Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,423)

Search Parameters:
Keywords = aquation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 680 KiB  
Article
Comparative Assessment of Protocols for Microplastic Quantification in Wastewater
by Rubén Rodríguez-Alegre, Sergi Durán-Videra, David Carmona-Fernández, Laura Pérez Megías, Carlos Andecochea Saiz and Xialei You
Microplastics 2025, 4(3), 49; https://doi.org/10.3390/microplastics4030049 - 5 Aug 2025
Abstract
Microplastics are an increasing concern due to their widespread occurrence in aquatic environments worldwide. The lack of a harmonised protocol for their reliable quantification remains a major challenge in current scientific efforts. This study presents a comparative evaluation of three protocols for the [...] Read more.
Microplastics are an increasing concern due to their widespread occurrence in aquatic environments worldwide. The lack of a harmonised protocol for their reliable quantification remains a major challenge in current scientific efforts. This study presents a comparative evaluation of three protocols for the detection and quantification of microplastics in aqueous samples. The protocols were assessed based on quantification efficiency, risk of particle degradation, staining performance, operational complexity, and cost per sample. Protocol A combined Rhodamine B and ethanol staining with NaCl-based density separation, demonstrating strong isolation performance while maintaining minimal chemical hazards and moderate cost (2.45€ per sample) that could be further reduced to 0.45€ per sample by substituting reagent-grade NaCl with table salt. Protocol B offered moderate isolation capacity and presented the highest risk of particle fragmentation, likely due to the use of acetone and high-temperature digestion. Protocol C, based on the combined use of Nile Red and ZnCl2, also presented a risk of particle fragmentation, resulting in the highest MP count for small and hydrophobic particles. In addition, its high cost (15.23€ per sample) limits its suitability for routine application. Full article
(This article belongs to the Collection Feature Paper in Microplastics)
Show Figures

Figure 1

24 pages, 3176 KiB  
Article
Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River
by Kenia Barrantes-Jiménez, Bradd Mendoza-Guido, Eric Morales-Mora, Luis Rivera-Montero, José Montiel-Mora, Luz Chacón-Jiménez, Keilor Rojas-Jiménez and María Arias-Andrés
Antibiotics 2025, 14(8), 798; https://doi.org/10.3390/antibiotics14080798 (registering DOI) - 5 Aug 2025
Abstract
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in [...] Read more.
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in a tropical urban river. Methods: Samples were collected from three sites along a pollution gradient in the Virilla River, Costa Rica, during three seasonal campaigns (wet 2021, dry 2022, and wet 2022). ARGs in water and sediment were quantified by qPCR, and metagenomic sequencing was applied to analyze chromosomal and plasmid-associated resistance profiles in sediments. Tobit and linear regression models, along with multivariate ordination, were used to assess spatial and seasonal trends. Results: During the wet season of 2021, the abundance of antibiotic resistance genes (ARGs) such as sul-1, intI-1, and tetA in water samples decreased significantly, likely due to dilution, while intI-1 and tetQ increased in sediments, suggesting particle-bound accumulation. In the wet season 2022, intI-1 remained low in water, qnrS increased, and sediments showed significant increases in tetQ, tetA, and qnrS, along with decreases in sul-1 and sul-2. Metagenomic analysis revealed spatial differences in plasmid-associated ARGs, with the highest abundance at the most polluted site (Site 3). Bacterial taxa also showed spatial differences, with greater plasmidome diversity and a higher representation of potential pathogens in the most contaminated site. Conclusions: Seasonality and pollution gradients jointly shape ARG dynamics in this tropical river. Plasmid-mediated resistance responds rapidly to environmental change and is enriched at polluted sites, while sediments serve as long-term reservoirs. These findings support the use of plasmid-based monitoring for antimicrobial resistance surveillance in aquatic systems. Full article
(This article belongs to the Special Issue Origins and Evolution of Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

22 pages, 7171 KiB  
Article
Distribution Characteristics, Mobility, and Influencing Factors of Heavy Metals at the Sediment–Water Interface in South Dongting Lake
by Xiaohong Fang, Xiangyu Han, Chuanyong Tang, Bo Peng, Qing Peng, Linjie Hu, Yuru Zhong and Shana Shi
Water 2025, 17(15), 2331; https://doi.org/10.3390/w17152331 - 5 Aug 2025
Abstract
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments [...] Read more.
South Dongting Lake is an essential aquatic ecosystem that receives substantial water inflows from the Xiangjiang and Zishui Rivers. However, it is significantly impacted by human activities, including mining, smelting, and farming. These activities have led to serious contamination of the lake’s sediments with heavy metals (HMs). This study investigated the distribution, mobility, and influencing factors of HMs at the sediment–water interface. To this end, sediment samples were analyzed from three key regions (Xiangjiang River estuary, Zishui River estuary, and northeastern South Dongting Lake) using traditional sampling methods and Diffusive Gradients in Thin Films (DGT) technology. Analysis of fifteen HMs (Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, V, Cr, Cu, Tl, Co, and Fe) revealed significant spatial heterogeneity. The results showed that Cr, Cu, Pb, Bi, Ni, As, Se, Cd, Sb, Mn, Zn, and Fe exhibited high variability (CV > 0.20), whereas V, Tl, and Co demonstrated stable concentrations (CV < 0.20). Concentrations were found to exceed background values of the upper continental crust of eastern China (UCC), Yangtze River sediments (YZ), and Dongting Lake sediments (DT), particularly at the Xiangjiang estuary (XE) and in the northeastern regions. Speciation analysis revealed that V, Cr, Cu, Ni, and As were predominantly found in the residual fraction (F4), while Pb and Co were concentrated in the oxidizable fraction (F3), Mn and Zn appeared primarily in the exchangeable fractions (F1 and F2), and Cd was notably dominant in the exchangeable fraction (F1), suggesting a high potential for mobility. Additionally, DGT results confirmed a significant potential for the release of Pb, Zn, and Cd. Contamination assessment using the Pollution Load Index (PLI) and Geoaccumulation Index (Igeo) identified Pb, Bi, Ni, As, Se, Cd, and Sb as major pollutants. Among these, Bi and Cd were found to pose the highest risks. Furthermore, the Risk Assessment Code (RAC) and the Potential Ecological Risk Index (PERI) highlighted Cd as the primary ecological risk contributor, especially in the XE. The study identified sediment grain size, pH, electrical conductivity, and nutrient levels as the primary influencing factors. The PMF modeling revealed HM sources as mixed smelting/natural inputs, agricultural activities, natural weathering, and mining/smelting operations, suggesting that remediation should prioritize Cd control in the XE with emphasis on external inputs. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

17 pages, 1388 KiB  
Article
Invertebrate Assemblages in Some Saline and Soda Lakes of the Kulunda Steppe: First Regional Assessment and Ecological Implications
by Larisa Golovatyuk, Timur Kanapatskiy, Olga Samylina, Nikolay Pimenov, Larisa Nazarova and Anna Kallistova
Water 2025, 17(15), 2330; https://doi.org/10.3390/w17152330 - 5 Aug 2025
Abstract
The taxonomic composition and structure of invertebrate assemblages in five lakes from the Kulunda steppe, located in an arid region of southwestern Siberia (Russia), were studied. The lakes varied greatly in their total salinity (5 to 304 g L−1) and carbonate [...] Read more.
The taxonomic composition and structure of invertebrate assemblages in five lakes from the Kulunda steppe, located in an arid region of southwestern Siberia (Russia), were studied. The lakes varied greatly in their total salinity (5 to 304 g L−1) and carbonate alkalinity (0.03 to 4.03 mol-eq L−1). The invertebrate fauna was characterized by low diversity. Only five taxa of macrozoobenthos and two taxa of planktonic invertebrates were identified. As water salinity increased, the taxonomic diversity of the studied lakes decreased, and at salinities > 276 g L−1, monodominant assemblages were formed. The high numbers and biomass of aquatic organism provide a rich food supply for native and migratory waterfowl. The low taxonomic diversity of the invertebrate assemblages of the lakes makes them vulnerable to any negative external impact. The climate in the Kulunda steppe demonstrates a long-term aridization trend. If this continues in the future, then over time, this may lead to the gradual salinization of lakes and a further decrease in the taxonomic diversity of hydrobiological assemblages. This emphasizes the ecological importance of the studied territory and the necessity for its inclusion in the list of sites protected by the Ramsar Convention. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

38 pages, 9212 KiB  
Review
Advanced Materials-Based Nanofiltration Membranes for Efficient Removal of Organic Micropollutants in Water and Wastewater Treatment
by Haochun Wei, Haibiao Nong, Li Chen and Shiyu Zhang
Membranes 2025, 15(8), 236; https://doi.org/10.3390/membranes15080236 - 5 Aug 2025
Abstract
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration [...] Read more.
The increasing use of pharmaceutically active compounds (PhACs), endocrine-disrupting compounds (EDCs), and personal care products (PCPs) has led to the widespread presence of organic micropollutants (OMPs) in aquatic environments, posing a significant global challenge for environmental conservation. In recent years, advanced materials-based nanofiltration (NF) technologies have emerged as a promising solution for water and wastewater treatment. This review begins by examining the sources of OMPs, as well as the risk of OMPs. Subsequently, the key criteria of NF membranes for OMPs are discussed, with a focus on the roles of pore size, charge property, molecular interaction, and hydrophilicity in the separation performance. Against that background, this review summarizes and analyzes recent advancements in materials such as metal organic frameworks (MOFs), covalent organic frameworks (COFs), graphene oxide (GO), MXenes, hybrid materials, and environmentally friendly materials. It highlights the porous nature and structural diversity of organic framework materials, the advantage of inorganic layered materials in forming controllable nanochannels through stacking, the synergistic effects of hybrid materials, and the importance of green materials. Finally, the challenges related to the performance optimization, scalable fabrication, environmental sustainability, and complex separation of advanced materials-based membranes for OMP removal are discussed, along with future research directions and potential breakthroughs. Full article
Show Figures

Figure 1

13 pages, 2022 KiB  
Article
A Practical Method for Ecological Flow Calculation to Support Integrated Ecological Functions of the Lower Yellow River, China
by Xinyuan Chen, Lixin Zhang and Lei Tang
Water 2025, 17(15), 2326; https://doi.org/10.3390/w17152326 - 5 Aug 2025
Abstract
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the [...] Read more.
The lower Yellow River is characterized by low water discharge and a high sediment load, resulting in a fragile aquatic ecosystem. It is important to develop a reasonable method of ecological flow calculation that can be applied to the water-scarce rivers like the Yellow River. In this paper, we selected the Huayuankou hydrological station in the lower Yellow River as our study site and assessed the ecological flow using several methodologies including the monthly frequency calculation method, the sediment transportation method, the habitat simulation method, and the improved annual distribution method. Based on the seasonal applicability of the four methods across months of the year, we established an ecological flow calculation method that considers the integrated ecological functions of the lower Yellow River. In this method, ecological flow in the lower Yellow River during the dry season (November to March) can be determined by using the improved annual distribution method, ecological flow in the fish spawning period (April to June) can be calculated using the habitat simulation method, and the ecological flow during the flood season (July to October) can be calculated using the sediment transportation method. The optimal ecological flow regime for the Huayuankou section was determined using the established method. The ecological flow regimes derived in our study ranged from 310 m3/s to 1532 m3/s. However, we also observed that the ecological flow has a relatively low assurance rate during the flood season in the lower Yellow River, with the assurance rate not exceeding 63%. This highlights the fact that more attention should be given in reservoir regulations to facilitating sediment transport downstream. Full article
Show Figures

Figure 1

22 pages, 5921 KiB  
Article
Adsorption Capacity, Reaction Kinetics and Thermodynamic Studies on Ni(II) Removal with GO@Fe3O4@Pluronic-F68 Nanocomposite
by Ali Çiçekçi, Fatih Sevim, Melike Sevim and Erbil Kavcı
Polymers 2025, 17(15), 2141; https://doi.org/10.3390/polym17152141 - 5 Aug 2025
Abstract
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal [...] Read more.
In recent years, industrial wastewater discharge containing heavy metals has increased significantly and has adversely affected both human health and the aquatic ecosystem. The increasing demand for metals in industry has prompted researchers to focus on developing effective and economical methods for removal of these metals. In this study, the removal of Ni(II) from wastewater using the Graphene oxide@Fe3O4@Pluronic-F68 (GO@Fe3O4@Pluronic-F68) nano composite as an adsorbent was investigated. The nanocomposite was characterised using a series of analytical methods, including Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), X-ray diffraction (XRD), and Brunauer-Emmett-Teller (BET) analysis. The effects of contact time, pH, adsorbent amount, and temperature parameters on adsorption were investigated. Various adsorption isotherm models were applied to interpret the equilibrium data in aqueous solutions; the compatibility of the Langmuir, Freundlich, Temkin, and Dubinin-Radushkevich models with experimental data was examined. For a kinetic model consistent with experimental data, pseudo-first-order, pseudo-second-order, Elovich, and intra-particle diffusion models were examined. The maximum adsorption capacity was calculated as 151.5 mg·g−1 in the Langmuir isotherm model. The most suitable isotherm and kinetic models were the Freundlich and pseudo-second-order kinetic models, respectively. These results demonstrate the potential of the GO@Fe3O4@Pluronic-F68 nanocomposite as an adsorbent offering a sustainable solution for Ni(II) removal. Full article
(This article belongs to the Section Polymer Composites and Nanocomposites)
Show Figures

Figure 1

14 pages, 1415 KiB  
Article
Effects of Different Packaging on the Purine Content and Key Enzymes of Refrigerated Yellow Croaker (Larimichthys crocea)
by Tiansheng Xu, Wenxuan Lu, Bohan Chen, Dapeng Li and Jing Xie
Foods 2025, 14(15), 2732; https://doi.org/10.3390/foods14152732 - 5 Aug 2025
Abstract
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited [...] Read more.
In this study, we investigated the effects of air packaging, vacuum packaging and modified atmosphere packaging (CO2/N2: 80/20) on the purine metabolism and enzyme activities of refrigerated large yellow croakers. The results showed that modified atmosphere packaging significantly inhibited microbial growth, delayed adenosine triphosphate degradation and maintained higher IMP content (1.93 μmol/g on day 21) compared to the air packaging group (2.82 μmol/g on day 12). The total purine content increased with storage time, with hypoxanthine content increasing significantly and occupying most of the total content, which was the key factor for the elevation of purine, followed by adenine content showing a significant decreasing trend. Hypoxanthine accumulation was significantly suppressed in the modified atmosphere packaging group (2.31 μmol/g on day 18), which was much lower than that in the air packaging group (5.64 μmol/g), whereas xanthine and guanine did not show significant differences among the groups. The key enzymes xanthine oxidase and purine nucleoside phosphorylase were much less active in modified atmosphere packaging, effectively delaying the cascade reaction of inosine monophosphate → hypoxanthine → xanthine. The study confirmed that modified atmosphere packaging intervenes in purine metabolism through enzyme activity regulation, providing a theoretical basis for the preservation of low purine aquatic products. Full article
Show Figures

Figure 1

15 pages, 1539 KiB  
Article
Microplastics Induce Structural Color Deterioration in Fish Poecilia reticulata Mediated by Oxidative Stress
by Hong-Yu Ren, Huan-Chao Ma, Rui-Peng He, Cong-Cong Gao, Bin Wen, Jian-Zhong Gao and Zai-Zhong Chen
Fishes 2025, 10(8), 382; https://doi.org/10.3390/fishes10080382 - 5 Aug 2025
Abstract
Microplastics (MPs) can affect fish health by inducing oxidative stress, but their impact on structural coloration remains poorly understood. This study investigated the effects of environmentally relevant concentrations (16 and 160 μg/L) of MPs and nanoplastics (NPs) exposure on growth, oxidative stress and [...] Read more.
Microplastics (MPs) can affect fish health by inducing oxidative stress, but their impact on structural coloration remains poorly understood. This study investigated the effects of environmentally relevant concentrations (16 and 160 μg/L) of MPs and nanoplastics (NPs) exposure on growth, oxidative stress and structural coloration in blue strain guppy fish (Poecilia reticulata). Results showed exposure to 160 μg/L MPs significantly reduced specific growth rate of fish compared to controls. Plastic accumulation followed a dose-dependent pattern, especially within gut concentrations. Oxidative stress responses differed between MPs and NPs: 160 μg/L MPs decreased SOD activity in skin and reduced GSH levels, while 160 μg/L NPs increased MDA levels in gut tissues, indicating severe lipid peroxidation. Structural coloration analysis revealed exposure to 160 μg/L MPs decreased lightness and increased yellowness, demonstrating reduced blue coloration. This was accompanied by an increase in skin uric acid content, suggesting that guanine conversion might occur to combat oxidative stress. These findings demonstrate that MPs, particularly at high concentrations, impair growth and induce oxidative stress in guppies. To counteract stress, guanine in iridophores may be converted into uric acid, leading to a decline in structural coloration. This study is the first to reveal that MPs disrupt structural coloration of fish, providing new insights into the ecological risks of plastic pollution on aquatic organisms. Full article
(This article belongs to the Special Issue Impact of Climate Change and Adverse Environments on Aquaculture)
Show Figures

Figure 1

6 pages, 180 KiB  
Editorial
Aquatic Ecosystems: Biodiversity and Conservation
by Marcos Gomes Nogueira and Douglas Donald Kane
Water 2025, 17(15), 2321; https://doi.org/10.3390/w17152321 - 5 Aug 2025
Abstract
The structure and functioning of marine and inland water ecosystems are highly dependent on living organisms [...] Full article
(This article belongs to the Special Issue Aquatic Ecosystems: Biodiversity and Conservation)
24 pages, 6550 KiB  
Article
DNA Fingerprint Profile of Zizania spp. Plant, Monitoring Its Leaves with Screening of Their Biological Activity: Antimicrobial, Antioxidant and Cytotoxicity
by Latifah A. Al Shammari
Life 2025, 15(8), 1240; https://doi.org/10.3390/life15081240 - 5 Aug 2025
Abstract
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), [...] Read more.
This study presents an integrated approach combining molecular, phytochemical, and biological analyses to characterize a newly discovered Zizania specimen from the northern Nile Delta, Egypt. Genetic fingerprinting using RAPD and ISSR markers revealed 85% band-sharing similarity with Zizania texana (Z. texana), though distinct morphological and genetic traits suggested potential intraspecific variation. Phytochemical profiling identified high concentrations of bioactive compounds, including quercetin (42.1 µg/mL), β-caryophyllene (11.21%), and gallic acid (23.4 µg/mL), which are pertinent and correlated with robust biological activities. The ethanolic leaf extract exhibited significant antioxidant capacity (IC50 = 38.6 µg/mL in DPPH assay), potent antimicrobial effects against Candida albicans (C. albicans) (IC50 = 4.9 ± 0.6 µg/mL), and dose-dependent cytotoxicity against cancer cell lines. MCF-7 has the lowest IC50 (28.3 ± 1.5 µg/mL), indicating the highest potency among the tested cell lines. In contrast, HepG2 demonstrates moderate sensitivity (IC50 = 31.4 ± 1.8 µg/mL), while A549 shows the highest IC50 value (36.9 ± 2.0 µg/mL), indicating greater resistance. These findings underscore the taxonomic novelty of the specimen and its potential as a source of natural antioxidants, antimicrobials, and anticancer agents. The study highlights the importance of interdisciplinary approaches in resolving taxonomic uncertainties and unlocking the medicinal value of understudied aquatic plants. Full article
(This article belongs to the Special Issue Therapeutic Innovations from Plants and Their Bioactive Extracts)
Show Figures

Figure 1

21 pages, 3354 KiB  
Article
An Assessment of the Population Structure and Stock Dynamics of Megalobrama skolkovii During the Early Phase of the Fishing Ban in the Poyang Lake Basin
by Xinwen Huang, Qun Xu, Bao Zhang, Chiping Kong, Lei Fang, Xiaoping Gao, Leyi Sun, Lekang Li and Xiaoling Gong
Fishes 2025, 10(8), 378; https://doi.org/10.3390/fishes10080378 - 4 Aug 2025
Abstract
The ten-year fishing ban on the Yangtze River aims to restore aquatic biodiversity and rebuild fishery resources. Megalobrama skolkovii, a key species in the basin, was investigated using 2024 data to provide a preliminary assessment of its population structure, stock dynamics, and [...] Read more.
The ten-year fishing ban on the Yangtze River aims to restore aquatic biodiversity and rebuild fishery resources. Megalobrama skolkovii, a key species in the basin, was investigated using 2024 data to provide a preliminary assessment of its population structure, stock dynamics, and early recovery. Age analysis (n = 243) showed that 1–6-year-olds were dominated by fish aged 3 (35%), with few older than 4, indicating moderate structural truncation. Growth parameters modeled by the von Bertalanffy Growth Function yielded L = 61.89 cm and k = 0.25 year1, with a weight–growth inflection age of 4.4 years. Natural mortality (M = 0.48 year−1) was estimated using Pauly’s empirical formula, and total mortality (Z = 0.55 year−1) was estimated from the catch curve analysis. While fishing mortality (F) was statistically indistinguishable from zero, a plausible low-intensity fishing scenario was explored to assess potential impacts of residual activities. Length-based indicators (LBIs) showed Pmat = 46.05%, Popt = 9.51%, and Pmega = 6.88%, suggesting reproductive recovery but incomplete structural restoration. These preliminary findings reveal an asymmetrical recovery trajectory, whereby physiological improvements and enhanced recruitment have occurred, yet full structural restoration remains incomplete. This underscores the need for continued, long-term conservation and monitoring to support population resilience. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

19 pages, 9234 KiB  
Article
Physiological Changes and Transcriptomics of Elodea nuttallii in Response to High-Temperature Stress
by Yanling Xu, Yuanyuan Jin, Manrong Zha, Yuhan Mao, Wenqiang Ren, Zirao Guo, Yufei Zhang, Beier Zhou, Tao Zhang, Qi He, Shibiao Liu and Bo Jiang
Biology 2025, 14(8), 993; https://doi.org/10.3390/biology14080993 (registering DOI) - 4 Aug 2025
Abstract
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute [...] Read more.
Elodea nuttallii is a significant submerged macrophyte utilized in shrimp and crab aquaculture, yet it exhibits low thermotolerance. This study investigated the physiological responses and transcriptomic characteristics of E. nuttallii under high-temperature stress (HTS). The results indicated that HTS significantly reduced the absolute growth rate (AGR) and photosynthetic efficiency of E. nuttallii while concurrently elevating antioxidant enzyme activities, malondialdehyde (MDA) content, and concentrations of osmotic adjustment compounds. Furthermore, the apical segments of E. nuttallii demonstrated greater sensitivity to HTS compared to the middle segments. Under exposure to 35 °C and 40 °C, antioxidant enzyme activities, MDA content, and osmotic adjustment compound levels were significantly higher in the apical segments than in the middle segments. Transcriptomic analysis revealed 7526 differentially expressed genes (DEGs) in the apical segments at 35 °C, a number substantially exceeding that observed in the middle segments. Enrichment analysis of DEGs revealed significant upregulation of key metabolic regulators under HTS, including carbohydrate metabolism genes (HXK, FRK) and phenylpropanoid biosynthesis enzymes (4CL, COMT). This transcriptional reprogramming demonstrates E. nuttallii’s adaptive strategy of modulating carbon allocation and phenolic compound synthesis to mitigate thermal damage. Our findings not only elucidate novel thermotolerance mechanisms in aquatic plants but also provide candidate genetic targets (HXK, 4CL) for molecular breeding of heat-resilient cultivars through transcriptomic screening. Full article
Show Figures

Figure 1

13 pages, 2281 KiB  
Article
Amphipathic Alpha-Helical Peptides AH1 and AH3 Facilitate Immunogenicity of Enhanced Green Fluorescence Protein in Rainbow Trout (Oncorhynchus mykiss)
by Kuan Chieh Peng and Ten-Tsao Wong
J. Mar. Sci. Eng. 2025, 13(8), 1497; https://doi.org/10.3390/jmse13081497 - 4 Aug 2025
Abstract
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically [...] Read more.
Vaccination is the most effective method to counteract infectious diseases in farmed fish. It secures aquaculture production and safeguards the wild stock and aquatic ecosystem from catastrophic contagious diseases. In vaccine development, recombinant subunit vaccines are favorable candidates since they can be economically produced in large quantities without growing many pathogens, as in inactivated or attenuated vaccine production. However, recombinant subunit vaccines are often weak or deficient in immunogenicity, resulting in inadequate defenses against infections. Technologies that can increase the immunogenicity of recombinant subunit vaccines are in desperate need. Enhanced green fluorescence protein (EGFP) has a low antigenicity and is susceptible to folding changes and losing fluorescence after fusing with other proteins. Using these valuable features of EGFP, we comprehend two amphipathic alpha-helical peptides, AH1 and AH3, derived from Hepatitis C virus and Influenza A virus, respectively, that can induce high immune responses of their fused EGFP in fish without affecting their folding. AH3-EGFP has the most elevated cell binding, significantly 62% and 36% higher than EGFP and AH1-EGFP, respectively. Immunizations with AH1-EGFP or AH3-EGFP significantly induced higher anti-EGFP antibody levels 300–500-fold higher than EGFP immunization after the boost injection in rainbow trout. Our results suggest that AH1 and AH3 effectively increase the immunogenicity of EGFP without influencing its structure. Further validation of their value in other recombinant proteins is necessary to demonstrate their broader utility in enhancing the immunogenicity of subunit vaccines. We also suggest that EGFP and its variants are promising candidates for initially screening proper immunogenicity-enhancing peptides or proteins to advance recombinant subunit vaccine development. Full article
(This article belongs to the Section Marine Aquaculture)
Show Figures

Figure 1

29 pages, 3303 KiB  
Review
Nanoplastics (NPs): Environmental Presence, Ecological Implications, and Mitigation Approaches
by Vyoma Jani and Shenghua Wu
Microplastics 2025, 4(3), 48; https://doi.org/10.3390/microplastics4030048 - 4 Aug 2025
Abstract
Nanoplastics (NPs), the tiniest and one of the most problematic fractions of plastic pollution, present dangers because of their size, reactivity, and ecosystem interactions. This review highlights the distinct characteristics, sources, routes, and ecological effects of NPs, a substantial subgroup of plastic pollution. [...] Read more.
Nanoplastics (NPs), the tiniest and one of the most problematic fractions of plastic pollution, present dangers because of their size, reactivity, and ecosystem interactions. This review highlights the distinct characteristics, sources, routes, and ecological effects of NPs, a substantial subgroup of plastic pollution. With a focus on their ecological and toxicological implications, this review highlights the unique qualities of NPs and their functions in wastewater and urban runoff systems. The analysis of NPs’ entry points into terrestrial, aquatic, and atmospheric ecosystems reveals difficulties with detection and quantification that make monitoring more difficult. Filtration technologies, adsorption-based techniques, and membrane bioreactors are examples of advanced technical solutions emphasized as efficient NP mitigation measures that can integrated into current infrastructure. Environmental effects are examined, including toxicological hazards to organisms in freshwater, terrestrial, and marine environments, bioaccumulation, and biomagnification. This analysis emphasizes the serious ecological problems that NPs present and the necessity of using civil and environmental engineering techniques to improve detection techniques, enact stronger laws, and encourage public participation. Full article
Show Figures

Figure 1

Back to TopTop