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Abstract: This mini review is devoted to a specific issue: the role of malondialdehyde (MDA)—a
secondary product of free radical lipid peroxidation—in the molecular mechanisms of the forma-
tion of primary atherosclerotic vascular wall lesions. The principal difference between this review
and the available literature is that it discusses in detail the important role in atherogenesis not of
“oxidized” LDL (i.e., LDL particles containing lipohydroperoxides), but of LDL particles chemically
modified by the natural low-molecular weight dicarbonyl MDA. To confirm this, we consider the
data obtained by us earlier, indicating that “atherogenic” are not LDL oxidized as a result of free
radical lipoperoxidation and containing lipohydroperoxy derivatives of phospholipids in the outer
layer of particles, but LDL whose apoprotein B-100 has been modified due to the chemical reaction
of terminal lysine residue amino groups of the apoB-100 with the aldehyde groups of the MDA
(Maillard reaction). In addition, we present our original data proving that MDA injures endothelial
glycocalyx that suppress the ability of the endothelium to control arterial tone according to changes
in wall shear stress. In summary, this mini review for the first time exhaustively discloses the key role
of MDA in atherogenesis.

Keywords: atherosclerosis; free radicals; lipid peroxidation; malondialdehyde; LDL; endothelial
glycocalyx

1. Introduction: Atherosclerosis as a Free Radical Disease

The assumption that spontaneous free radical processes can play a major role in
atherosclerosis etiology and progression was made back in the late 1950s [1]. However,
only two decades later we managed to experimentally prove a considerable increase in
the content of lipohydroperoxides (LOOH), being the primary products of free radical per-
oxidation, in the blood of patients with atherosclerosis and in the vascular wall damaged
with experimental atherosclerosis [2,3]. We also revealed that in the blood of patients with
atherosclerosis, the activity of Se-containing glutathione peroxidase (GSH-Px) in the red blood
cells, catalyzing LOOH reduction, is below normal. In case of atherosclerotic-induced injury
of a vascular wall, the activity of GSH-Px and Cu,Zn-superoxide dismutase (Cu,Zn-SOD)
was significantly decreased, correlating well with the severity of injury [2,3]. The obtained
results allowed us to establish an imbalance between the formation and utilization of free
radical peroxidation products in tissues in cases of atherosclerosis [2,3]. This imbalance was
later termed an oxidative stress by H. Sies [4]. It goes without saying that preaterosclerotic
(lipoidosis) damage of vascular walls could be induced by disruptions to the lipid transport
system, which is provided by the low-density lipoproteins (LDL) being natural nanopar-
ticles from human blood plasma. Indeed, chemical modification of the apoprotein B-100
of LDL makes them more “atherogenic” [5], i.e., capable of being captured by scavenger
receptors of macrophages in the vascular wall [5]. Many authors have suggested that
the atherogenic modification of LDL particles can be brought about by a more intensive
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spontaneous free radical oxidation of the outer unsaturated phospholipid layer of LDL
with LOOH formation [2,3]. Evidence on the increased concentration of oxidized LDL in
cases of atherosclerosis has been numerously reported [2,3].

2. Stages of Free Radical Peroxidation of Unsaturated Phospholipids in LDL Particles:
MDA Accumulation Mechanism

Free radical oxidation of the outer phospholipid layer of LDL particles can be initi-
ated by reactive oxygen species (ROS) formed in the process of oxidative stress during
atherogenesis [2,3]:

O2
•− → H2O2 → HO•

According to the theory of liquid phase oxidation of hydrocarbons, free radical
peroxidation of LDL should have two stages: under the attack by ROS, first, the pri-
mary products of free radical peroxidation (LOOH) are produced from unsaturated LDL
phospholipids (LH) [2,3]:

LH + HO• → H2O + L•

L• + O2 → LO2
•

LO2
• + LH→ LOOH + L•

Then, the unstable LOOH undergo destruction with formation of alkoxyl radicals
(LO•), which leads to further oxidation of the lipid substrate (LH) [2,3]:

LOOH→ OH− + LO•

LH + LO• → LOH + L•

The oxidative breakdown of LOOH could also accompany this process, with secondary
products being formed, namely 4-hydroxynonenal and low-molecular-weight dicarbonyl
malondialdehyde (MDA) [2] (Figure 1).
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Figure 1. Formation of primary (LOOH) and secondary products (carbonyl compounds) during the
induction of oxidative stress by oxygen radicals (ROS).

Unfortunately, these oxidation stages were largely dismissed in studies on LDL per-
oxidation in case of atherosclerosis [2,3]. Hence, LDL oxidized by free radicals under the
impact of various initiating agents were characterized as “oxidized” LDL. Figure 2 shows
the kinetics of LDL lipid peroxidation in a standard system when oxidation of LDL particles
is initiated by copper ions.
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Figure 2. Kinetics of free radical peroxidation of phospholipids of the outer layer of LDL particles
isolated from blood plasma of a healthy donor initiated by copper ions, studied by the accumulation
of primary—LOOH (curve 1, left scale — ∆A233) and secondary—MDA (curve 2, right scale — ∆A532)
products of lipoperoxidation. The determination of lipoperoxides and MDA was carried out as
described in [2].

Primary and secondary products (MDA) are formed almost simultaneously, and the
“oxidized” LDL contain a considerable amount of MDA, yielding the MDA-modified LDL
(Figure 2). A combination of primary and secondary lipoperoxidation products is formed
when any initiating agents are used in in vitro models (ions of metals with variable valency,
azo-initiators, hydroperoxides, O2

•− generated by polymorphonuclear leukocytes, UV
radiation, etc.) [3]. When the effects of oxidative stress are studied in vivo, researchers
also deal with an uncontrolled combination of LOOH-containing and MDA-modified LDL,
implicating that there are not only “oxidized” LDL in this combination. The latter term
used in some works [6–8] is to be substituted with a more accurate “oxidatively modified
LDL”. This combination may also account for considerable inconsistencies between the data
obtained using in vitro and in vivo models [9,10] (as in these works, the concentration of
free radical oxidation products is usually not determined accurately). MDA accumulation
may lead to the following biological effects: aldehyde groups of carbonyls can easily react
with the end amino groups of proteins via the Maillard reaction, forming intra- (Figure 3A)
and intermolecular (Figure 3B) cross-links in their molecules [11].

The reaction of the aldehyde group of MDA with the terminal lysine residue of
apoprotein B-100 can alter the molecular conformation of the apoprotein and the whole
LDL particle (Figure 3A). The subsequent interaction of MDA with the lysine residue of
apoprotein B-100 of the second LDL particle leads to a cross-link between two LDL particles
(Figure 3B) and ultimately to a more significant modification where LDL atherogenicity
may elevate. Changes in electrophoretic patterns and light scattering fluctuations point to
larger LDL formations produced following the interaction of LDL particles with MDA [12].

Figure 4 shows the kinetics of spontaneous accumulation of fluorescent products in
a reaction of L-lysine with carbonyl compounds (4-hydroxynonenal and MDA), formed
as secondary products of lipoperoxidation. Clearly, the reaction with MDA is much more
effective than the similar reaction with the monoaldehyde 4-hydroxynonenal (Figure 4).
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base); (B)—participation of second MDA aldehyde group in formation of intermolecular cross-linking
between two LDL particles.
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Figure 4. Spontaneous formation of fluorescent Schiff bases in the interaction of L-lysine with
MDA (1, triangles) and 4-hydroxynonenal (2, circles). Changes in fluorescence intensity (excitation
wavelength λmax = 350 nm) of products of L-lysine (20 mM) interaction with aldehydes (20 mM)
during dark incubation at 37 ◦C in isotonic K,Na-phosphate buffer (pH 7.2) containing 0.02% sodium
azide for prevention of bacterial growth. The figure presents mean results of three determinations;
the fluorescence of a standard solution of dehydrated quinine sulfate (0.01 µg/mL in 0.05 M H2SO4)
is taken as unit of fluorescence intensity.
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It is obvious that the MDA-modified apoprotein B-100 of LDL should induce con-
formation changes in the apoprotein structure, which can be recognized by scavenger
receptors [13]. However, LOOH acyls formed in LDL phospholipids should also transform
their physical properties (microviscosity and polarity), which may further lead to confor-
mation changes of the outer phospholipid layer of particles [14] and, consequently, changes
in LDL receptor properties.

3. Which LDL Are Atherogenic: LOOH-Containing (“Oxidized”) or
MDA-Modified Ones?

It was established that MDA-modified LDL particles (MDA-LDL) are effectively
captured by the vascular wall macrophages with scavenger receptors and are accumulated
in their lipid vacuoles [13,15]. Therefore, MDA-LDL are atherogenic because macrophages
ingesting them are transformed into the so-called foam cells laden with lipids, which form
lipoidosis zones, the primary pre-aterosclerotic damage to vascular walls [2,3]. Regarding
the “oxidized” (acylhydroperoxide-containing) LDL (LOOH-LDL), it is hard to determine
their atherogenicity because obtaining LOOH-LDL without MDA-LDL content is fairly
impossible (Figure 2). To resolve this problem, we used a homogeneous preparation of
C-15 animal rabbit reticulocyte lipoxygenase (C-15 LOX) as a tool [2,16]. Distinct from
plant C-15 lipoxygenase (soya been lipoxigenase), which oxidizes the non-esterified (“free”)
polyene fatty acids with LOOH formation [2,16], this enzyme catalyzes LOOH formation
in acyls of esterified fatty acids, including phospholipids and cholesteryl esters [2,16]. This
allowed us to obtain the following from the same sample of isolated native LDL taken from
a donor: LOOH-LDL without MDA-LDL content (due to oxidation of LDL by C-15 animal
LOX), and MDA-LDL without LOOH-LDL (by chemical modification of native LDL when
they were incubated with MDA) [14]. We found out that real “oxidized” LDL (containing
LOOH derivatives of phospholipids in the outer layer of a particle) are captured by the
cultivated macrophages as effectively as native (non-oxidized) LDL, while MDA-modified
LDL demonstrate an extremely effective scavenger receptor binding [15] (Figure 5).
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LDL (apoB-100—100 µg/mL; * p < 0.05).
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These data laid the foundation for our theory, giving the major role in inducing
the atherosclerotic vascular wall damage to the MDA-modified LDL rather than to the
“oxidized” ones [3,17]. Moreover, representative epidemiological studies revealed that
the most cholesterol-rich LDL particles are also MDA-modified significantly more often
(i.e., they are the most atherogenic ones) [18]. An increased level of MDA-LDL was
evidenced to be characteristic of patients with certain mutations of apoprotein B-100. This
means that MDA-LDL accumulation can be genetically determined [19].

Cu, Zn-SOD and GSH-Px molecules are modified in case of MDA accumulation
during atherogenesis, which is akin to apoprotein B-100 [2,3]. Along with this, their activity
in tissues is inhibited due to conformational changes of the active center structure [20].
Consequently, MDA accumulation during atherogenesis not only leads to an intensive
atherogenic MDA-LDL formation, but also inhibits key antioxidant enzymes, which should
promote oxidative stress progression [3,17].

4. Role of MDA-Modified LDL in Endothelial Dysfunction

Aggressive MDA can not only modify LDL apoprotein and other proteins, but also dra-
matically alter cell membrane properties, including endotheliocyte biomembranes [12,21].
Incubating the cultured endotheliocytes with MDA is accompanied by the increasing
stiffness of outer membranes of these cells [12]. In this case, the outer endotheliocyte
membrane becomes more permeable to low-molecular-weight substances [21]. In recent
years, the oxidatively modified LDL (in our opinion, MDA-LDL) has been discovered
to play a major role in endothelial dysfunction [22–26]. It is assumed that oxidatively
modified LDL induce the expression of LOX-1 scavenger receptor and NADPH oxidase
on the endotheliocyte membrane. NADPH oxidase generates a superoxide anion radical
leading to endotheliocyte damage [25,26]. Finally, endothelial dysfunction develops, and
endotheliocyte apoptosis is stimulated [25,26]. Our preliminary experiments showed that
cultured human umbilical vein endothelial cells (HUVECs) in the presence of MDA-LDL
indeed leads to a strong expression of the LOX-1 scavenger receptor and NADPH oxidase
(increase in protein expression which is much higher than in the case of cultured cells
without MDA-LDL) [17,27]. Therefore, the initial stages of endothelial dysfunction, which
is an essential process in atherogenesis, are directly related to formation of oxidatively
modified LDL (most probably, MDA-modified ones). Superoxide-dependent endothelio-
cyte membrane damage probably makes the vascular wall more permeable to MDA-LDL,
causing formation of “foam cells” during atherogenesis [2,3,17]. The sequence of the above
processes is schematically illustrated in Figure 6.

It should be noted that the enzyme antioxidant system of endotheliocytes is repre-
sented by a special type of enzymes, peroxiredoxins [28], which, like Cu,Zn-SOD and
GSH-Px, are very sensitive to the inhibiting effect of MDA [29]. It seems absolutely natural
that MDA-dependent suppression of peroxiredoxins activity considerably weakens the
antiradical protection of endotheliocytes, promoting their damage and endothelial dysfunc-
tion progression. Overall, the above data allow us to assume that MDA accumulation and
MDA-LDL formation are key factors in processes essential for inducing atherogenesis and
endothelial dysfunction.
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5. Impact of Free Radical Peroxidation of LDL and MDA Accumulation on
Glycocalyx Preservation

Two decades of recent studies showed that endothelial dysfunction is preceded by a
lesion to the endothelial glycocalyx (EG), a layer of macromolecules produced by endothe-
liocytes and facing the vascular lumen. The role of this protective layer in the development
of endothelial dysfunction is marked in Figure 6. The structure of endothelial cells covering
the inner face of the vascular wall is similar to shrubs composed of plasmalemmal-anchored
glycosaminoglycans, proteoglycans, glycoproteins, and glycolipids [30–32].

EG protects the endothelial cells against detrimental influences, whereas a lesion to EG
results in elevation of vascular wall permeability [33,34], rapid progress of atherosclerosis,
and functional loss of the potency to regulate the tone of vascular smooth muscles in
response to the changes in shear stress affecting the vascular wall [34,35]. These facts
permit us to hypothesize that damage to the glycocalyx is the first step provoking the
development of atherosclerotic lesions to the blood vessels [36].

Numerous studies showed that the leading factor responsible for damage to the glyco-
calyx and abnormal endothelial performance in atherosclerosis is the oxidative stress [37–41]
accompanied by the ROS overproduction and lipid peroxidation with formation of LOOH
and the secondary oxidative product, MDA. The latter is amply produced during this free
radical oxidation [42]; it is noteworthy that this agent is a structural analog to glutaralde-
hyde. This similarity is important because our previous studies on circulatory isolated feline
conduit arteries showed that the dimer of glutaraldehyde (DGA) selectively damage the
endothelial ability to regulate the vascular lumen during the changes of blood flow [43,44].
It would appear reasonable that MDA, a product of lipid peroxidation produced during
oxidative stress, can also provoke endothelial dysfunction by degrading its ability to control
the hydraulic resistance of blood vessels under the changes of shear stress applied to the
vascular wall.

In experiments on anesthetized Wistar rats, we employed resistography to record
the changes in hydraulic conductance of iliac artery in situ and corroborated the above
hypothesis [45] by demonstrating that MDA injured the dilation of this artery in response to
an increase in shear stress exerting virtually no effect on its dilation caused by acetylcholine
(Figure 7). Logically, similar to DGA, MDA can selectively impair the mechanoreceptors
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in endotheliocytes formed by the EG layer [35,46–49] without affecting the potency of
endothelial cells to relax the vascular smooth muscles in response to pharmacological
dilators.
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The endothelium-dependent control of vascular hydraulic resistance by the value
of blood flow plays a key role in circulation. This property results from the potency
of glycocalyx and endotheliocytes to react to the changes in shear stress applied to the
vascular wall by the viscous friction of circulating blood [50,51]. It provides maximal
blood flow during active hyperemia [44], down-regulates the constrictor reactions thereby
preventing the development of vascular spasm [52,53], underlies the acute stage of collateral
circulation development during occlusion of the major arteries [44], and adaptation of
arterial resistance to the changes in blood viscosity [51]. Evidently, the degraded ability
of glycocalyx to deform under the action of shear stress would provoke dysfunction of
endothelium manifested by: (1) the loss of its potency to control the tone of vascular smooth
muscles in response to the changes in blood flow velocity, and (2) the development of some
pathological states such as arterial spasm, arterial hypertension, poor blood flow in organs
and tissues, etc.

Especially important is the fact that the thickness of EG depends on shear stress:
the greater the stress, the thicker the glycocalyx layer [33]. Therefore, the areas of the
vessel wall exposed to low shear stress have thinner glycocalyx fraught with appearance
of the loci with characteristic signs of atherosclerotic lesions that form the consequential
atheromatous plaques [54]. This observation substantiates the hypothesis that EG is the
barrier preventing penetration of atherogenic LDL into subendothelial space at the vascular
wall [55]. Thinning of EG is secondary to decreased contents of hyaluronan and heparan
sulfate, its major structural components [56] whose biosynthesis by endotheliocytes is
decelerated when the shear stress is small [57].

Glycocalyx protects the endothelium against a moiety of damaging agents, including
ROS [34,58]. Degradation of glycosaminoglycans in EG can be provoked by ROS generated
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by stimulated polymorphonuclear leukocytes [59] as well as by ROS produced during local
or total ischemia/reperfusion injury [34,60,61]. The detrimental effect of such injury on the
glycocalyx can be ameliorated by suppression of oxidative burst (rapid release of superoxide
anions O2

•−), evidently attesting to the leading role of ROS in destruction of the glycocalyx
during ischemia/reperfusion [61]. Oxidized LDL administered to the animals decreases the
thickness of glycocalyx, and this effect is absent in the presence of SOD and catalase [62,63].
Importantly, the oxidized LDL were routinely produced in these experiments [64,65] by
free radical peroxidation of LDL in the presence of copper ions for 6 h [62,63]. In this
oxidative reaction, not only oxidized (LOOH-containing) LDL was produced, but MDA
and related MDA-modified LDL were also generated [66] (Figure 2). Further, LOOH
can be subjected to homolytic cleavage producing the active alkoxy radicals LO• capable
of inducing free radical oxidation of organic substrates with production of O2

•− [66,67],
which explains the reduction of the lesions to the glycocalyx in the presence of SOD and
catalase [62,63]. Although these experiments cannot be unambiguously interpreted, they
overall confirm implication of the free radical processes in the lesion to the endothelial
glycocalyx. Importantly, the oxidatively modified LDL (probably MDA-LDL) can trigger
thrombogenesis by up-regulating adhesion of the platelets [68] and monocytes [69,70] at the
endothelium. Adhesion of polymorphonuclear neutrophils at the coronary endothelium
is the pivotal event in ischemia/reperfusion injury [71]. Essentially, maintenance of the
glycocalyx structure impedes the postischemic adhesion of the neutrophils [71].

The obtained results on laboratory animals show that MDA-LDL is quickly eliminated
from blood and its disposal probably occurs in the liver [72]. Nevertheless, the described
physiological effects of MDA and MDA-modified LDL can occur in case of a local increase in
their levels. Therefore, preservation of the glycocalyx which protects the outer membrane
of endotheliocytes depends largely on the presence and degree of oxidative stress. At
the same time, breaking the protective layer of the glycocalyx [59,60] and destruction of
endotheliocytes as a result of apoptosis probably make it easier for MDA-LDL laden with
lipids to penetrate vascular walls, where they are involved in “foam cell” formation and
development of primary pre-atherosclerotic (lipoidosis) damage.

6. Free Radical Peroxidation of Lipids and Preventive Treatment for Atherosclerosis:
From Identifying Molecular Mechanisms of Atherogenesis to Justification for New
Approaches to Pharmacotherapy

Based on the above data, naturally, we can assume that the non-toxic natural antioxi-
dants can be used to suppress LDL free radical peroxidation. To implement this, numerous
attempts were made to use safe natural antioxidants, such as α-tocopherol (vitamin E),
for treatment of cardiac episodes. However, clinical trials were quite unsuccessful [3,17].
When the design of these trials is analyzed, it is surprising that α-tocopherol was used to
inhibit LDL lipoperoxidation, while in numerous studies it was shown that α-tocopherol
is not effective in suppressing LDL peroxidation both in vitro [73,74] and in vivo [75,76].
Moreover, it was demonstrated that there is another natural substance which provides
effective protection of LDL from free radical peroxidation in vivo: coenzyme Q10 (we
mean its reduced phenol form) [73–76]. The share of coenzyme Q10 in LDL is extremely
small (no more than 2–3 molecules per particle which consists of about 650 phospholipid
molecules) [77]. It is obvious that the protective effect of coenzyme Q10 in LDL can be
realized only in the presence of an effective system for its reduction (bioregeneration).
Currently, it is unclear how bioregeneration of coenzyme Q10 in LDL can occur. However,
it should not be ruled out that free radical transformations of α-tocopherol and ascorbate
play a certain role in this process [78,79].

It should be noted that some synthetic non-toxic antioxidants, such as probucol, can
also effectively inhibit LDL lipoperoxidation [80–83]. Ultimately, research into the capability
of biguanides [84,85], imidazole-containing peptides [86] and their derivatives [87] to bind
and neutralize aggressive carbonyl compounds formed as secondary lipoperoxidation
products and cause atherogenic modification of LDL is definitely promising. Therefore,
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preventive pharmacological correction of oxidative stress is also promising, but a radical
solution has not been found yet, and it is a relevant issue in modern cardiology.

7. Conclusions

The mini review is devoted to the consideration of oxidative transformations of LDL
and the role of free radical modifications of LDL in the molecular mechanisms of atherogen-
esis and endothelial dysfunction. The “atherogenicity” of the carbonyl modification of LDL
is postulated by the secondary product of free radical peroxidation of unsaturated lipids
with malondialdehyde (MDA). Based on the literature and proprietary data, we suggested
that MDA-modified LDL can stimulate the expression of LOX-1 receptor biosynthesis and
NADPH oxidase in endotheliocytes, which contributes to the development of endothelial
dysfunction. Approaches to preventive pharmacotherapy of atherosclerosis are considered.
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