Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (93)

Search Parameters:
Keywords = aquifer storage and recovery

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 2694 KB  
Article
Model-Based Design and Operational Optimization of HPC Waste Heat Recovery and High-Temperature Aquifer Thermal Energy Storage in Existing Energy Infrastructures
by Niclas Hampel, André Xhonneux and Dirk Müller
Energy Storage Appl. 2026, 3(1), 1; https://doi.org/10.3390/esa3010001 - 6 Jan 2026
Viewed by 231
Abstract
The waste heat generated by high-performance computing (HPC) represents an opportunity for advancing the decarbonization of energy systems. Seasonal storage is necessary to regulate the balance between waste heat production and demand. High-temperature aquifer thermal energy storage (HT-ATES) is a particularly well-suited technology [...] Read more.
The waste heat generated by high-performance computing (HPC) represents an opportunity for advancing the decarbonization of energy systems. Seasonal storage is necessary to regulate the balance between waste heat production and demand. High-temperature aquifer thermal energy storage (HT-ATES) is a particularly well-suited technology for this purpose due to its large storage capacity. However, integrating HT-ATES into energy systems for district heating is complex, affecting existing components. Therefore, this study applies a bi-objective mixed-integer quadratically constrained programming (MIQCP) approach to optimize the energy system at Forschungszentrum Jülich (FZJ) regarding total annualized costs (TAC) and global warming impact (GWI). The exascale computer Jupiter, which is hosted at FZJ, generates a substantial amount of renewable waste heat that is suitable for integration into district heating networks and seasonal storage. Case studies show that HT-ATES integration into the investigated system can reduce GWI by 20% and increase TAC by 1% compared to the reference case. Despite increased TAC from investments and heat pump (HP) operation, summer charging of the HT-ATES remains flexible and cost-effective. An idealized future scenario indicates that HT-ATES with a storage capacity of 16,990 MWh and HPs could cover most of the heating demand, reducing GWI by up to 91% while TAC increases by 6% relative to the reference system. Full article
Show Figures

Figure 1

29 pages, 10132 KB  
Article
Underground Hydrogen Storage in Saline Aquifers: A Simulation Case Study in the Midwest United States
by Emmanuel Appiah Kubi, Hamid Rahnema, Abdul-Muaizz Koray and Babak Shabani
Eng 2026, 7(1), 24; https://doi.org/10.3390/eng7010024 - 3 Jan 2026
Viewed by 486
Abstract
Underground hydrogen storage (UHS) in saline aquifers offers a viable alternative to surface-based storage systems, which are limited by capacity constraints, high operational pressures, complex thermal regulation, low energy densities, and potential safety hazards. This study uses a fully compositional reservoir simulation model [...] Read more.
Underground hydrogen storage (UHS) in saline aquifers offers a viable alternative to surface-based storage systems, which are limited by capacity constraints, high operational pressures, complex thermal regulation, low energy densities, and potential safety hazards. This study uses a fully compositional reservoir simulation model to evaluate hydrogen behavior in the Mt. Simon Sandstone in the Illinois Basin. The analysis focuses on the effects of hysteresis, solubility, diffusivity, and production well perforation location on recovery efficiency. Cyclic injection and withdrawal scenarios were simulated to assess storage performance and operational strategies. The results show that accounting for hydrogen diffusivity shows essentially unchanged withdrawal efficiency at 79%, the same as the base case. Solubility causes a slight decrease to 78%, while hysteresis leads to a more significant reduction to 63%. The location of injection well perforations also influences recovery: top-perforated wells increase efficiency from 60% after the first cycle to 74% after six cycles, whereas bottom-perforated injection wells increase efficiency from 56% to 79% over the same period. These findings emphasize the importance of accounting for multiphase flow dynamics and strategic well placement in optimizing UHS system performance. The insights contribute to advancing reliable, large-scale hydrogen storage solutions essential for supporting renewable energy integration and long-term energy security. Full article
(This article belongs to the Special Issue Geological Storage and Engineering Application of Gases)
Show Figures

Figure 1

16 pages, 5009 KB  
Article
Groundwater Storage Changes Derived from GRACE-FO Using In Situ Data for Practical Management
by Hongbo Liu, Jianchong Sun, Litang Hu, Shinan Tang, Fei Chen, Junchao Zhang and Zhenyuan Zhu
Water 2025, 17(24), 3572; https://doi.org/10.3390/w17243572 - 16 Dec 2025
Viewed by 548
Abstract
The ongoing global decline in groundwater levels poses significant challenges for sustainable water management. Satellite gravity missions, such as the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO), provide valuable estimates of groundwater storage changes at regional scales. However, the relatively coarse spatial resolution [...] Read more.
The ongoing global decline in groundwater levels poses significant challenges for sustainable water management. Satellite gravity missions, such as the Gravity Recovery and Climate Experiment Follow-On (GRACE-FO), provide valuable estimates of groundwater storage changes at regional scales. However, the relatively coarse spatial resolution of these satellite data limits their direct applicability to local groundwater management. In this study, we address this limitation for China by analyzing groundwater monitoring data from 108 cities with shallow groundwater use and 37 cities with deep groundwater use from the period 2019–2022, integrating in situ groundwater level records, official monitoring reports, monthly dynamic data, and GRACE-FO-derived groundwater storage estimates. Our findings reveal rapid groundwater depletion in northern China, especially in Xinjiang and Hebei Provinces. Fluctuations in shallow groundwater levels in Beijing and Jiangsu are closely related to precipitation variability. For deep aquifer regions, GRACE-FO-derived groundwater storage changes show a moderate Pearson correlation coefficient of 0.45 and groundwater level variations. Regional analysis for 2019–2021 in the Northeast Plain and the Huang–Huai–Hai Basin indicates better agreement between satellite-derived storage and groundwater levels, with a Pearson correlation coefficient of 0.58 in the Huang–Huai–Hai Basin. Groundwater level dynamics are strongly influenced by both precipitation and pumping, with an approximate three-month lag between precipitation events and groundwater storage responses. Overall, satellite gravity data are suitable for use in regional groundwater assessment and could serve as valuable indicators in areas with intensive deep groundwater exploitation. To enable fine-scale groundwater management, future work should focus on improving the spatial resolution through downscaling and other advanced techniques. Full article
Show Figures

Figure 1

57 pages, 18077 KB  
Review
High-Temperature Aquifer Thermal Energy Storage (HT-ATES) Projects in Germany and the Netherlands—Review and Lessons Learned
by Patrick Dobson, Travis McLing, Nicolas Spycher, Paul Fleuchaus, Ghanashyam Neupane, Christine Doughty, Yingqi Zhang, Robert Smith, Trevor Atkinson, Wencheng Jin, Philipp Blum, Dorien Dinkelman and Hans Veldkamp
Energies 2025, 18(23), 6292; https://doi.org/10.3390/en18236292 - 29 Nov 2025
Viewed by 1565
Abstract
Aquifer thermal energy storage (ATES) is a concept that can help to address heating and cooling needs through the use of the subsurface as a seasonal thermal energy storage (STES) system. Over 2800 ATES systems have been deployed with storage temperatures typically below [...] Read more.
Aquifer thermal energy storage (ATES) is a concept that can help to address heating and cooling needs through the use of the subsurface as a seasonal thermal energy storage (STES) system. Over 2800 ATES systems have been deployed with storage temperatures typically below 25 °C and only a few with higher temperatures (>40 °C), which would increase the energy density and utility of the stored thermal fluids. Until now, only a few high-temperature aquifer thermal energy storage (HT-ATES) projects have been initiated and are still in operation. These HT-ATES projects have encountered a range of technical and non-technical challenges. This study reviews ten such projects: four in Germany and six in the Netherlands. The non-technical issues include public acceptance, a lack of regulatory framework for these systems, managing overlapping uses of the subsurface, managing changes with the providers and off-takers of thermal energy, and obtaining financing to implement these projects. Common technical issues include geological factors such as incomplete characterization of the subsurface and reservoir heterogeneity; geochemical issues such as mineral scaling, corrosion, and biofouling; lower than expected thermal recovery; and issues with system design and reliability. This review highlights benefits and challenges faced by HT-ATES projects with the goal to use the lessons learned to improve the siting, design, development, and operation of such systems. Recommendations include improved initial subsurface site characterization, use of coupled process models to optimize system design and predict system performance, cascaded uses of stored thermal energy to better utilize the stored heat, monitoring networks to provide feedback on system performance, and expanded system scale to allow for continued operation even when maintenance of some system components is required. Techno-economic modeling and risk analysis could be used to optimize such HT-ATES project design and identify key factors that will affect sustained economic viability. In addition, design flexibility is important for these systems to allow for changing conditions regarding the supply and demand of thermal energy. Adopting these findings should improve the performance and reduce the risks for future HT-ATES projects worldwide. Full article
Show Figures

Figure 1

18 pages, 2377 KB  
Article
Influence of Injection Well Location on Hydrogen Storage Capacity and Plume Migration in a Saline Aquifer: A Case Study from Central Poland
by Katarzyna Luboń and Radosław Tarkowski
Energies 2025, 18(23), 6240; https://doi.org/10.3390/en18236240 - 27 Nov 2025
Cited by 1 | Viewed by 336
Abstract
The efficiency of underground hydrogen storage (UHS) in an anticlinal dome structure in a saline aquifer largely depends on the geometry of the dome structure and the placement of injection wells, which determine both the dynamic capacity and the migration of the gas [...] Read more.
The efficiency of underground hydrogen storage (UHS) in an anticlinal dome structure in a saline aquifer largely depends on the geometry of the dome structure and the placement of injection wells, which determine both the dynamic capacity and the migration of the gas plume. In this study, we aimed to assess the impact of well location within the Jeżów anticlinal dome structure (central Poland) on storage capacity and hydrogen plume migration. A geological model of the structure was developed and used in TOUGH2 (version 2.0) software to simulate nine injection scenarios with different well placements. The results indicate that storage capacity increases with both the secant dip angle relative to the top of the dome structure and the tangent dip angle at the well location, reaching a maximum in areas with the steepest dip. During injection, the hydrogen plume migrates upward toward the top of the structure; afterwards, it gradually stabilizes and partially redistributes toward the top of the dome structure. Injection wells located in steeper parts of the anticline promote upward hydrogen migration, which may limit hydrogen recovery during the withdrawal phase. This study confirms that both structural dip and well placement are key factors determining UHS efficiency. Full article
(This article belongs to the Special Issue Transitioning to Green Energy: The Role of Hydrogen)
Show Figures

Graphical abstract

23 pages, 2325 KB  
Article
Underground Hydrogen Storage: Steady-State Measurement of Hydrogen–Brine Relative Permeability with Gas Slip Correction
by Emmanuel Appiah Kubi, Hamid Rahnema, Abdul-Muaizz Koray and Babak Shabani
Gases 2025, 5(4), 26; https://doi.org/10.3390/gases5040026 - 20 Nov 2025
Cited by 2 | Viewed by 942
Abstract
Large-scale underground hydrogen storage in saline aquifers requires an understanding of hydrogen–brine two-phase flow properties, particularly relative permeability, which influences reservoir injectivity and hydrogen recovery. However, such hydrogen–brine relative permeability data remain scarce, hindering the predictive modeling of hydrogen injection and withdrawal. In [...] Read more.
Large-scale underground hydrogen storage in saline aquifers requires an understanding of hydrogen–brine two-phase flow properties, particularly relative permeability, which influences reservoir injectivity and hydrogen recovery. However, such hydrogen–brine relative permeability data remain scarce, hindering the predictive modeling of hydrogen injection and withdrawal. In this study, steady-state hydrogen–brine co-injection coreflood experiments were conducted on an Austin Chalk core sample to measure the relative permeabilities. Klinkenberg slip corrections were applied to the gas flow measurements to determine the intrinsic (slip-free) hydrogen permeability. The core’s brine permeability was 13.2 mD, and the Klinkenberg-corrected hydrogen gas permeability was 13.8 mD (approximately a 4.5% difference). Both raw and slip-corrected hydrogen relative permeability curves were obtained, showing that the gas-phase conductivity increased as the water saturation decreased. Gas slippage caused higher apparent gas permeability in the raw data, and slip correction significantly reduced hydrogen relative permeability at lower hydrogen saturations. The core’s irreducible water saturation was 39%, at which point the hydrogen relative permeability reached 0.8 (dropping to 0.69 after slip correction), which is indicative of strongly water-wet behavior. These results demonstrate a measurable impact of gas slippage on hydrogen flow behavior and highlight the importance of accounting for slip effects when evaluating hydrogen mobility in brine-saturated formations. Full article
Show Figures

Figure 1

26 pages, 6716 KB  
Article
Feasibility and Operability of CO2 Circulation in a CO2 Storage-Enabled Geothermal System with Uncertainty Insights from Aquistore
by Alireza Rangriz Shokri and Rick Chalaturnyk
Energies 2025, 18(22), 6031; https://doi.org/10.3390/en18226031 - 18 Nov 2025
Viewed by 391
Abstract
CO2 circulation between subsurface wells is a promising approach for geothermal energy recovery from deep saline formations originally developed for Carbon Capture and Storage (CCS). This study evaluates the feasibility, operability, and performance of sustained CO2 flow between an injector and [...] Read more.
CO2 circulation between subsurface wells is a promising approach for geothermal energy recovery from deep saline formations originally developed for Carbon Capture and Storage (CCS). This study evaluates the feasibility, operability, and performance of sustained CO2 flow between an injector and a producer at the Canadian Aquistore site, a location with active CO2 injection and an established geological model. A high-resolution sector model, derived from a history-matched parent simulation, was used to conduct a comprehensive uncertainty analysis targeting key operational and subsurface variables, including injection and production rates, downhole pressures, completion configurations and near-wellbore effects. All simulation scenarios retained identical initial and boundary conditions to isolate the impact of each variable on system behavior. Performance metrics, including flow rates, pressure gradients, brine inflow, and CO2 retention, were analyzed to evaluate CO2 circulation efficiency. Simulation results reveal several critical findings. Elevated injection rates expanded the CO2 plume, while bottomhole pressure at the producer controlled brine ingress from the regional aquifer. Once the CO2 plume was fully developed, producer parameters emerged as dominant control factors. Completion designs at both wells proved vital in maximizing CO2 recovery and suppressing liquid loading. Permeability variations showed limited influence, likely due to sand-dominated continuity and established plume connectivity at Aquistore. Visualizations of water saturation and CO2 plume geometry underscore the need for constraint optimization to reduce fluid mixing and stabilize CO2-rich zones. The study suggests that CO2 trapped during circulation contributes meaningfully to permanent storage, offering dual environmental and energy benefits. The results emphasize the importance of not underestimating subsurface complexity when CO2 circulation is expected to occur under realistic operating conditions. This understanding paves the way to guide future pilot tests, operational planning, and risk mitigation strategies in CCS-enabled geothermal systems. Full article
Show Figures

Figure 1

42 pages, 3363 KB  
Review
Large-Scale Hydrogen Storage in Deep Saline Aquifers: Multiphase Flow, Geochemical–Microbial Interactions, and Economic Feasibility
by Abdullahi M. Baru, Stella I. Eyitayo, Chinedu J. Okere, Abdurrahman Baru and Marshall C. Watson
Materials 2025, 18(22), 5097; https://doi.org/10.3390/ma18225097 - 10 Nov 2025
Cited by 1 | Viewed by 1255
Abstract
The development of large-scale, flexible, and safe hydrogen storage is critical for enabling a low-carbon energy system. Deep saline aquifers (DSAs) offer substantial theoretical capacity and broad geographic distribution, making them attractive options for underground hydrogen storage. However, hydrogen storage in DSAs presents [...] Read more.
The development of large-scale, flexible, and safe hydrogen storage is critical for enabling a low-carbon energy system. Deep saline aquifers (DSAs) offer substantial theoretical capacity and broad geographic distribution, making them attractive options for underground hydrogen storage. However, hydrogen storage in DSAs presents complex technical, geochemical, microbial, geomechanical, and economic challenges that must be addressed to ensure efficiency, safety, and recoverability. This study synthesizes current knowledge on hydrogen behavior in DSAs, focusing on multiphase flow dynamics, capillary trapping, fingering phenomena, geochemical reactions, microbial consumption, cushion gas requirements, and operational constraints. Advanced numerical simulations and experimental observations highlight the role of reservoir heterogeneity, relative permeability hysteresis, buoyancy-driven migration, and redox-driven hydrogen loss in shaping storage performance. Economic analysis emphasizes the significant influence of cushion gas volumes and hydrogen recovery efficiency on the levelized cost of storage, while pilot studies reveal strategies for mitigating operational and geochemical risks. The findings underscore the importance of integrated, coupled-process modeling and comprehensive site characterization to optimize hydrogen storage design and operation. This work provides a roadmap for developing scalable, safe, and economically viable hydrogen storage in DSAs, bridging the gap between laboratory research, pilot demonstration, and commercial deployment. Full article
Show Figures

Graphical abstract

15 pages, 3133 KB  
Article
The Decadal Increase in Terrestrial Water Storage in a Region Experiencing Rapid Transitions from Dry to Wet Periods
by David F. Boutt, Gabriel Olland, Julianna C. Huba and Nicole Blin
Water 2025, 17(21), 3093; https://doi.org/10.3390/w17213093 - 29 Oct 2025
Viewed by 880
Abstract
Understanding the impact of climate change and altered hydrologic cycles on regional water storage trends is crucial for predicting changes in recharge and streamflow and informing decisions regarding drought resilience and flood mitigation. While many regions have become drier under global climate change, [...] Read more.
Understanding the impact of climate change and altered hydrologic cycles on regional water storage trends is crucial for predicting changes in recharge and streamflow and informing decisions regarding drought resilience and flood mitigation. While many regions have become drier under global climate change, the northeast United States has experienced an increased precipitation intensity, driving groundwater rise. This study integrates terrestrial water storage data from NASA’s Gravity Recovery and Climate Experiment (GRACE) satellites and soil moisture data from Soil Moisture Active Passive (SMAP), as well as long-term instrumental groundwater records from USGS groundwater monitoring wells, to understand the nature of storage trends. The results show that while aquifer-wide groundwater storage anomalies have stabilized in recent years, shallow groundwater and certain surface water bodies have accumulated about 0.6 cm of water annually, adding over 10 cm to the landscape, since 2005. These findings indicate that excess water from heavy rainfall is mainly stored in the shallow subsurface as perched aquifers and temporary wetlands rather than deep (5–30 m) aquifers. Understanding this change in storage is crucial for improving water resource management and adapting more effectively to a changing climate in the region. Full article
Show Figures

Figure 1

21 pages, 6141 KB  
Article
Optimizing Storage Parameters for Underground Hydrogen Storage in Aquifers: Cushion Gas Selection, Well Pattern Design, and Purity Control
by Chuanzhi Cui, Yin Qian, Kan Ren and Zhongwei Wu
Appl. Sci. 2025, 15(21), 11348; https://doi.org/10.3390/app152111348 - 23 Oct 2025
Cited by 1 | Viewed by 696
Abstract
Underground hydrogen storage in aquifers is a promising solution to address the imbalance between energy supply and demand, yet its practical implementation requires optimized strategies to ensure high efficiency and economic viability. To improve the storage and production efficiency of hydrogen, it is [...] Read more.
Underground hydrogen storage in aquifers is a promising solution to address the imbalance between energy supply and demand, yet its practical implementation requires optimized strategies to ensure high efficiency and economic viability. To improve the storage and production efficiency of hydrogen, it is essential to select the appropriate cushion gas and to study the influence of reservoir and process parameters. Based on the conceptual model of aquifer with single-well injection and production, three potential cushion gas (carbon dioxide, nitrogen and methane) were studied, and the changes in hydrogen recovery for each cushion gas were compared. The effects of temperature, initial pressure, porosity, horizontal permeability, vertical to horizontal permeability ratio, permeability gradient, hydrogen injection rate and hydrogen production rate on the purity of recovered hydrogen were investigated. Additionally, the impact of different well pattern on the purity of recovered hydrogen was studied. The results indicate that methane is the most effective cushion gas for improving hydrogen recovery in UHS. Different well patterns have significant impacts on the purity of recovered hydrogen. The mole fractions of methane in the produced gas for the single-well, line-drive pattern and five-spot pattern were 16.8%, 5%, and 3.05%, respectively. Considering the economic constraints, the five-spot well pattern is most suitable for hydrogen storage in aquifers. Reverse rhythm reservoirs with smaller permeability differences should be chosen to achieve relatively high hydrogen recovery and purity of recovered hydrogen. An increase in hydrogen production rate leads to a significant decrease in the purity of the recovered hydrogen. In contrast, hydrogen injection rate has only a minor effect. These findings provide actionable guidance for the selection of cushion gas, site selection, and operational design of aquifer-based hydrogen storage systems, contributing to the large-scale seasonal storage of hydrogen and the balance of energy supply and demand. Full article
Show Figures

Figure 1

21 pages, 4508 KB  
Article
Coupled Effects of Reservoir Curvature, Thickness, and Well Configuration on Hydrogen Storage Efficiency in Saline Aquifers
by Zihao Shi, Jiayu Qin, Nengxiong Xu, Yan Qin, Bin Zhang, Shuangxi Feng, Liuping Chen and Hao Wang
Energies 2025, 18(18), 4948; https://doi.org/10.3390/en18184948 - 17 Sep 2025
Cited by 1 | Viewed by 631
Abstract
Site selection evaluation is a crucial step in the research of hydrogen storage in saline aquifers. Geometric characteristics of the reservoir are one of the key factors determining the site selection evaluation. However, for the anticlinal saline aquifers with effective trap capacity, the [...] Read more.
Site selection evaluation is a crucial step in the research of hydrogen storage in saline aquifers. Geometric characteristics of the reservoir are one of the key factors determining the site selection evaluation. However, for the anticlinal saline aquifers with effective trap capacity, the coupled effects of reservoir curvature, thickness, and well configuration on hydrogen storage efficiency remain unclear. Thus, based on the Ordos Basin, various 3D computational models with different curvatures, thicknesses, and well configurations are designed to conduct the simulation analysis. The results show that (1) the greater the curvature, the stronger the trap effect. Hydrogen recovery rises first and then declines, reaching a peak of 79.58% at 170° and dropping to 55.17% at 90°. (2) Increasing thickness suppresses lateral hydrogen migration. The maximum gas saturations in the caprock are 0.12, 0.08, and 0.05 for thicknesses of 100%, 200%, and 300%, respectively, indicating that greater thickness reduces gas diffusion into the caprock. (3) The coupling effect between curvature and thickness affects the recovery rate. Thin reservoirs are suitable for small curvatures, while thick reservoirs are more suitable for high curvatures. (4) Top hydrogen injection significantly reduces the sensitivity of the recovery rate to curvature and thickness. When the curvature is between 180° and 100°, lowering recovery differences across thicknesses are lowered from 16.20% under bottom injection to 2.51% under top injection. These results provide support for the site selection and design of hydrogen storage in saline aquifers. Full article
Show Figures

Figure 1

26 pages, 6401 KB  
Article
Utilizing Aquifer Hydraulic Parameters to Assess Local and Regional Recharge Potentials for Enhancing Water Allocations in Groundwater-Dependent Areas in De Aar, Northern Cape, South Africa
by Lucky Baloyi, Thokozani Kanyerere, Innocent Muchingami, Harrison Pienaar, Ndubuisi Igwebuike and Mxolisi B. Mukhawana
Water 2025, 17(18), 2709; https://doi.org/10.3390/w17182709 - 13 Sep 2025
Viewed by 963
Abstract
The precise and accurate use of aquifer hydraulic parameters for assessing local and regional recharge potential for enhancing groundwater allocation planning is vital for many hydrogeological studies. The conventional approach for allocating groundwater presents a challenging scenario, as it remains uncertain whether the [...] Read more.
The precise and accurate use of aquifer hydraulic parameters for assessing local and regional recharge potential for enhancing groundwater allocation planning is vital for many hydrogeological studies. The conventional approach for allocating groundwater presents a challenging scenario, as it remains uncertain whether the applied recharge estimate is local or regional recharge. The approach does not account for the extent of the aquifer recharge in terms of local and regional scale; instead, it assumes that recharge is distributed across the catchment. This study aimed to demonstrate the use of aquifer hydraulic parameters (transmissivity and storativity) to explain areas of potential recharge (local and regional) for enhancing groundwater allocation planning with a specific case study of De Aar, Northern Cape, South Africa. It argues that not integrating local and regional recharge potentials in planning for groundwater allocations can result in over- or under-allocation of groundwater resources to users. A constant discharge pumping test and recovery test matching the duration of pumping were conducted for data collection. The Flow Characteristics method was used as a diagnostic tool to understand the different aquifer flow regimes in the study area. To develop an integrated understanding of the groundwater system, a hydrogeological conceptual model was used to visualize areas with higher or lower recharge potential across local and regional scales. Results showed significant variability in transmissivity, ranging from 213 to 596 m2/d, and storativity, ranging from 0.0000297 to 0.000185. The transmissivity values suggest that groundwater moves faster; meanwhile, the storativity values suggest that the aquifer system has high water storage capacity. These results will assist water resource planners in making informed decisions on how to allocate groundwater to users. This study demonstrated that aquifer hydraulic parameters are a valuable tool for improving groundwater allocations, thereby highlighting the importance of considering areas for potential recharge, both local and regional, in planning groundwater allocation. Full article
Show Figures

Figure 1

24 pages, 5037 KB  
Article
Managing High Groundwater Velocities in Aquifer Thermal Energy Storage Systems: A Three-Well Conceptual Model
by Max Ohagen, Maximilian Koch, Niklas Scholliers, Hung Tien Pham, Johann Karl Holler and Ingo Sass
Energies 2025, 18(16), 4308; https://doi.org/10.3390/en18164308 - 13 Aug 2025
Cited by 2 | Viewed by 1029
Abstract
Aquifer Thermal Energy Storage (ATES) is a promising technology for the seasonal storage of heat, thereby bridging the temporal gap between summer surpluses and peak winter demand. However, the efficiency of conventional ATES systems is severely compromised in aquifers with high groundwater flow [...] Read more.
Aquifer Thermal Energy Storage (ATES) is a promising technology for the seasonal storage of heat, thereby bridging the temporal gap between summer surpluses and peak winter demand. However, the efficiency of conventional ATES systems is severely compromised in aquifers with high groundwater flow velocities, as advective heat transport leads to significant storage losses. This study explores a novel three-well concept that implements an active hydraulic barrier, created by an additional extraction well upstream of the ATES doublet. This well effectively disrupts the regional groundwater flow, thereby creating a localized zone of stagnant or significantly reduced flow velocity, to protect the stored heat. A comprehensive parametric study was conducted using numerical simulations in FEFLOW. The experiment systematically varied three key parameters: groundwater flow velocity, the distance of the third well and its pumping rate. The performance of the system was evaluated based on its thermal recovery efficiency and a techno-economic analysis. The findings indicate that the hydraulic barrier effectively enhances heat recovery, surpassing twice the efficiency observed in a conventional two-well configuration (100 m/a). The analysis reveals a critical trade-off between hydraulic containment and thermal interference through hydraulic short-circuiting. The techno-economic assessment indicates that the three-well concept has the potential to generate significant cost and CO2e savings. These savings greatly exceed the additional capital and operational costs in comparison to a traditional doublet system in the same conditions. In conclusion, the three-well ATES system can be considered a robust technical and economic solution for expanding HT-ATES to sites with high groundwater velocities; however, its success depends on careful, model-based design to optimize these competing effects. Full article
(This article belongs to the Special Issue Advanced Technologies and Materials for Thermal Energy Storage)
Show Figures

Figure 1

30 pages, 7472 KB  
Article
Two Decades of Groundwater Variability in Peru Using Satellite Gravimetry Data
by Edgard Gonzales, Victor Alvarez and Kenny Gonzales
Appl. Sci. 2025, 15(14), 8071; https://doi.org/10.3390/app15148071 - 20 Jul 2025
Cited by 2 | Viewed by 3821
Abstract
Groundwater is a critical yet understudied resource in Peru, where surface water has traditionally dominated national assessments. This study provides the first country-scale analysis of groundwater storage (GWS) variability in Peru from 2003 to 2023 using satellite gravimetry data from the Gravity Recovery [...] Read more.
Groundwater is a critical yet understudied resource in Peru, where surface water has traditionally dominated national assessments. This study provides the first country-scale analysis of groundwater storage (GWS) variability in Peru from 2003 to 2023 using satellite gravimetry data from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions. We used the GRACE Data Assimilation-Data Mass Modeling (GRACE-DA-DM GLV3.0) dataset at 0.25° resolution to estimate annual GWS trends and evaluated the influence of El Niño–Southern Oscillation (ENSO) events and anthropogenic extraction, supported by in situ well data from six major aquifers. Results show a sustained GWS decline of 30–40% in coastal and Andean regions, especially in Lima, Ica, Arequipa, and Tacna, while the Amazon basin remained stable. Strong correlation (r = 0.95) between GRACE data and well records validate the findings. Annual precipitation analysis from 2003 to 2023, disaggregated by climatic zone, revealed nearly stable trends. Coastal El Niño events (2017 and 2023) triggered episodic recharge in the northern and central coastal regions, yet these were insufficient to reverse the sustained groundwater depletion. This research provides significant contributions to understanding the spatiotemporal dynamics of groundwater in Peru through the use of satellite gravimetry data with unprecedented spatial resolution. The findings reveal a sustained decline in GWS across key regions and underscore the urgent need to implement integrated water management strategies—such as artificial recharge, optimized irrigation, and satellite-based early warning systems—aimed at preserving the sustainability of the country’s groundwater resources. Full article
Show Figures

Figure 1

18 pages, 3775 KB  
Article
Water Storage Capacity of Ordovician Limestone Aquifer and Hydrogeological Response Mechanism of Deep Reinjection in North China
by Jianguo Fan, Weixiao Chen, Xianfeng Tan, Jiancai Sui, Qi Liu, Hongnian Chen, Feng Zhang, Ge Chen and Zhimin Xu
Water 2025, 17(13), 1982; https://doi.org/10.3390/w17131982 - 1 Jul 2025
Viewed by 1118
Abstract
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the [...] Read more.
Mine water treatment and emissions have become important factors that restrict the comprehensive benefits of coal enterprises and local economic development, and the use of the deep well recharge method can address the specific conditions of mine surge water. This paper takes the actual situation of coal mine water treatment as an example and innovatively carries out dynamic tests for the Ordovician limestone aquifers deep in the mine. Intermittent reinjection test shows that under the same reinjection time, the water level recovery rate during the intermittent period is fast at first and then slow. Moreover, the recovery speed of the water level buried depth slows down with the increase in the reinjection time, which reveals the characteristics of the water level rising rapidly and recovering quickly during the reinjection of the reservoir. The average formation water absorption index is 420.81 m3/h·MPa. The water level buried depth of the long-term reinjection test showed three stages (rapid rise, slow rise, and stable stages), and the water level buried depth was raised to 1.52 m at its highest. Monitoring data from the surrounding 5 km area showed that reinjection did not affect aquifer water levels, verifying the excellent storage capacity of the deep Ordovician fissure-karst aquifer. The variability of well loss under pumping and injection conditions was comparatively analyzed, and the well loss produced by the recharge test was 4.06 times higher than that of the pumping test, which provided theoretical support for the calculation of hydrogeological parameters to eliminate the influence of well loss. This study deepens the understanding of Ordovician limestone aquifers in deep mine water, providing a reference for cheap mine water treatment and sustainable groundwater management in similar mine areas. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

Back to TopTop