Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (196)

Search Parameters:
Keywords = aquaculture cages

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 5195 KiB  
Article
Individual Fish Broadband Echo Recognition Method and Performance Analysis Oriented to Aquaculture Scenarios
by Hang Yang, Jing Cheng, Guodong Li, Shujie Wan and Jun Chen
Fishes 2025, 10(8), 391; https://doi.org/10.3390/fishes10080391 (registering DOI) - 7 Aug 2025
Abstract
Obtaining the echo of individual fish is an important prerequisite for fisheries acoustic applications, such as in situ measurement of fish target strength and assessment of fish abundance using the counting method. It is also the foundation for evaluating the growth status of [...] Read more.
Obtaining the echo of individual fish is an important prerequisite for fisheries acoustic applications, such as in situ measurement of fish target strength and assessment of fish abundance using the counting method. It is also the foundation for evaluating the growth status of farmed fish and managing aquaculture risks. The density of farmed fish populations is typically higher, and such high-density aquaculture further increases the difficulty of obtaining individual fish echoes in practical applications. Building upon previous research and considering the behavioral characteristics of fish in aquaculture settings, this study conducted performance simulations, live fish experiments in simulated aquaculture cages, and comparative evaluations of three individual fish broadband echo detection methods based on a broadband signal system: the amplitude pulse width method (APM) based on echo envelopes, the peak detection and time delay estimation method (PDM), and the peak time delay combined with instantaneous frequency method (PDIM). This study assumed a dorsolateral fish orientation, which limits its research scope and applicability. The results showed that the PDIM achieved a detection accuracy of 78.34% and a false recognition rate of 1.32%. The APM based on echo envelopes was insensitive to individual fish echoes and had lower recognition accuracy. The PDM exhibited better individual fish echo capture capabilities, while the PDIM demonstrated superior overlapping echo rejection capabilities. Full article
(This article belongs to the Special Issue Applications of Acoustics in Marine Fisheries)
Show Figures

Figure 1

10 pages, 3839 KiB  
Article
Sound Production Characteristics of the Chorus Produced by Small Yellow Croaker (Larimichthys polyactis) in Coastal Cage Aquaculture
by Young Geul Yoon, Hansoo Kim, Sungho Cho, Sunhyo Kim, Yun-Hwan Jung and Donhyug Kang
J. Mar. Sci. Eng. 2025, 13(7), 1380; https://doi.org/10.3390/jmse13071380 - 21 Jul 2025
Viewed by 302
Abstract
Recent advances in passive acoustic monitoring (PAM) have markedly improved the ability to study marine soundscapes by enabling long-term, non-invasive monitoring of biological sounds across large spatial and temporal scales. Among aquatic organisms, fish are primary contributors to biophony, producing sounds associated with [...] Read more.
Recent advances in passive acoustic monitoring (PAM) have markedly improved the ability to study marine soundscapes by enabling long-term, non-invasive monitoring of biological sounds across large spatial and temporal scales. Among aquatic organisms, fish are primary contributors to biophony, producing sounds associated with feeding, reproduction, and social behavior. However, the majority of previous research has focused on individual vocalizations, with limited attention to collective acoustic phenomena such as fish choruses. This study quantitatively analyzes choruses produced by the small yellow croaker (Larimichthys polyactis), an ecologically and commercially important species in the Northwest Pacific Ocean. Using power spectral density (PSD) analysis, we examined long-term underwater recordings from a sea cage containing approximately 2000 adult small yellow croakers. The choruses were centered around ~600 Hz and exhibited sound pressure levels 15–20 dB higher at night than during the day. These findings highlight the ecological relevance of fish choruses and support their potential use as indicators of biological activity. This study lays the foundation for incorporating fish choruses into soundscape-based PAM frameworks to enhance biodiversity and habitat monitoring. Full article
(This article belongs to the Special Issue Advanced Research in Marine Environmental and Fisheries Acoustics)
Show Figures

Figure 1

26 pages, 4382 KiB  
Article
Effect of Biological Fouling on the Dynamic Responses of Integrated Foundation Structure of Floating Wind Turbine and Net Cage
by Yu Hu, Hao Liu, Yingyao Cheng, Jichao Lei and Junxin Liu
J. Mar. Sci. Eng. 2025, 13(7), 1372; https://doi.org/10.3390/jmse13071372 - 18 Jul 2025
Viewed by 286
Abstract
This paper proposes a novel integrated foundation structure of floating wind turbine and net cage by combining large capacity semi-submersible wind turbines with aquaculture cages. The research mainly focuses on the effect of biological fouling on net cage structures and safety performance of [...] Read more.
This paper proposes a novel integrated foundation structure of floating wind turbine and net cage by combining large capacity semi-submersible wind turbines with aquaculture cages. The research mainly focuses on the effect of biological fouling on net cage structures and safety performance of mooring systems. The study firstly validates the simplified model of net cage through comparing with results of existing scaled experimental models. Then, a hydrodynamic analysis is conducted on the net cage model to obtain the RAOs of motion response of the structure under frequency-domain analysis, and damping correction is also carried out on the structure. Finally, time-domain analyses under irregular wave conditions are conducted to evaluate the effects of biofouling fouling on motion responses of net cage foundation and tensions of mooring lines. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

20 pages, 20152 KiB  
Article
Characterization of the Internal and External Flow Field of a Semi-Submersible Aquaculture Platform with Multiple Net Cage Configuration
by Bo Hu, Jiawen Li, Juncheng Ruan, Jiawei Hao and Ji Huang
J. Mar. Sci. Eng. 2025, 13(7), 1373; https://doi.org/10.3390/jmse13071373 - 18 Jul 2025
Viewed by 179
Abstract
To achieve efficient and sustainable marine aquaculture, STAR-CCM+ was used to simulate the internal and external field characteristics of a semi-submersible aquaculture platform based on a porous media model, focusing on the influence of incoming flow velocity and net solidity ratio. The results [...] Read more.
To achieve efficient and sustainable marine aquaculture, STAR-CCM+ was used to simulate the internal and external field characteristics of a semi-submersible aquaculture platform based on a porous media model, focusing on the influence of incoming flow velocity and net solidity ratio. The results indicate that the flow field distribution around the platform exhibits no significant regularity and that low-velocity vortex regions are primarily concentrated near the pillars and nets. After velocity attenuation, the velocity reduction coefficients at the centers of the three cages are 90.26%, 63.65%, and 52.56%, respectively. Furthermore, the velocity attenuation inside the cages is minimally influenced by incoming flow velocity, with a maximum difference of 3.10%. In contrast, differences in net solidity ratio significantly affect velocity attenuation, particularly in downstream regions. The velocity reduction coefficient in the third cage varies by up to 43.25% depending on the net solidity ratio. These findings provide practical insights for the engineering design and application of aquaculture platforms. Full article
(This article belongs to the Section Coastal Engineering)
Show Figures

Figure 1

27 pages, 4515 KiB  
Article
Effects of Different Farming Models on Muscle Quality, Intestinal Microbiota Diversity, and Liver Metabolism of Rice Field Eel (Monopterus albus)
by Yifan Zhao, Wenzong Zhou, Muyan Li, Yuning Zhang, Weiwei Lv, Weiwei Huang, Hang Yang, Quan Yuan and Mingyou Li
Foods 2025, 14(13), 2383; https://doi.org/10.3390/foods14132383 - 5 Jul 2025
Viewed by 475
Abstract
As consumer demand for quality fish products continues to rise, quality has become a key factor in market competition. Ecological aquaculture research is exploring various farming methods to balance high-quality demand with environmental protection. This study compared three aquaculture models—cage culture (CG), recirculating [...] Read more.
As consumer demand for quality fish products continues to rise, quality has become a key factor in market competition. Ecological aquaculture research is exploring various farming methods to balance high-quality demand with environmental protection. This study compared three aquaculture models—cage culture (CG), recirculating aquaculture (RAG), and rice–fish co-culture (RG)—by analyzing muscle quality (AOAC, GC-MS), intestinal microbiota (16S rRNA), and liver metabolism (LC-MS) to assess their effects on M. albus. In terms of muscle quality, the RG group showed increased levels of EPA and DHA, reduced muscle moisture and crude lipid content, and enhanced crude protein accumulation. The crude protein content was significantly higher in the RAG group than in the CG group (p < 0.05). The RG group also had the highest levels of total, essential, and umami amino acids, followed by the RAG and CG groups. In terms of intestinal microbiota, the RG group had the highest microbial diversity and stability, with increased abundance of Firmicutes and Bacteroidetes and decreased levels of Proteobacteria. Compared to the CG, the RAG group also showed increased microbial diversity and a reduction in pathogenic genera. Liver metabolomics analysis demonstrated that the RG group had significant advantages over the CG group in amino acid, lipid, and energy metabolism. The RAG group exhibited upregulation of glycerophospholipid metabolism and a decrease in oxidative stress marker levels. Overall, the RG group enhanced muscle quality and optimized intestinal and liver metabolism in M. albus. Full article
(This article belongs to the Section Meat)
Show Figures

Figure 1

13 pages, 593 KiB  
Article
Sardine-Based Diet Mitigates Growth Depression at Low Temperatures in Juvenile Meagre (Argyrosomus regius, Asso 1801)
by Lav Bavčević, Slavica Čolak, Renata Barić, Siniša Petrović and Tin Klanjscek
Fishes 2025, 10(7), 314; https://doi.org/10.3390/fishes10070314 - 2 Jul 2025
Viewed by 343
Abstract
Low seawater temperatures are expected to depress fish growth in aquaculture. However, recent evidence suggests diet composition may offer mitigation for some species. This study evaluated the impact of different diets on juvenile meagre (Argyrosomus regius) in cage farming at low [...] Read more.
Low seawater temperatures are expected to depress fish growth in aquaculture. However, recent evidence suggests diet composition may offer mitigation for some species. This study evaluated the impact of different diets on juvenile meagre (Argyrosomus regius) in cage farming at low seawater temperatures (average 15.19 °C), conditions known to typically suppress meagre growth. Three replicated groups of fish (initial weight ≈ 107 g) were fed for six months either sardines (group A) or commercial pellets (groups B/C, with group C moisturized). The results demonstrate that the nutritional profile of sardines effectively mitigates cold-induced growth reduction in meagre. While pellet-fed meagre experienced expected growth depression, sardine-fed meagre exhibited a doubled temperature growth coefficient (TGC) and an 80% higher final average weight than the pellet groups (A: 346.13 g, B: 194.44 g, C: 188.93 g). Full article
(This article belongs to the Special Issue Advancing Fish Nutrition Research for Sustainable Aquaculture)
Show Figures

Figure 1

24 pages, 8724 KiB  
Article
Transcriptomic Analysis of Trachinotus ovatus Under Flow Velocity Stress
by Jing Zhang, Xixi Liu, Jiayue Dai, Sufang Niu, Xuefeng Wang and Baogui Tang
Animals 2025, 15(13), 1932; https://doi.org/10.3390/ani15131932 - 30 Jun 2025
Viewed by 318
Abstract
Trachinotus ovatus is a euryhaline, warm-water pelagic fish species with strong adaptability, rapid growth, and a high survival rate, making it one of the most important marine aquaculture species in China. In recent years, extensive experience has been accumulated in the cage farming [...] Read more.
Trachinotus ovatus is a euryhaline, warm-water pelagic fish species with strong adaptability, rapid growth, and a high survival rate, making it one of the most important marine aquaculture species in China. In recent years, extensive experience has been accumulated in the cage farming of T. ovatus, but whether it can adapt to deep-sea environments and grow normally remains a current research focus. This study used RNA-Seq sequencing technology to analyze the gene expression changes in the liver of T. ovatus under three conditions: rest (0 cm/s), medium flow velocity (54 cm/s), and high flow velocity (90 cm/s). Through differential expression analysis, Short Time-series Expression Miner (STEM) analysis and protein–protein interaction (PPI) network analysis, a total of 5107 differentially expressed genes (DEGs), three significantly expressed gene profiles (profile6, profile1, and profile5), and 15 hub genes were identified. The results showed that changes in flow speed significantly impacted key biological processes such as energy metabolism, protein homeostasis, and endoplasmic reticulum (ER) stress response. Under moderate and high flow conditions, glycolysis-related genes were upregulated to meet the energy demands of swimming, while the downregulation of the PPARγ-RXRG complex and its downstream genes in the lipid metabolism pathway suggested a limitation in its fatty acid β-oxidation capacity. At the same time, protein synthesis was enhanced, and the unfolded protein response (UPR) was activated to help cope with ER stress. Furthermore, when the flow speed reached 90 cm/s, the expression of UPR- related genes and the anti-apoptotic factor JNK significantly decreased, suggesting that the stress response was nearing its limit and could potentially trigger cell apoptosis. These findings provide new insights into the molecular adaptation mechanisms of T. ovatus to flow speed stress and offer theoretical support for its rational farming in deep-sea cages, suggesting that the water flow speed in farming should not exceed 90 cm/s. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

26 pages, 2761 KiB  
Review
Seedling Selection of the Large Yellow Croaker (Larimichthys crocea) for Sustainable Aquaculture: A Review
by Xinran Han, Shengmao Zhang, Yabing Wang, Hui Fang, Shiming Peng, Shenglong Yang and Zuli Wu
Appl. Sci. 2025, 15(13), 7307; https://doi.org/10.3390/app15137307 - 28 Jun 2025
Viewed by 312
Abstract
The large yellow croaker (Larimichthys crocea) is one of China’s most economically important marine fish species, with its cage culture production leading the nation for many years. However, the rapid expansion of aquaculture has brought challenges such as germplasm degradation, reduced [...] Read more.
The large yellow croaker (Larimichthys crocea) is one of China’s most economically important marine fish species, with its cage culture production leading the nation for many years. However, the rapid expansion of aquaculture has brought challenges such as germplasm degradation, reduced disease resistance, inconsistent product quality, and low adoption of improved strains, which have hindered the sustainable development of the industry. The primary objective of this review is to summarize the current practices and challenges in seedling selection for L. crocea. The secondary objectives include discussing the influence of genetic, physiological, and environmental factors on growth performance and proposing future research directions for sustainable breeding programs. This review covers key topics including morphological screening, growth performance evaluation, genetic diversity conservation, disease resistance improvement, and adaptation to environmental stress. It also explores the application of modern technologies such as marker-assisted selection, intelligent monitoring, environmental control, precision feeding, and disease prevention. Moreover, it highlights core issues in current breeding practices, such as over-reliance on single-trait selection and insufficient integration of environmental adaptability and disease resistance. Finally, future trends are discussed, emphasizing the integration of genomic tools with artificial intelligence to promote intelligent, precise, and sustainable breeding approaches. These insights aim to enhance aquaculture productivity while supporting long-term ecological balance and industry sustainability. Full article
Show Figures

Figure 1

19 pages, 5609 KiB  
Article
Effects of Chronic Low-Salinity Stress on Growth, Survival, Antioxidant Capacity, and Gene Expression in Mizuhopecten yessoensis
by Haoran Xiao, Xin Jin, Zitong Wang, Qi Ye, Weiyan Li, Lingshu Han and Jun Ding
Biology 2025, 14(7), 759; https://doi.org/10.3390/biology14070759 - 25 Jun 2025
Viewed by 338
Abstract
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth [...] Read more.
Extreme weather events such as heavy rainfall significantly reduce surface salinity in coastal waters, presenting considerable challenges to the aquaculture of Japanese scallops (Mizuhopecten yessoensis) in shallow cage systems. This study investigated the effects of chronic low-salinity stress on the growth performance, antioxidant capacity, and gene expression profile of M. yessoensis using a 60-day salinity gradient experiment. S33 represents the control treatment with normal seawater salinity (33‰), while S30, S28, and S26 represent experimental groups with progressively lower salinities of 30‰, 28‰, and 26‰, respectively. A decline in salinity was accompanied by an increase in oxygen consumption. The S26 group exhibited a higher ammonia excretion rate (2.73 μg/g·h) than other groups, indicating intensified nitrogen metabolism. Growth was inhibited under low-salinity conditions. The S33 group exhibited greater weight gain (16.7%) and shell growth (8.4%) compared to the S26 group (11.6% and 6%), which also showed a substantially higher mortality rate (46%) compared to the control (13%). At 28‰, antioxidant enzyme activities (T-AOC, SOD, CAT, POD) were elevated, indicating a moderate level of stress. However, at the lowest salinity (26‰), these indicators decreased, reflecting the exhaustion of the antioxidant systems and indicating that the mollusks’ adaptive capacity had been exceeded, leading to a state of stress fatigue. NAD-MDH activity was elevated in the S26 group, reflecting enhanced aerobic metabolism under stress. Transcriptome analysis revealed 564 differentially expressed genes (DEGs) between the S33 and S26 groups. Functional enrichment analysis indicated that these DEGs were mainly associated with immune and stress response pathways, including NF-κB, TNF, apoptosis, and Toll/Imd signaling. These genes are involved in key metabolic processes, such as alanine, aspartate, and glutamate metabolism. Genes such as GADD45, ATF4, TRAF3, and XBP1 were upregulated, contributing to stress repair and antioxidant responses. Conversely, the expressions of CASP3, IKBKA, BIRC2/3, and LBP were downregulated, potentially mitigating apoptosis and inflammatory responses. These findings suggest that M. yessoensis adapts to chronic low-salinity stress through the activation of antioxidant systems, modulation of immune responses, and suppression of excessive apoptosis. This study provides new insights into the molecular mechanisms underlying salinity adaptation in bivalves and offers valuable references for scallop aquaculture and selective breeding programs. Full article
(This article belongs to the Special Issue Metabolic and Stress Responses in Aquatic Animals)
Show Figures

Figure 1

24 pages, 3570 KiB  
Article
Semi-Supervised Underwater Image Enhancement Method Using Multimodal Features and Dynamic Quality Repository
by Mu Ding, Gen Li, Yu Hu, Hangfei Liu, Qingsong Hu and Xiaohua Huang
J. Mar. Sci. Eng. 2025, 13(6), 1195; https://doi.org/10.3390/jmse13061195 - 19 Jun 2025
Viewed by 389
Abstract
Obtaining clear underwater images is crucial for smart aquaculture, so it is necessary to repair degraded underwater images. Although underwater image restoration techniques have achieved remarkable results in recent years, the scarcity of labeled data poses a significant challenge to continued advancement. It [...] Read more.
Obtaining clear underwater images is crucial for smart aquaculture, so it is necessary to repair degraded underwater images. Although underwater image restoration techniques have achieved remarkable results in recent years, the scarcity of labeled data poses a significant challenge to continued advancement. It is well known that semi-supervised learning can make use of unlabeled data. In this study, we proposed a semi-supervised underwater image enhancement method, MCR-UIE, which utilized multimodal contrastive learning and a dynamic quality reliability repository to leverage the unlabeled data during training. This approach used multimodal feature contrast regularization to prevent the overfitting of incorrect labels, and secondly, introduced a dynamic quality reliability repository to update the output as pseudo ground truth. The robustness and generalization of the model in pseudo-label generation and unlabeled data learning were improved. Extensive experiments conducted on the UIEB and LSUI datasets demonstrated that the proposed method consistently outperformed existing traditional and deep learning-based approaches in both quantitative and qualitative evaluations. Furthermore, its successful application to images captured from deep-sea cage aquaculture environments validated its practical value. These results indicated that MCR-UIE held strong potential for real-world deployment in intelligent monitoring and visual perception tasks in complex underwater scenarios. Full article
Show Figures

Figure 1

25 pages, 849 KiB  
Article
Behavioral Drivers of Cage Tilapia (Oreochromis niloticus) Producers and Consumers in Kenya’s Lake Victoria Region
by Martin Ochieng Abwao, Hillary Bett, Natalia Turcekova and Edith Gathungu
Sustainability 2025, 17(12), 5312; https://doi.org/10.3390/su17125312 - 9 Jun 2025
Viewed by 516
Abstract
The cage tilapia farming boom in Kenya’s Lake Victoria region underscores its role in food security and economic growth. Success depends on understanding producer and consumer behaviors within the value chain. Using the Theory of Planned Behavior (TPB), this study examines how attitudes [...] Read more.
The cage tilapia farming boom in Kenya’s Lake Victoria region underscores its role in food security and economic growth. Success depends on understanding producer and consumer behaviors within the value chain. Using the Theory of Planned Behavior (TPB), this study examines how attitudes (evaluations of farming/consumption), subjective norms (social pressures), perceived behavioral control (confidence in actions), environmental awareness, and moral obligation shape decisions. A survey of 66 producers and 169 consumers, analyzed via structural equation modeling (SEM), reveals key drivers. Producers are driven by positive attitudes toward profitability, technical feasibility, and sustainability, reinforced by community norms and resource access, promoting sustainable practices. Consumers prioritize health, affordability, and accessibility of cage-farmed tilapia, with environmental and ethical factors less influential. These findings highlight opportunities for targeted interventions to enhance production, boost demand, and ensure sustainable aquaculture. Full article
Show Figures

Figure 1

27 pages, 4827 KiB  
Article
Framework for Estimating Environmental Carrying Capacity in Diverse Climatic Conditions and Fish Farming Production in Neotropical Reservoirs
by Elisa Maia de Godoy, Tavani Rocha Camargo, Moranne Toniato, Danilo Cintra Proença, Johana Marcela Concha Obando, Rodrigo Roubach, Pablo Gallardo and Guilherme Wolff Bueno
Sustainability 2025, 17(12), 5282; https://doi.org/10.3390/su17125282 - 7 Jun 2025
Viewed by 625
Abstract
Effective sustainable fish farming necessitates enhanced models that incorporate environmental variability and contemporary monitoring methods. This research presents an innovative framework for assessing and modeling the environmental carrying capacity based on phosphorus (ECCp) in tropical and neotropical lakes and reservoirs. The model evaluates [...] Read more.
Effective sustainable fish farming necessitates enhanced models that incorporate environmental variability and contemporary monitoring methods. This research presents an innovative framework for assessing and modeling the environmental carrying capacity based on phosphorus (ECCp) in tropical and neotropical lakes and reservoirs. The model evaluates phosphorus waste from tilapia farming (Oreochromis niloticus) under diverse climatic conditions and production scenarios in cage systems. Using bioenergetic modeling and Monte Carlo simulations, we estimated phosphorus retention in fish and maximum production limits across different temperatures (21 °C, 25 °C, 29 °C) and dietary phosphorus concentrations (0.8%, 1.2%, 2.1%) in Brazil’s Chavantes reservoir. Results indicated that phosphorus retention diminished with higher dietary phosphorus and increased temperatures, ranging from 51% (0.8% P) to 20% (2.1% P). Phosphorus discharge ranged from 3.3 to 20.5 kg/ton of fish produced. The ECCp model forecasted an allowable production of roughly 40 tons per year at full operational capacity, reflecting a 41% increase compared to current regulations. The model’s accuracy (96%) surpassed that of traditional regulatory frameworks, which rely on static parameters, emphasizing the shortcomings of existing practices. The findings promote enhanced modeling strategies, sophisticated monitoring, adaptive management, and revised public policies to mitigate phosphorus emissions and support sustainable aquaculture in tropical and neotropical regions. Full article
(This article belongs to the Special Issue Environmental and Economic Sustainability in Agri-Food System)
Show Figures

Graphical abstract

17 pages, 3050 KiB  
Article
Improving Aquaculture Worker Safety: A Data-Driven FTA Approach with Policy Implications
by Su-Hyung Kim, Seung-Hyun Lee, Kyung-Jin Ryu and Yoo-Won Lee
Fishes 2025, 10(6), 271; https://doi.org/10.3390/fishes10060271 - 4 Jun 2025
Viewed by 365
Abstract
Worker safety has been relatively overlooked in the rapidly growing aquaculture industry. To address this gap, industrial accident compensation insurance data—mainly from floating cage and seaweed farming—were analyzed to quantify accident types and frequencies, with a focus on human elements as root causes. [...] Read more.
Worker safety has been relatively overlooked in the rapidly growing aquaculture industry. To address this gap, industrial accident compensation insurance data—mainly from floating cage and seaweed farming—were analyzed to quantify accident types and frequencies, with a focus on human elements as root causes. Basic causes were selected based on IMO Resolution A/Res.884 and assessed through a worker awareness survey. Fault Tree Analysis (FTA), a Formal Safety Assessment technique, was applied to evaluate risks associated with these causes. The analysis identified organization at the farm site (23.3%), facility and equipment factors (22.8%), and people factors (21.4%) as the primary causes. Among secondary causes, personal negligence (13.2%), aging gear and poor maintenance (11.4%), and insufficient risk training (10.4%) were the most significant. Selective removal of these causes reduced the probability of human element-related accidents from 64.6% to 48.6%. While limited in scope to Korean data and self-reported surveys, the study demonstrates the value of combining quantitative data with worker perspectives. It provides foundational data for developing tailored safety strategies and institutional improvements—such as standardized procedures, multilingual education, and inclusive risk management—for sustainable safety in aquaculture. Full article
(This article belongs to the Special Issue Safety Management in Fish Farming: Challenges and Further Trends)
Show Figures

Figure 1

13 pages, 3600 KiB  
Article
The Effects of Water Flow on the Swimming Behavior of the Large Yellow Croaker (Larimichthys crocea) in a Large Sea Cage
by Xiaorun Zhang, Yong Tang, Xinyi Hu, Chonghuan Liu, Yonghu Liu, Xin Zhuang, Guang Xu and Jing Liu
Fishes 2025, 10(6), 250; https://doi.org/10.3390/fishes10060250 - 26 May 2025
Viewed by 323
Abstract
This study aims to clarify the influence of water flow on the behavior of the large yellow croaker (Larimichthys crocea). Although L. crocea is a key species in marine cage aquaculture, and the industry is increasingly adopting large-scale sea cages, the [...] Read more.
This study aims to clarify the influence of water flow on the behavior of the large yellow croaker (Larimichthys crocea). Although L. crocea is a key species in marine cage aquaculture, and the industry is increasingly adopting large-scale sea cages, the behavioral adaptations of this species under such conditions remain insufficiently characterized. To solve this problem, the study implemented an ultrasonic biotelemetry system to monitor the in situ swimming behavior of L. crocea across varying current velocities and tidal phases. The results indicated that the tagged fish predominantly occupied water depths of 1 to 2.6 m, with no observable circular swimming behavior along the cage periphery. Additionally, the spatial distribution of L. crocea within the large-scale cage seemed to correlate with the direction of the current. Furthermore, both the frequency of appearance and swimming speed of L. crocea were higher in the center of the cage compared to the peripheral regions during flood and ebb tides, whereas the opposite trend was observed during slack water. This study provides novel insights into the behavioral ecology of L. crocea in large-scale aquaculture systems. Full article
(This article belongs to the Section Fishery Facilities, Equipment, and Information Technology)
Show Figures

Figure 1

14 pages, 2478 KiB  
Article
Exploring the Cultivation of Ulva intestinalis in Low-Salinity Environments of the Baltic Sea
by Indrek Adler, Georg Martin, Nikolai Kovalchuk, Helen Orav-Kotta, Kristel Vene, Rando Tuvikene and Jonne Kotta
Oceans 2025, 6(2), 30; https://doi.org/10.3390/oceans6020030 - 22 May 2025
Viewed by 908
Abstract
Ulva intestinalis holds promise for sustainable aquaculture in the Baltic Sea, but success has so far been limited by high environmental variability. This study examines how environmental factors influence sporogenesis, attachment, and growth of U. intestinalis in the low-salinity Baltic Sea. Optimal sporogenesis [...] Read more.
Ulva intestinalis holds promise for sustainable aquaculture in the Baltic Sea, but success has so far been limited by high environmental variability. This study examines how environmental factors influence sporogenesis, attachment, and growth of U. intestinalis in the low-salinity Baltic Sea. Optimal sporogenesis was observed at nutrient levels of 4–7 g/L, with peak zoospore release at 22–24 °C. Artificial substrates showed limited attachment success, as competing algae like Pylaiella littoralis and Cladophora glomerata often outperformed Ulva. Mesh cage cultivation demonstrated potential, achieving growth rates similar to controlled systems, though storm-induced turbidity lowered growth. These findings highlight the importance of tailored Baltic Sea cultivation strategies, focusing on nutrient, temperature, water stability, and competition management to enhance Ulva production. As the first pilot experiments in the region, they provide essential input for developing informed strategies that support more detailed trials and future scaled-up production. Full article
Show Figures

Figure 1

Back to TopTop