratio of 1.46 with a 95% confidence interval: 1.34–1.59). The results show an increase in the sampling effort over the years in the neotropical region. Despite the importance of arboviruses for public health, little is known about the interaction of arboviruses, their hosts, and vectors, as some countries and mammalian orders have not yet been monitored. Long-term and constant monitoring allows focusing research on the analysis of the interrelationships and characteristics of each component animal, human, and their environment to understand the dynamics of the diseases and guide epidemiological surveillance and vector control programs. The biodiversity of the Neotropics should be considered to support epidemiological monitoring strategies. Full article
(This article belongs to the Special Issue Zoonotic Viral Diseases: Drivers, Causes, Prevention and Cure)
Show Figures

Figure 1

25 pages, 2364 KiB  
Article
Association of Midgut Bacteria and Their Metabolic Pathways with Zika Infection and Insecticide Resistance in Colombian Aedes aegypti Populations
by Andrea Arévalo-Cortés, Ashish Damania, Yurany Granada, Sara Zuluaga, Rojelio Mejia and Omar Triana-Chavez
Viruses 2022, 14(10), 2197; https://doi.org/10.3390/v14102197 - 6 Oct 2022
Cited by 9 | Viewed by 4446
Abstract
Introduction: Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015–16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito’s viral transmission is influenced by microbiota abundance and [...] Read more.
Introduction: Aedes aegypti is the vector of several arboviruses such as dengue, Zika, and chikungunya. In 2015–16, Zika virus (ZIKV) had an outbreak in South America associated with prenatal microcephaly and Guillain-Barré syndrome. This mosquito’s viral transmission is influenced by microbiota abundance and diversity and its interactions with the vector. The conditions of cocirculation of these three arboviruses, failure in vector control due to insecticide resistance, limitations in dengue management during the COVID-19 pandemic, and lack of effective treatment or vaccines make it necessary to identify changes in mosquito midgut bacterial composition and predict its functions through the infection. Its study is fundamental because it generates knowledge for surveillance of transmission and the risk of outbreaks of these diseases at the local level. Methods: Midgut bacterial compositions of females of Colombian Ae. aegypti populations were analyzed using DADA2 Pipeline, and their functions were predicted with PICRUSt2 analysis. These analyses were done under the condition of natural ZIKV infection and resistance to lambda–cyhalothrin, alone and in combination. One-step RT-PCR determined the percentage of ZIKV-infected females. We also measured the susceptibility to the pyrethroid lambda–cyhalothrin and evaluated the presence of the V1016I mutation in the sodium channel gene. Results: We found high ZIKV infection rates in Ae. aegypti females from Colombian rural municipalities with deficient water supply, such as Honda with 63.6%. In the face of natural infection with an arbovirus such as Zika, the diversity between an infective and non-infective form was significantly different. Bacteria associated with a state of infection with ZIKV and lambda–cyhalothrin resistance were detected, such as the genus Bacteroides, which was related to functions of pathogenicity, antimicrobial resistance, and bioremediation of insecticides. We hypothesize that it is a vehicle for virus entry, as it is in human intestinal infections. On the other hand, Bello, the only mosquito population classified as susceptible to lambda–cyhalothrin, was associated with bacteria related to mucin degradation functions in the intestine, belonging to the Lachnospiraceae family, with the genus Dorea being increased in ZIKV-infected females. The Serratia genus presented significantly decreased functions related to phenazine production, potentially associated with infection control, and control mechanism functions for host defense and quorum sensing. Additionally, Pseudomonas was the genus principally associated with functions of the degradation of insecticides related to tryptophan metabolism, ABC transporters with a two-component system, efflux pumps, and alginate synthesis. Conclusions: Microbiota composition may be modulated by ZIKV infection and insecticide resistance in Ae. aegypti Colombian populations. The condition of resistance to lambda–cyhalothrin could be inducing a phenome of dysbiosis in field Ae. aegypti affecting the transmission of arboviruses. Full article
Show Figures

Figure 1

13 pages, 1796 KiB  
Article
Multiple Salivary Proteins from Aedes aegypti Mosquito Bind to the Zika Virus Envelope Protein
by Paola Carolina Valenzuela-Leon, Gaurav Shrivastava, Ines Martin-Martin, Jenny C. Cardenas, Berlin Londono-Renteria and Eric Calvo
Viruses 2022, 14(2), 221; https://doi.org/10.3390/v14020221 - 24 Jan 2022
Cited by 13 | Viewed by 5529
Abstract
Aedes aegypti mosquitoes are important vectors of several debilitating and deadly arthropod-borne (arbo) viruses, including Yellow Fever virus, Dengue virus, West Nile virus and Zika virus (ZIKV). Arbovirus transmission occurs when an infected mosquito probes the host’s skin in search of a blood [...] Read more.
Aedes aegypti mosquitoes are important vectors of several debilitating and deadly arthropod-borne (arbo) viruses, including Yellow Fever virus, Dengue virus, West Nile virus and Zika virus (ZIKV). Arbovirus transmission occurs when an infected mosquito probes the host’s skin in search of a blood meal. Salivary proteins from mosquitoes help to acquire blood and have also been shown to enhance pathogen transmission in vivo and in vitro. Here, we evaluated the interaction of mosquito salivary proteins with ZIKV by surface plasmon resonance and enzyme-linked immunosorbent assay. We found that three salivary proteins AAEL000793, AAEL007420, and AAEL006347 bind to the envelope protein of ZIKV with nanomolar affinities. Similar results were obtained using virus-like particles in binding assays. These interactions have no effect on viral replication in cultured endothelial cells and keratinocytes. Additionally, we found detectable antibody levels in ZIKV and DENV serum samples against the recombinant proteins that interact with ZIKV. These results highlight complex interactions between viruses, salivary proteins and antibodies that could be present during viral transmissions. Full article
(This article belongs to the Special Issue Virus-Vector Interactions)
Show Figures

Figure 1

28 pages, 10806 KiB  
Article
Uncovering the Worldwide Diversity and Evolution of the Virome of the Mosquitoes Aedes aegypti and Aedes albopictus
by Rhys Parry, Maddie E James and Sassan Asgari
Microorganisms 2021, 9(8), 1653; https://doi.org/10.3390/microorganisms9081653 - 3 Aug 2021
Cited by 31 | Viewed by 8983
Abstract
Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the Asian tiger mosquito, are the most significant vectors of dengue, Zika, and Chikungunya viruses globally. Studies examining host factors that control arbovirus transmission demonstrate that insect-specific viruses (ISVs) can modulate mosquitoes’ [...] Read more.
Aedes aegypti, the yellow fever mosquito, and Aedes albopictus, the Asian tiger mosquito, are the most significant vectors of dengue, Zika, and Chikungunya viruses globally. Studies examining host factors that control arbovirus transmission demonstrate that insect-specific viruses (ISVs) can modulate mosquitoes’ susceptibility to arbovirus infection in both in vivo and in vitro co-infection models. While research is ongoing to implicate individual ISVs as proviral or antiviral factors, we have a limited understanding of the composition and diversity of the Aedes virome. To address this gap, we used a meta-analysis approach to uncover virome diversity by analysing ~3000 available RNA sequencing libraries representing a worldwide geographic range for both mosquitoes. We identified ten novel viruses and previously characterised viruses, including mononegaviruses, orthomyxoviruses, negeviruses, and a novel bi-segmented negev-like group. Phylogenetic analysis suggests close relatedness to mosquito viruses implying likely insect host range except for one arbovirus, the multi-segmented Jingmen tick virus (Flaviviridae) in an Italian colony of Ae. albopictus. Individual mosquito transcriptomes revealed remarkable inter-host variation of ISVs within individuals from the same colony and heterogeneity between different laboratory strains. Additionally, we identified striking virus diversity in Wolbachia infected Aedes cell lines. This study expands our understanding of the virome of these important vectors. It provides a resource for further assessing the ecology, evolution, and interaction of ISVs with their mosquito hosts and the arboviruses they transmit. Full article
Show Figures

Figure 1

17 pages, 2157 KiB  
Review
The Interplay between Bluetongue Virus Infections and Adaptive Immunity
by Daniel Rodríguez-Martín, Andrés Louloudes-Lázaro, Miguel Avia, Verónica Martín, José M. Rojas and Noemí Sevilla
Viruses 2021, 13(8), 1511; https://doi.org/10.3390/v13081511 - 31 Jul 2021
Cited by 20 | Viewed by 4967
Abstract
Viral infections have long provided a platform to understand the workings of immunity. For instance, great strides towards defining basic immunology concepts, such as MHC restriction of antigen presentation or T-cell memory development and maintenance, have been achieved thanks to the study of [...] Read more.
Viral infections have long provided a platform to understand the workings of immunity. For instance, great strides towards defining basic immunology concepts, such as MHC restriction of antigen presentation or T-cell memory development and maintenance, have been achieved thanks to the study of lymphocytic choriomeningitis virus (LCMV) infections. These studies have also shaped our understanding of antiviral immunity, and in particular T-cell responses. In the present review, we discuss how bluetongue virus (BTV), an economically important arbovirus from the Reoviridae family that affects ruminants, affects adaptive immunity in the natural hosts. During the initial stages of infection, BTV triggers leucopenia in the hosts. The host then mounts an adaptive immune response that controls the disease. In this work, we discuss how BTV triggers CD8+ T-cell expansion and neutralizing antibody responses, yet in some individuals viremia remains detectable after these adaptive immune mechanisms are active. We present some unpublished data showing that BTV infection also affects other T cell populations such as CD4+ T-cells or γδ T-cells, as well as B-cell numbers in the periphery. This review also discusses how BTV evades these adaptive immune mechanisms so that it can be transmitted back to the arthropod host. Understanding the interaction of BTV with immunity could ultimately define the correlates of protection with immune mechanisms that would improve our knowledge of ruminant immunology. Full article
(This article belongs to the Special Issue In Memory of Stefan Kunz)
Show Figures

Figure 1

18 pages, 1868 KiB  
Article
Vector Surveillance, Host Species Richness, and Demographic Factors as West Nile Disease Risk Indicators
by John M. Humphreys, Katherine I. Young, Lee W. Cohnstaedt, Kathryn A. Hanley and Debra P. C. Peters
Viruses 2021, 13(5), 934; https://doi.org/10.3390/v13050934 - 18 May 2021
Cited by 15 | Viewed by 3586
Abstract
West Nile virus (WNV) is the most common arthropod-borne virus (arbovirus) in the United States (US) and is the leading cause of viral encephalitis in the country. The virus has affected tens of thousands of US persons total since its 1999 North America [...] Read more.
West Nile virus (WNV) is the most common arthropod-borne virus (arbovirus) in the United States (US) and is the leading cause of viral encephalitis in the country. The virus has affected tens of thousands of US persons total since its 1999 North America introduction, with thousands of new infections reported annually. Approximately 1% of humans infected with WNV acquire neuroinvasive West Nile Disease (WND) with severe encephalitis and risk of death. Research describing WNV ecology is needed to improve public health surveillance, monitoring, and risk assessment. We applied Bayesian joint-spatiotemporal modeling to assess the association of vector surveillance data, host species richness, and a variety of other environmental and socioeconomic disease risk factors with neuroinvasive WND throughout the conterminous US. Our research revealed that an aging human population was the strongest disease indicator, but climatic and vector-host biotic interactions were also significant in determining risk of neuroinvasive WND. Our analysis also identified a geographic region of disproportionately high neuroinvasive WND disease risk that parallels the Continental Divide, and extends southward from the US–Canada border in the states of Montana, North Dakota, and Wisconsin to the US–Mexico border in western Texas. Our results aid in unraveling complex WNV ecology and can be applied to prioritize disease surveillance locations and risk assessment. Full article
(This article belongs to the Special Issue Mosquito-Borne Virus Ecology)
Show Figures

Figure 1

16 pages, 10468 KiB  
Article
Mayaro Virus: The Potential Role of Microbiota and Wolbachia
by Thiago Nunes Pereira, Fabiano Duarte Carvalho, Jerônimo Nunes Rugani, Vanessa Rafaela de Carvalho, Jaqueline Jarusevicius, Jayme A. Souza-Neto and Luciano Andrade Moreira
Pathogens 2021, 10(5), 525; https://doi.org/10.3390/pathogens10050525 - 27 Apr 2021
Cited by 3 | Viewed by 3728
Abstract
The Mayaro virus (MAYV) is an arbovirus that circulates mainly in tropical forests or rural areas in Latin America and is transmitted mainly by Haemagogus mosquitoes. The objective of this study was to evaluate the vector competence, microbiome, and the presence of Wolbachia [...] Read more.
The Mayaro virus (MAYV) is an arbovirus that circulates mainly in tropical forests or rural areas in Latin America and is transmitted mainly by Haemagogus mosquitoes. The objective of this study was to evaluate the vector competence, microbiome, and the presence of Wolbachia in three Aedes albopictus populations infected with MAYV. The vector competence was assessed based on viral infection and transmission by RT-qPCR. In addition, the microbiome was evaluated by amplification of the 16S rRNA V4 region and PCR to detect the presence of Wolbachia (strain wAlbA/wAlbB). Our results show that all three populations were susceptible to MAYV infection. The potential transmission of the MAYV was consistent in all populations of naïve mosquitoes injected (more than 50%). The microbiome analysis revealed 118 OTUs (operational taxonomic unit) from the three populations, 8 phyla, 15 classes, 26 orders, 35 families, 65 genera, and 53 species. All populations had Pseudomonas and Wolbachia as predominant genera. There was no difference between the variables for MAYV and Wolbachia (wAlbA or wAlbB) in the abdomen. However, in the head + thorax samples at 14 dpi, there was a difference between the two populations, indicating a possible correlation between the presence of Wolbachia (wAlbB) and infection. Overall, we show evidence that Ae. albopictus displays significant infection and transmission competence for the MAYV in the laboratory, and its bacterial microbiota play an important role in the host, mainly the strains of Wolbachia. The influence of the intestinal microbiota of Ae. albopictus is poorly known, and a better understanding of these interactions would open new perspectives for disease control through the manipulation of microbial communities. The exact contribution of this mosquito species to the transmission of the MAYV in the field remains to be confirmed. Full article
(This article belongs to the Collection Feature Papers in Viral Pathogens)
Show Figures

Figure 1

27 pages, 1839 KiB  
Review
Chikungunya and Zika Viruses: Co-Circulation and the Interplay between Viral Proteins and Host Factors
by Sineewanlaya Wichit, Nuttamonpat Gumpangseth, Rodolphe Hamel, Sakda Yainoy, Siwaret Arikit, Chuchard Punsawad and Dorothée Missé
Pathogens 2021, 10(4), 448; https://doi.org/10.3390/pathogens10040448 - 9 Apr 2021
Cited by 11 | Viewed by 8473
Abstract
Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral–host interactions is [...] Read more.
Chikungunya and Zika viruses, both transmitted by mosquito vectors, have globally re-emerged over for the last 60 years and resulted in crucial social and economic concerns. Presently, there is no specific antiviral agent or vaccine against these debilitating viruses. Understanding viral–host interactions is needed to develop targeted therapeutics. However, there is presently limited information in this area. In this review, we start with the updated virology and replication cycle of each virus. Transmission by similar mosquito vectors, frequent co-circulation, and occurrence of co-infection are summarized. Finally, the targeted host proteins/factors used by the viruses are discussed. There is an urgent need to better understand the virus–host interactions that will facilitate antiviral drug development and thus reduce the global burden of infections caused by arboviruses. Full article
(This article belongs to the Special Issue Emerging and Re-emerging Arboviruses)
Show Figures

Figure 1

20 pages, 5269 KiB  
Article
Dengue Virus Serotype 2 Intrahost Diversity in Patients with Different Clinical Outcomes
by Maria Celeste Torres, Marcos Cesar Lima de Mendonça, Cintia Damasceno dos Santos Rodrigues, Vagner Fonseca, Mario Sergio Ribeiro, Ana Paula Brandão, Rivaldo Venâncio da Cunha, Ana Isabel Dias, Lucy Santos Vilas Boas, Alvina Clara Felix, Maira Alves Pereira, Luzia Maria de Oliveira Pinto, Anavaj Sakuntabhai, Ana Maria Bispo de Filippis and on behalf of ZikAction Consortium
Viruses 2021, 13(2), 349; https://doi.org/10.3390/v13020349 - 23 Feb 2021
Cited by 18 | Viewed by 4336
Abstract
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it might also be linked to viral pathogenesis. Dengue virus serotype 2 (DENV-2) has circulated in Brazil since 1990 and is associated with severe disease and explosive outbreaks. [...] Read more.
Intrahost genetic diversity is thought to facilitate arbovirus adaptation to changing environments and hosts, and it might also be linked to viral pathogenesis. Dengue virus serotype 2 (DENV-2) has circulated in Brazil since 1990 and is associated with severe disease and explosive outbreaks. Intending to shed light on the viral determinants for severe dengue pathogenesis, we sought to analyze the DENV-2 intrahost genetic diversity in 68 patient cases clinically classified as dengue fever (n = 31), dengue with warning signs (n = 19), and severe dengue (n = 18). Unlike previous DENV intrahost diversity studies whose approaches employed PCR, here we performed viral whole-genome deep sequencing from clinical samples with an amplicon-free approach, representing the real intrahost diversity scenario. Striking differences were detected in the viral population structure between the three clinical categories, which appear to be driven mainly by different infection times and selection pressures, rather than being linked with the clinical outcome itself. Diversity in the NS2B gene, however, showed to be constrained, irrespective of clinical outcome and infection time. Finally, 385 non-synonymous intrahost single-nucleotide variants located along the viral polyprotein, plus variants located in the untranslated regions, were consistently identified among the samples. Of them, 124 were exclusively or highly detected among cases with warning signs and among severe cases. However, there was no variant that by itself appeared to characterize the cases of greater severity, either due to its low intrahost frequency or the conservative effect on amino acid substitution. Although further studies are necessary to determine their real effect on viral proteins, this heightens the possibility of epistatic interactions. The present analysis represents an initial effort to correlate DENV-2 genetic diversity to its pathogenic potential and thus contribute to understanding the virus’s dynamics within its human host. Full article
(This article belongs to the Special Issue Endemic Arboviruses)
Show Figures

Figure 1

Back to TopTop