Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (11)

Search Parameters:
Keywords = apoprotein E

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 2054 KB  
Article
Rootstock–Scion Exchanging mRNAs Participate in Watermelon Fruit Quality Improvement
by Kang Ning, Weixin Zhou, Xiaoqi Cai, Leiyan Yan, Yuanchang Ma, An Xie, Yuhong Wang and Pei Xu
Int. J. Mol. Sci. 2025, 26(11), 5121; https://doi.org/10.3390/ijms26115121 - 27 May 2025
Cited by 1 | Viewed by 594
Abstract
Grafting significantly enhances plant quality, including stress resistance and fruit quality. We previously found that grafting watermelon onto pumpkin can alter the metabolite content, but the involvement of mobile RNA was unclear. Here, we established and comprehensively analyzed mobile mRNA (mb-mRNA) profiles, transcriptomes, [...] Read more.
Grafting significantly enhances plant quality, including stress resistance and fruit quality. We previously found that grafting watermelon onto pumpkin can alter the metabolite content, but the involvement of mobile RNA was unclear. Here, we established and comprehensively analyzed mobile mRNA (mb-mRNA) profiles, transcriptomes, and metabolomes between the rootstock (pumpkin) and scion (watermelon). A total of 834 mobile RNAs were identified in the pulp and stem of pumpkin-grafted watermelon. GO (Gene Ontology) and KO (Kyoto Encyclopedia of Genes and Genomes Orthology) analyses revealed photosynthesis- and carbon fixation-related mobile RNAs (e.g., Photosystem II D2, P700 chlorophyll a apoprotein) in the watermelon pulp and cell division-related mobile RNAs in the stem. Additionally, transcription factors like MADS and DNAJ exhibited mobility. The secondary structure prediction of the MADS-box transcription factor (CmoCh20G002790) showed multiple loop structures (e.g., internal and hairpin loops) related to its mobility. An integrated analysis of transcript and metabolite profiles indicated that photosynthesis-related products are regulated not only by the scion’s own RNA but also by mb-mRNA synthesized by the rootstock. This research advances our understanding of grafting’s molecular mechanisms and provides insights for improving crop quality and sustainability in agriculture. Full article
Show Figures

Figure 1

12 pages, 2721 KB  
Article
Enhanced Phycocyanobilin Production in Escherichia coli by Fusion-Expression of Apo-Proteins with Signal Peptides
by Xiaolin Liu, Jing Yu, Qian Che, Tianjiao Zhu, Dehai Li and Guojian Zhang
Fermentation 2023, 9(9), 851; https://doi.org/10.3390/fermentation9090851 - 18 Sep 2023
Cited by 4 | Viewed by 3108
Abstract
Phycocyanobilin (PCB) is the bioactive chromophore attached to Phycocyanin (PC) that is of special interest for nutraceutical and therapeutic applications. However, the production of PCB from the heterologous host Escherichia coli is still very low. To facilitate subsequent application of PCB, improving its [...] Read more.
Phycocyanobilin (PCB) is the bioactive chromophore attached to Phycocyanin (PC) that is of special interest for nutraceutical and therapeutic applications. However, the production of PCB from the heterologous host Escherichia coli is still very low. To facilitate subsequent application of PCB, improving its production in microbial hosts is still a challenge to be solved. In this paper, a strategy involving fusion-expression of apo-proteins with signal peptides was adopted to improve PCB production in E. coli. First, we reconstructed the PCB biosynthesis pathway in E. coli and then optimized its culture media. Subsequently, one PC α (CpcA) subunit and one PC β (CpcB) subunit, which can capture free PCB, were introduced and increased the yield of PCB. Finally, CpcA was fused with seven signal peptides to generate recombinant proteins, among which, the signal peptide N20 fused with CpcA protein drastically improved PCB production in E. coli, providing a maximum flask output of 8.47 ± 0.18 mg/L. The results of this study demonstrate that PCB distribution and transporting manners in E. coli could affect the heterologous production efficiency. By fusing apo-proteins with signal peptides, the secretion of phycocyanin was refined and the production of PCB was successfully enhanced by 3.7-fold, compared with the starting strain (1.80 ± 0.12 mg/L). This work provided an alternative method for improving the production of PCB and other phycobilins. Full article
Show Figures

Figure 1

14 pages, 3492 KB  
Article
Hydrolytic Mechanism of a Metalloenzyme Is Modified by the Nature of the Coordinated Metal Ion
by Zeyad H. Nafaee, Bálint Hajdu, Éva Hunyadi-Gulyás and Béla Gyurcsik
Molecules 2023, 28(14), 5511; https://doi.org/10.3390/molecules28145511 - 19 Jul 2023
Viewed by 1768
Abstract
The nuclease domain of colicin E7 cleaves double-strand DNA non-specifically. Zn2+ ion was shown to be coordinated by the purified NColE7 as its native metal ion. Here, we study the structural and catalytic aspects of the interaction with Ni2+, Cu [...] Read more.
The nuclease domain of colicin E7 cleaves double-strand DNA non-specifically. Zn2+ ion was shown to be coordinated by the purified NColE7 as its native metal ion. Here, we study the structural and catalytic aspects of the interaction with Ni2+, Cu2+ and Cd2+ non-endogenous metal ions and the consequences of their competition with Zn2+ ions, using circular dichroism spectroscopy and intact protein mass spectrometry. An R447G mutant exerting decreased activity allowed for the detection of nuclease action against pUC119 plasmid DNA via agarose gel electrophoresis in the presence of comparable metal ion concentrations. It was shown that all of the added metal ions could bind to the apoprotein, resulting in a minor secondary structure change, but drastically shifting the charge distribution of the protein. Zn2+ ions could not be replaced by Ni2+, Cu2+ and Cd2+. The nuclease activity of the Ni2+-bound enzyme was extremely high in comparison with the other metal-bound forms, and could not be inhibited by the excess of Ni2+ ions. At the same time, this activity was significantly decreased in the presence of equivalent Zn2+, independent of the order of addition of each component of the mixture. We concluded that the Ni2+ ions promoted the DNA cleavage of the enzyme through a more efficient mechanism than the native Zn2+ ions, as they directly generate the nucleophilic OH ion. Full article
(This article belongs to the Special Issue Multifaceted Role of Metalloproteins)
Show Figures

Figure 1

13 pages, 2522 KB  
Review
Malondialdehyde as an Important Key Factor of Molecular Mechanisms of Vascular Wall Damage under Heart Diseases Development
by Vadim Z. Lankin, Alla K. Tikhaze and Arthur M. Melkumyants
Int. J. Mol. Sci. 2023, 24(1), 128; https://doi.org/10.3390/ijms24010128 - 21 Dec 2022
Cited by 41 | Viewed by 5493
Abstract
This mini review is devoted to a specific issue: the role of malondialdehyde (MDA)—a secondary product of free radical lipid peroxidation—in the molecular mechanisms of the formation of primary atherosclerotic vascular wall lesions. The principal difference between this review and the available literature [...] Read more.
This mini review is devoted to a specific issue: the role of malondialdehyde (MDA)—a secondary product of free radical lipid peroxidation—in the molecular mechanisms of the formation of primary atherosclerotic vascular wall lesions. The principal difference between this review and the available literature is that it discusses in detail the important role in atherogenesis not of “oxidized” LDL (i.e., LDL particles containing lipohydroperoxides), but of LDL particles chemically modified by the natural low-molecular weight dicarbonyl MDA. To confirm this, we consider the data obtained by us earlier, indicating that “atherogenic” are not LDL oxidized as a result of free radical lipoperoxidation and containing lipohydroperoxy derivatives of phospholipids in the outer layer of particles, but LDL whose apoprotein B-100 has been modified due to the chemical reaction of terminal lysine residue amino groups of the apoB-100 with the aldehyde groups of the MDA (Maillard reaction). In addition, we present our original data proving that MDA injures endothelial glycocalyx that suppress the ability of the endothelium to control arterial tone according to changes in wall shear stress. In summary, this mini review for the first time exhaustively discloses the key role of MDA in atherogenesis. Full article
(This article belongs to the Special Issue Heart Diseases: From Molecular Basis to Therapy)
Show Figures

Figure 1

24 pages, 3782 KB  
Review
The Mechanism-Based Inactivation of CYP3A4 by Ritonavir: What Mechanism?
by Nancy H. C. Loos, Jos H. Beijnen and Alfred H. Schinkel
Int. J. Mol. Sci. 2022, 23(17), 9866; https://doi.org/10.3390/ijms23179866 - 30 Aug 2022
Cited by 86 | Viewed by 10371
Abstract
Ritonavir is the most potent cytochrome P450 (CYP) 3A4 inhibitor in clinical use and is often applied as a booster for drugs with low oral bioavailability due to CYP3A4-mediated biotransformation, as in the treatment of HIV (e.g., lopinavir/ritonavir) and more recently COVID-19 (Paxlovid [...] Read more.
Ritonavir is the most potent cytochrome P450 (CYP) 3A4 inhibitor in clinical use and is often applied as a booster for drugs with low oral bioavailability due to CYP3A4-mediated biotransformation, as in the treatment of HIV (e.g., lopinavir/ritonavir) and more recently COVID-19 (Paxlovid or nirmatrelvir/ritonavir). Despite its clinical importance, the exact mechanism of ritonavir-mediated CYP3A4 inactivation is still not fully understood. Nonetheless, ritonavir is clearly a potent mechanism-based inactivator, which irreversibly blocks CYP3A4. Here, we discuss four fundamentally different mechanisms proposed for this irreversible inactivation/inhibition, namely the (I) formation of a metabolic-intermediate complex (MIC), tightly coordinating to the heme group; (II) strong ligation of unmodified ritonavir to the heme iron; (III) heme destruction; and (IV) covalent attachment of a reactive ritonavir intermediate to the CYP3A4 apoprotein. Ritonavir further appears to inactivate CYP3A4 and CYP3A5 with similar potency, which is important since ritonavir is applied in patients of all ethnicities. Although it is currently not possible to conclude what the primary mechanism of action in vivo is, it is unlikely that any of the proposed mechanisms are fundamentally wrong. We, therefore, propose that ritonavir markedly inactivates CYP3A through a mixed set of mechanisms. This functional redundancy may well contribute to its overall inhibitory efficacy. Full article
(This article belongs to the Section Molecular Pharmacology)
Show Figures

Graphical abstract

17 pages, 3383 KB  
Article
Half Way to Hypusine—Structural Basis for Substrate Recognition by Human Deoxyhypusine Synthase
by Elżbieta Wątor, Piotr Wilk and Przemysław Grudnik
Biomolecules 2020, 10(4), 522; https://doi.org/10.3390/biom10040522 - 30 Mar 2020
Cited by 28 | Viewed by 7561
Abstract
Deoxyhypusine synthase (DHS) is a transferase enabling the formation of deoxyhypusine, which is the first, rate-limiting step of a unique post-translational modification: hypusination. DHS catalyses the transfer of a 4-aminobutyl moiety of polyamine spermidine to a specific lysine of eukaryotic translation factor 5A [...] Read more.
Deoxyhypusine synthase (DHS) is a transferase enabling the formation of deoxyhypusine, which is the first, rate-limiting step of a unique post-translational modification: hypusination. DHS catalyses the transfer of a 4-aminobutyl moiety of polyamine spermidine to a specific lysine of eukaryotic translation factor 5A (eIF5A) precursor in a nicotinamide adenine dinucleotide (NAD)-dependent manner. This modification occurs exclusively on one protein, eIF5A, and it is essential for cell proliferation. Malfunctions of the hypusination pathway, including those caused by mutations within the DHS encoding gene, are associated with conditions such as cancer or neurodegeneration. Here, we present a series of high-resolution crystal structures of human DHS. Structures were determined as the apoprotein, as well as ligand-bound states at high-resolutions ranging from 1.41 to 1.69 Å. By solving DHS in complex with its natural substrate spermidine (SPD), we identified the mode of substrate recognition. We also observed that other polyamines, namely spermine (SPM) and putrescine, bind DHS in a similar manner as SPD. Moreover, we performed activity assays showing that SPM could to some extent serve as an alternative DHS substrate. In contrast to previous studies, we demonstrate that no conformational changes occur in the DHS structure upon spermidine-binding. By combining mutagenesis and a light-scattering approach, we show that a conserved “ball-and-chain” motif is indispensable to assembling a functional DHS tetramer. Our study substantially advances our knowledge of the substrate recognition mechanism by DHS and may aid the design of pharmacological compounds for potential applications in cancer therapy. Full article
(This article belongs to the Special Issue Biogenic Polyamines and Related Metabolites)
Show Figures

Figure 1

25 pages, 3725 KB  
Article
High-Density Lipoprotein (HDL) Inhibits Serum Amyloid A (SAA)-Induced Vascular and Renal Dysfunctions in Apolipoprotein E-Deficient Mice
by Xiaoping Cai, Gulfam Ahmad, Farjaneh Hossain, Yuyang Liu, XiaoSuo Wang, Joanne Dennis, Ben Freedman and Paul K. Witting
Int. J. Mol. Sci. 2020, 21(4), 1316; https://doi.org/10.3390/ijms21041316 - 15 Feb 2020
Cited by 22 | Viewed by 5924
Abstract
Serum amyloid A (SAA) promotes endothelial inflammation and dysfunction that is associated with cardiovascular disease and renal pathologies. SAA is an apoprotein for high-density lipoprotein (HDL) and its sequestration to HDL diminishes SAA bioactivity. Herein we investigated the effect of co-supplementing HDL on [...] Read more.
Serum amyloid A (SAA) promotes endothelial inflammation and dysfunction that is associated with cardiovascular disease and renal pathologies. SAA is an apoprotein for high-density lipoprotein (HDL) and its sequestration to HDL diminishes SAA bioactivity. Herein we investigated the effect of co-supplementing HDL on SAA-mediated changes to vascular and renal function in apolipoprotein E-deficient (ApoE/) mice in the absence of a high-fat diet. Male ApoE−/− mice received recombinant human SAA or vehicle (control) by intraperitoneal (i.p.) injection every three days for two weeks with or without freshly isolated human HDL supplemented by intravenous (i.v.) injection in the two weeks preceding SAA stimulation. Aorta and kidney were harvested 4 or 18 weeks after commencement of treatment. At 4 weeks after commencement of treatment, SAA increased aortic vascular cell adhesion molecule (VCAM)-1 expression and F2-isoprostane level and decreased cyclic guanosine monophosphate (cGMP), consistent with SAA stimulating endothelial dysfunction and promoting atherosclerosis. SAA also stimulated renal injury and inflammation that manifested as increased urinary protein, kidney injury molecule (KIM)-1, and renal tissue cytokine/chemokine levels as well as increased protein tyrosine chlorination and P38 MAPkinase activation and decreased in Bowman’s space, confirming that SAA elicited a pro-inflammatory phenotype in the kidney. At 18 weeks, vascular lesions increased significantly in the cohort of ApoE−/− mice treated with SAA alone. By contrast, pretreatment of mice with HDL decreased SAA pro-inflammatory activity, inhibited SAA enhancement of aortic lesion size and renal function, and prevented changes to glomerular Bowman’s space. Taken together, these data indicate that supplemented HDL reduces SAA-mediated endothelial and renal dysfunction in an atherosclerosis-prone mouse model. Full article
Show Figures

Graphical abstract

17 pages, 4032 KB  
Article
Oxidation of Human Copper Chaperone Atox1 and Disulfide Bond Cleavage by Cisplatin and Glutathione
by Maria I. Nardella, Antonio Rosato, Benny D. Belviso, Rocco Caliandro, Giovanni Natile and Fabio Arnesano
Int. J. Mol. Sci. 2019, 20(18), 4390; https://doi.org/10.3390/ijms20184390 - 6 Sep 2019
Cited by 8 | Viewed by 5597
Abstract
Cancer cells cope with high oxidative stress levels, characterized by a shift toward the oxidized form (GSSG) of glutathione (GSH) in the redox couple GSSG/2GSH. Under these conditions, the cytosolic copper chaperone Atox1, which delivers Cu(I) to the secretory pathway, gets oxidized, i.e., [...] Read more.
Cancer cells cope with high oxidative stress levels, characterized by a shift toward the oxidized form (GSSG) of glutathione (GSH) in the redox couple GSSG/2GSH. Under these conditions, the cytosolic copper chaperone Atox1, which delivers Cu(I) to the secretory pathway, gets oxidized, i.e., a disulfide bond is formed between the cysteine residues of the Cu(I)-binding CxxC motif. Switching to the covalently-linked form, sulfur atoms are not able to bind the Cu(I) ion and Atox1 cannot play an antioxidant role. Atox1 has also been implicated in the resistance to platinum chemotherapy. In the presence of excess GSH, the anticancer drug cisplatin binds to Cu(I)-Atox1 but not to the reduced apoprotein. With the aim to investigate the interaction of cisplatin with the disulfide form of the protein, we performed a structural characterization in solution and in the solid state of oxidized human Atox1 and explored its ability to bind cisplatin under conditions mimicking an oxidizing environment. Cisplatin targets a methionine residue of oxidized Atox1; however, in the presence of GSH as reducing agent, the drug binds irreversibly to the protein with ammine ligands trans to Cys12 and Cys15. The results are discussed with reference to the available literature data and a mechanism is proposed connecting platinum drug processing to redox and copper homeostasis. Full article
Show Figures

Graphical abstract

15 pages, 3283 KB  
Article
Cadmium Complexed with β2-Microglubulin, Albumin and Lipocalin-2 rather than Metallothionein Cause Megalin:Cubilin Dependent Toxicity of the Renal Proximal Tubule
by Johannes Fels, Bettina Scharner, Ralf Zarbock, Itzel Pamela Zavala Guevara, Wing-Kee Lee, Olivier C. Barbier and Frank Thévenod
Int. J. Mol. Sci. 2019, 20(10), 2379; https://doi.org/10.3390/ijms20102379 - 14 May 2019
Cited by 40 | Viewed by 5132
Abstract
Cadmium (Cd2+) in the environment is a significant health hazard. Chronic low Cd2+ exposure mainly results from food and tobacco smoking and causes kidney damage, predominantly in the proximal tubule. Blood Cd2+ binds to thiol-containing high (e.g., albumin, transferrin) [...] Read more.
Cadmium (Cd2+) in the environment is a significant health hazard. Chronic low Cd2+ exposure mainly results from food and tobacco smoking and causes kidney damage, predominantly in the proximal tubule. Blood Cd2+ binds to thiol-containing high (e.g., albumin, transferrin) and low molecular weight proteins (e.g., the high-affinity metal-binding protein metallothionein, β2-microglobulin, α1-microglobulin and lipocalin-2). These plasma proteins reach the glomerular filtrate and are endocytosed at the proximal tubule via the multiligand receptor complex megalin:cubilin. The current dogma of chronic Cd2+ nephrotoxicity claims that Cd2+-metallothionein endocytosed via megalin:cubilin causes renal damage. However, a thorough study of the literature strongly argues for revision of this model for various reasons, mainly: (i) It relied on studies with unusually high Cd2+-metallothionein concentrations; (ii) the KD of megalin for metallothionein is ~105-times higher than (Cd2+)-metallothionein plasma concentrations. Here we investigated the uptake and toxicity of ultrafiltrated Cd2+-binding protein ligands that are endocytosed via megalin:cubilin in the proximal tubule. Metallothionein, β2-microglobulin, α1-microglobulin, lipocalin-2, albumin and transferrin were investigated, both as apo- and Cd2+-protein complexes, in a rat proximal tubule cell line (WKPT-0293 Cl.2) expressing megalin:cubilin at low passage, but is lost at high passage. Uptake was determined by fluorescence microscopy and toxicity by MTT cell viability assay. Apo-proteins in low and high passage cells as well as Cd2+-protein complexes in megalin:cubilin deficient high passage cells did not affect cell viability. The data prove Cd2+-metallothionein is not toxic, even at >100-fold physiological metallothionein concentrations in the primary filtrate. Rather, Cd2+-β2-microglobulin, Cd2+-albumin and Cd2+-lipocalin-2 at concentrations present in the primary filtrate are taken up by low passage proximal tubule cells and cause toxicity. They are therefore likely candidates of Cd2+-protein complexes damaging the proximal tubule via megalin:cubilin at concentrations found in the ultrafiltrate. Full article
(This article belongs to the Special Issue Kidney Injury: From Molecular Basis to Therapies)
Show Figures

Figure 1

30 pages, 2735 KB  
Review
Mucins: the Old, the New and the Promising Factors in Hepatobiliary Carcinogenesis
by Aldona Kasprzak and Agnieszka Adamek
Int. J. Mol. Sci. 2019, 20(6), 1288; https://doi.org/10.3390/ijms20061288 - 14 Mar 2019
Cited by 74 | Viewed by 7790
Abstract
Mucins are large O-glycoproteins with high carbohydrate content and marked diversity in both the apoprotein and the oligosaccharide moieties. All three mucin types, trans-membrane (e.g., MUC1, MUC4, MUC16), secreted (gel-forming) (e.g., MUC2, MUC5AC, MUC6) and soluble (non-gel-forming) (e.g., MUC7, MUC8, MUC9, MUC20), [...] Read more.
Mucins are large O-glycoproteins with high carbohydrate content and marked diversity in both the apoprotein and the oligosaccharide moieties. All three mucin types, trans-membrane (e.g., MUC1, MUC4, MUC16), secreted (gel-forming) (e.g., MUC2, MUC5AC, MUC6) and soluble (non-gel-forming) (e.g., MUC7, MUC8, MUC9, MUC20), are critical in maintaining cellular functions, particularly those of epithelial surfaces. Their aberrant expression and/or altered subcellular localization is a factor of tumour growth and apoptosis induced by oxidative stress and several anti-cancer agents. Abnormal expression of mucins was observed in human carcinomas that arise in various gastrointestinal organs. It was widely believed that hepatocellular carcinoma (HCC) does not produce mucins, whereas cholangiocarcinoma (CC) or combined HCC-CC may produce these glycoproteins. However, a growing number of reports shows that mucins can be produced by HCC cells that do not exhibit or are yet to undergo, morphological differentiation to biliary phenotypes. Evaluation of mucin expression levels in precursors and early lesions of CC, as well as other types of primary liver cancer (PLC), conducted in in vitro and in vivo models, allowed to discover the mechanisms of their action, as well as their participation in the most important signalling pathways of liver cystogenesis and carcinogenesis. Analysis of mucin expression in PLC has both basic research and clinical value. Mucins may act as oncogenes and tumour-promoting (e.g., MUC1, MUC13), and/or tumour-suppressing factors (e.g., MUC15). Given their role in promoting PLC progression, both classic (MUC1, MUC2, MUC4, MUC5AC, MUC6) and currently tested mucins (e.g., MUC13, MUC15, MUC16) have been proposed to be important diagnostic and prognostic markers. The purpose of this review was to summarize and update the role of classic and currently tested mucins in pathogenesis of PLC, with explaining the mechanisms of their action in HCC carcinogenesis. It also focuses on determination of the diagnostic and prognostic role of these glycoproteins in PLC, especially focusing on HCC, CC and other hepatic tumours with- and without biliary differentiation. Full article
Show Figures

Figure 1

10 pages, 1030 KB  
Review
Apoprotein E and Reverse Cholesterol Transport
by Godfrey S. Getz and Catherine A. Reardon
Int. J. Mol. Sci. 2018, 19(11), 3479; https://doi.org/10.3390/ijms19113479 - 6 Nov 2018
Cited by 81 | Viewed by 10830
Abstract
Apoprotein E (apoE) is a multifunctional protein. Its best-characterized function is as a ligand for low-density lipoprotein (LDL) receptor family members to mediate the clearance of apoB-containing atherogenic lipoproteins. Among its other functions, apoE is involved in cholesterol efflux, especially from cholesterol-loaded macrophage [...] Read more.
Apoprotein E (apoE) is a multifunctional protein. Its best-characterized function is as a ligand for low-density lipoprotein (LDL) receptor family members to mediate the clearance of apoB-containing atherogenic lipoproteins. Among its other functions, apoE is involved in cholesterol efflux, especially from cholesterol-loaded macrophage foam cells and other atherosclerosis-relevant cells, and in reverse cholesterol transport. Reverse cholesterol transport is a mechanism by which excess cellular cholesterol is transported via lipoproteins in the plasma to the liver where it can be excreted from the body in the feces. This process is thought to have a role in the attenuation of atherosclerosis. This review summarizes studies on the role of apoE in cellular cholesterol efflux and reverse cholesterol transport and discusses the identification of apoE mimetic peptides that may promote these pathways. Full article
Show Figures

Graphical abstract

Back to TopTop