Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,086)

Search Parameters:
Keywords = antioxidative and cytotoxic activities.

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 3289 KB  
Review
Essential Oil of Prangos ferulacea (L.) Lindl.: Chemistry and Bioactivities
by Mijat Božović, Vanja Tadić, Milan Mladenović and Rino Ragno
Plants 2026, 15(2), 317; https://doi.org/10.3390/plants15020317 (registering DOI) - 21 Jan 2026
Abstract
Prangos ferulacea (L.) Lindl. (Apiaceae) is an orophilous species with notable traditional uses, particularly across the broader Middle East region. Over the past 50 years, research on its essential oil has revealed the existence of several chemotypes. In addition to its chemical composition, [...] Read more.
Prangos ferulacea (L.) Lindl. (Apiaceae) is an orophilous species with notable traditional uses, particularly across the broader Middle East region. Over the past 50 years, research on its essential oil has revealed the existence of several chemotypes. In addition to its chemical composition, there is also data on the biological activities of the essential oil. Among these activities, the most extensively studied are its antimicrobial and, to a lesser extent, antioxidant properties. Recent findings suggest the presence of additional biological effects, including cytotoxic, insecticidal, and phytotoxic effects. This review summarizes current knowledge and provides a foundation for future research, including more in-depth chemical and chemotaxonomic analyses, as well as exploration of the full therapeutic potential of this species. Full article
Show Figures

Figure 1

23 pages, 1460 KB  
Article
Potent Nrf2-Inducing C6-Isothiocyanate Glucose Derivatives with Dual Antioxidant and Antitumor Activity
by Luis Alberto Prieto, Nora Khiar-Fernández, Rocío Calderón-Ruiz, Emelyne Giraud, José Manuel Calderón-Montaño, Jesús Lucia-Tamudo, Rafael León, José Antonio Pérez-Simón, Miguel López-Lázaro, Rocío Recio, Elena de la Torre, Victoria Valdivia and Inmaculada Fernández
Antioxidants 2026, 15(1), 123; https://doi.org/10.3390/antiox15010123 - 18 Jan 2026
Viewed by 65
Abstract
Isothiocyanates (ITCs) are well-known electrophilic agents with antioxidant and anticancer properties, largely attributed to their ability to activate the Nrf2/ARE pathway. Building on previous work with C1-ITC glycosyl derivatives, we designed and synthesized a new series of S-glycosyl isothiocyanates in which the ITC [...] Read more.
Isothiocyanates (ITCs) are well-known electrophilic agents with antioxidant and anticancer properties, largely attributed to their ability to activate the Nrf2/ARE pathway. Building on previous work with C1-ITC glycosyl derivatives, we designed and synthesized a new series of S-glycosyl isothiocyanates in which the ITC group was repositioned to the C6 carbon of the glucose scaffold. This structural rearrangement yielded stable and synthetically accessible derivatives with markedly enhanced biological profiles. Several compounds showed potent Nrf2 activation at non-cytotoxic concentrations, with CD values comparable to or exceeding those of natural ITCs. In parallel, the new C6-ITC derivatives displayed significant antiproliferative activity against leukemia and solid tumor cell lines. Among them, the phenylsulfone derivative 13 emerged as a particularly promising dual-action molecule, combining strong Nrf2 induction with low-micromolar cytotoxicity. Molecular docking was used as a hypothesis-generating approach and suggested a possible interaction with the STAT3 SH2 domain, although further studies are needed to validate this target. Overall, these results support glucose-based ITCs as a versatile platform for the development of multifunctional antioxidants with complementary anticancer properties. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Graphical abstract

29 pages, 928 KB  
Review
The RTF-Compass: Navigating the Trade-Off Between Thermogenic Potential and Ferroptotic Stress in Adipocytes
by Minghao Fu, Manish Kumar Singh, Jyotsna Suresh Ranbhise, Kyung-Sik Yoon, Sung Soo Kim, Joohun Ha, Insug Kang, Suk Chon and Wonchae Choe
Cells 2026, 15(2), 170; https://doi.org/10.3390/cells15020170 - 16 Jan 2026
Viewed by 87
Abstract
Adipose tissue thermogenesis is a promising strategy to counter obesity and metabolic disease, but sustained activation of thermogenic adipocytes elevates oxidative and lipid-peroxidation stress, increasing susceptibility to ferroptotic cell death. Existing models often treat redox buffering, hypoxia signaling and ferroptosis as separate processes, [...] Read more.
Adipose tissue thermogenesis is a promising strategy to counter obesity and metabolic disease, but sustained activation of thermogenic adipocytes elevates oxidative and lipid-peroxidation stress, increasing susceptibility to ferroptotic cell death. Existing models often treat redox buffering, hypoxia signaling and ferroptosis as separate processes, which cannot explain why similar interventions—such as antioxidants, β-adrenergic agonists or iron modulators—alternately enhance thermogenesis or precipitate tissue failure. Here, we propose the Redox–Thermogenesis–Ferroptosis Compass (RTF-Compass) as a framework that maps adipose depots within a space defined by ferroptosis resistance capacity (FRC), ferroptosis signaling intensity (FSI) and HIF-1α-dependent hypoxic tone. Within this space, thermogenic output follows a hormetic, inverted-U trajectory, with a Thermogenic Ferroptosis Window (TFW) bounded by two failure states: a Reductive-Blunted state with excessive antioxidant buffering and weak signaling, and a Cytotoxic state with high ferroptotic pressure and inadequate defense. We use this model to reinterpret genetic, nutritional and pharmacological studies as state-dependent vectors that move depots through FRC–FSI–HIF space and to outline principles for precision redox medicine. Although the TFW is represented as coordinates in FRC–FSI–HIF space, we use ‘Compass’ to denote a coordinate framework in which perturbations act as vectors that orient depots toward thermogenic or cytotoxic outcomes. Finally, we highlight priorities for testing the model in vivo, including defining lipid species that encode ferroptotic tone, resolving spatial heterogeneity within depots and determining how metabolic memory constrains reversibility of pathological states. Full article
21 pages, 4628 KB  
Article
Effect of Popping and Steam Cooking on Total Ferulic Acid, Phenolic and Flavonoid Contents, and Antioxidant Properties of Sukhothai Fragrant Black Rice
by Thayada Phimphilai, Onsaya Kerdto, Kajorndaj Phimphilai, Phronpawee Srichomphoo, Wachiraporn Tipsuwan, Pornpailin Suwanpitak, Yanping Zhong and Somdet Srichairatanakool
Foods 2026, 15(2), 320; https://doi.org/10.3390/foods15020320 - 15 Jan 2026
Viewed by 167
Abstract
This study investigated the effects of thermal processing and extraction solvents on the phytochemical composition, antioxidant potential, and cytotoxic activity of Sukhothai fragrant rice (Oryza sativa L.). Rice subjected to three processing methods, unprocessed (raw), popped/puffed and steam-cooked, was extracted using hot [...] Read more.
This study investigated the effects of thermal processing and extraction solvents on the phytochemical composition, antioxidant potential, and cytotoxic activity of Sukhothai fragrant rice (Oryza sativa L.). Rice subjected to three processing methods, unprocessed (raw), popped/puffed and steam-cooked, was extracted using hot water or 70% (v/v) ethanol, yielding six extracts. Trans-ferulic acid, γ-oryzanol and anthocyanins were quantified using HPLC-DAD and HPLC-ESI-MS, while total phenolic and flavonoid contents, and antioxidant activities were evaluated using Folin–Ciocalteu, aluminium chloride, DPPH and ABTS assays. Cytotoxicity was assessed in Huh7 hepatocellular carcinoma cells. Water extracts consistently produced higher yields and contained greater total phenolic, flavonoid and anthocyanin contents, resulting in stronger antioxidant activity. Unprocessed rice water extract exhibited the highest trans-ferulic acid recovery and antioxidant capacity. Thermal processing, particularly steamed cooking, markedly reduced phytochemical contents, likely due to heat-induced degradation. In contrast, ethanolic extracts yielded lower quantities but higher concentrations of less polar bioactive compounds and exhibited greater cytotoxic effects. Overall, minimal thermal processing combined with aqueous extraction best preserved antioxidant compounds, while ethanolic extraction enhanced biological potency. These findings highlight the importance of processing intensity and solvent polarity in optimizing the nutraceutical and functional potential of black rice. Full article
(This article belongs to the Special Issue Health Benefits of Bioactive Compounds from Vegetable Sources)
Show Figures

Figure 1

12 pages, 1471 KB  
Article
Antioxidant and Anti-Inflammatory Effect of Thai Shallot (Allium ascalonicum cv. chiangmai) and Cha-Miang (Camellia sinensis var. assamica) Extracts on Human Embryonic Kidney Cell Line (HEK293)
by Jiraporn Laoung-on, Chalermpong Saenjum, Kongsak Boonyapranai and Sakaewan Ounjaijean
Life 2026, 16(1), 141; https://doi.org/10.3390/life16010141 - 15 Jan 2026
Viewed by 139
Abstract
Oxidative stress and inflammation are key drivers in the pathogenesis of various chronic diseases, including cardiovascular disease, neurodegenerative disorders, chronic kidney disease, and diabetes. This study evaluated the antioxidant and anti-inflammatory activities of SHE, CME, and FCME, all cultivated in northern Thailand. Human [...] Read more.
Oxidative stress and inflammation are key drivers in the pathogenesis of various chronic diseases, including cardiovascular disease, neurodegenerative disorders, chronic kidney disease, and diabetes. This study evaluated the antioxidant and anti-inflammatory activities of SHE, CME, and FCME, all cultivated in northern Thailand. Human embryonic kidney cells (HEK293) were exposed to FeSO4 to induce oxidative stress and to LPS to stimulate inflammation. Cell viability was assessed using the MTT assay, while intracellular ROS production was measured using the DCFH-DA. Lipid peroxidation was quantified using the thiobarbituric acid reactive substances assay, and the interleukin-6 (IL-6) release was determined by ELISAs. All extracts demonstrated low cytotoxicity; however, cell death increased at 48 h compared to 24 h. At 200 µg/mL, SHE, CME, and FCME significantly reduced the H2O2-induced ROS generation, with the combined treatment of SHE and FCME producing a more pronounced reduction than the individual treatments. Furthermore, the combination of SHE and FCME markedly decreased malondialdehyde (MDA) and IL-6 levels compared with other groups. These findings suggest that shallot and cha-miang extracts, particularly in combination, exhibit promising antioxidant and anti-inflammatory properties in kidney cell models. This combination could therefore be explored as a nutraceutical strategy for the prevention and management of chronic kidney disease, in which oxidative stress and inflammation play pivotal roles. Overall, our finding highlight the potential of the combined use of SHE and FCME as a functional ingredients in the food and pharmaceutical industries. Full article
Show Figures

Figure 1

22 pages, 3068 KB  
Article
Hydroalcoholic Extracts of Cucumis prophetarum L. Affect the Insulin Signaling Pathway in an In Vitro Model of Insulin-Resistant L6 Myotubes
by Zewdie Mekonnen, Giuseppe Petito, Getasew Shitaye, Gianluca D’Abrosca, Belete Adefris Legesse, Sisay Addisu, Antonia Lanni, Roberto Fattorusso, Carla Isernia, Lara Comune, Simona Piccolella, Severina Pacifico, Rosalba Senese, Gaetano Malgieri and Solomon Tebeje Gizaw
Molecules 2026, 31(2), 307; https://doi.org/10.3390/molecules31020307 - 15 Jan 2026
Viewed by 148
Abstract
Type 2 diabetes mellitus (T2DM) can be traditionally treated by edible and medicinal species rich in flavonoids and triterpenoids known for their metabolic benefits. Cucumis prophetarum L. has shown antioxidant and antidiabetic properties in decoction extracts. Since solvent polarity strongly influences the extraction [...] Read more.
Type 2 diabetes mellitus (T2DM) can be traditionally treated by edible and medicinal species rich in flavonoids and triterpenoids known for their metabolic benefits. Cucumis prophetarum L. has shown antioxidant and antidiabetic properties in decoction extracts. Since solvent polarity strongly influences the extraction of secondary metabolites, this study investigated the hydroalcoholic extracts of C. prophetarum L. to explore their chemical composition and insulin-sensitizing potential. Hydroalcoholic extracts from the leaf, stem, and root of C. prophetarum L. were analyzed by UV-Vis spectroscopy, ATR-FTIR, and UHPLC-ESI-QqTOF–MS/MS to profile their secondary metabolites. The insulin-sensitizing potential of each extract was assessed using an in vitro model of palmitic-acid-induced insulin resistance in L6 skeletal muscle cells, followed by Western blot analysis of key insulin-signaling proteins. Flavonoid glycosides such as apigenin-C,O-dihexoside, apigenin-malonylhexoside, and luteolin-C,O-dihexoside were abundant in leaf and stem extracts, while cucurbitacins predominated in the root. MTT assay confirmed that hydroalcoholic stem and root extracts of C. prophetarum L. were non-cytotoxic to L6 myotubes, whereas the leaf extract reduced viability only at higher concentrations. Oil Red O staining revealed a pronounced decrease in lipid accumulation following stem and root extract treatment. Consistently, the stem extract enhanced insulin signaling through the activation of the IRS-1/PI3K/Akt pathway, while the root extract primarily modulated the AMPK–mTOR pathway. Importantly, both extracts promoted GLUT4 translocation to the plasma membrane, highlighting their complementary mechanisms in restoring insulin sensitivity. Hydroalcoholic extracts of C. prophetarum L. alleviate insulin resistance through multiple molecular mechanisms, with bioactivity and composition differing markedly from previously reported in the decoctions, which highlight a promising source of insulin-sensitizing phytochemicals and underscore the importance of solvent selection in maximizing therapeutic potential. Full article
(This article belongs to the Special Issue Bioactive Natural Products and Derivatives)
Show Figures

Graphical abstract

17 pages, 5457 KB  
Article
Bioactive Compounds of Momordica charantia L. Downregulate the Protein Expression of ACE2 and TMPRSS2 In Vivo and In Vitro
by Che-Yi Chao, Woei-Cheang Shyu, Chih-Lung Lin, Wen-Ping Jiang, Atsushi Inose, Song-Jie Chiang, Wen-Liang Wu, Jaung-Geng Lin and Guan-Jhong Huang
Int. J. Mol. Sci. 2026, 27(2), 868; https://doi.org/10.3390/ijms27020868 - 15 Jan 2026
Viewed by 79
Abstract
The emergence of SARS-CoV-2, the etiological agent of COVID-19, has resulted in widespread global infection and millions of deaths. Viral entry is initiated by the interaction between the viral spike (S) protein and the host cell receptor ACE2, followed by TMPRSS2-mediated proteolytic activation [...] Read more.
The emergence of SARS-CoV-2, the etiological agent of COVID-19, has resulted in widespread global infection and millions of deaths. Viral entry is initiated by the interaction between the viral spike (S) protein and the host cell receptor ACE2, followed by TMPRSS2-mediated proteolytic activation that facilitates membrane fusion. Bitter melon (Momordica charantia L., MC), a traditional medicinal and edible plant widely used in tropical Asia, possesses notable anti-inflammatory, antioxidant, antitumor, and hypoglycemic properties. In this study, the ethanol extract of bitter melon (EMC) markedly downregulated ACE2 and TMPRSS2 expression in both in vitro and in vivo models without inducing cytotoxicity. Furthermore, phytochemicals isolated from EMC—including p-coumaric acid, rutin, and quercetin—exhibited comparable inhibitory effects. These results indicate that EMC and its bioactive constituents may interfere with SARS-CoV-2 entry by modulating the ACE2/TMPRSS2 axis, highlighting their potential as natural adjuncts for COVID-19 prevention or management. Full article
Show Figures

Figure 1

22 pages, 1933 KB  
Systematic Review
Bioactive Compounds, Technological Processing, and Functional Applications of Solanum betaceum: A Systematic Review (2020–2025)
by Hexon Omar Anticona Coello, Jheyson Revilla Alva, Bruno Diaz Delgado, Armstrong Barnard Fernández Jeri, Lucas Dalvil Muñoz Astecker, Robert Javier Cruzalegui Fernández, Flavio Lozano-Isla and Erick Aldo Auquiñivin Silva
Appl. Sci. 2026, 16(2), 880; https://doi.org/10.3390/app16020880 - 15 Jan 2026
Viewed by 95
Abstract
Solanum betaceum (tamarillo) is Andean fruit rich in secondary metabolites with increasing relevance in food, nutraceutical, and biotechnological research. Despite growing scientific interest, the available evidence remains fragmented and methodologically heterogeneous. This systematic review consolidates and critically analyzes recent studies on the bioactive [...] Read more.
Solanum betaceum (tamarillo) is Andean fruit rich in secondary metabolites with increasing relevance in food, nutraceutical, and biotechnological research. Despite growing scientific interest, the available evidence remains fragmented and methodologically heterogeneous. This systematic review consolidates and critically analyzes recent studies on the bioactive composition of S. betaceum, the effects of conventional and emerging processing technologies, and the functional activities reported for fresh fruits, by-products, and processed matrices. A comprehensive search of Lens.org, Scopus, and PubMed was conducted following PRISMA 2020 guidelines. From 1049 records identified, 65 studies published between 2020 and 2025 met the inclusion criteria and were included in the qualitative synthesis. The literature reveals substantial variability in polyphenols, anthocyanins, carotenoids, vitamin C, and other metabolites, driven by cultivar, maturity stage, edaphoclimatic conditions, and analytical approaches. Emerging technologies such as ultrasound-assisted extraction, high-pressure homogenization, and spray drying generally improved the recovery and stability of bioactive compounds, whereas intensive thermal treatments were associated with degradation of thermolabile constituents. Functional evidence supports antioxidant, antimicrobial, metabolic modulatory, and cytotoxic activities; however, interpretation is limited by inconsistent reporting practices, limited bioaccessibility assessment, and the predominance of in vitro models. Overall, S. betaceum shows considerable functional and technological potential, but further standardized methodologies, mechanistic studies, and human-relevant models are required to support translational and industrial validation. Full article
(This article belongs to the Section Food Science and Technology)
Show Figures

Figure 1

18 pages, 3409 KB  
Article
Engineering Spirulina-Based Composites and Postbiotics Using the Electrospinning Process: Physicochemical Characterization, Antioxidant Activity, and Cytotoxicity
by Sergiana dos Passos Ramos, Monize Bürck, Eduarda Lemos, Giovanna Grasser, Marcelo Assis, Camila Duarte Ferreira Ribeiro, Elson Longo and Anna Rafaela Cavalcante Braga
Processes 2026, 14(2), 296; https://doi.org/10.3390/pr14020296 - 14 Jan 2026
Viewed by 150
Abstract
Postbiotics, defined as non-viable microorganisms or their structural and metabolic components, have attracted attention for their documented health effects, including modulation of gut homeostasis and inflammatory responses. Tributyrin is among the most promising postbiotics studied, and its safety profile enables it to exert [...] Read more.
Postbiotics, defined as non-viable microorganisms or their structural and metabolic components, have attracted attention for their documented health effects, including modulation of gut homeostasis and inflammatory responses. Tributyrin is among the most promising postbiotics studied, and its safety profile enables it to exert its beneficial effects. However, tributyrin activity must be maintained after its uptake, underscoring the importance of selecting appropriate delivery strategies, such as its incorporation into electrospun composites. Combining postbiotics and natural antioxidants, such as Spirulina and its components, to improve their properties can be a great strategy. Therefore, the present work aimed to produce tributyrin–Spirulina composites via electrospinning. The composites obtained were characterized, and their antioxidant activity and cytotoxicity were determined. All formulations were successfully produced by electrospinning, as the composites retained the bonds of their respective components. In terms of antioxidant activity, the combination of tributyrin and C-phycocyanin was the most promising among the bioactive compounds studied. Overall, the viability and cytotoxicity results indicate that interactions among bioactive composition, redox regulation, and adhesion-dependent survival govern cellular responses to electrospun zein fibers. Tributyrin promotes metabolic adaptation over time, whereas Spirulina-derived fractions are more sensitive to formulation and culture conditions. Full article
(This article belongs to the Special Issue Conversion and Valorization of Biomass)
Show Figures

Figure 1

18 pages, 1034 KB  
Article
Chemical Composition, Antimicrobial, Antioxidant, and Anticancer Activities of Jacquemontia pentantha Essential Oils
by Noorah A. Alkubaisi, Mashail Fahad Alsayed, Hissah Abdulrahman Alodaini, Fuad Alanazi, Abdulhadi M. Abdulwahed and Ibrahim M. Aziz
Molecules 2026, 31(2), 296; https://doi.org/10.3390/molecules31020296 - 14 Jan 2026
Viewed by 179
Abstract
Jacquemontia pentantha (Jacq.) G. Don. (Convolvulaceae): This is a plant with rich ethnobotanical uses, but its essential oil (EO) composition and overall biological properties remain largely uninvestigated. In this research, the J. pentantha EO (JPEO) is characterized in a thorough manner, [...] Read more.
Jacquemontia pentantha (Jacq.) G. Don. (Convolvulaceae): This is a plant with rich ethnobotanical uses, but its essential oil (EO) composition and overall biological properties remain largely uninvestigated. In this research, the J. pentantha EO (JPEO) is characterized in a thorough manner, with an evaluation of its in vitro antioxidant, antimicrobial, and cytotoxic properties, aiming to provide scientific support for ethnobotanical uses, as well as the definition of new potentialities. The EOs were isolated from the aerial part of the plant via hydrodistillation, and a qualitative analysis of the components was carried out via GC–MS. The biological properties were investigated by means of standard in vitro assays: namely, DPPH and ABTS for the measurement of antioxidant activity, the disk diffusion technique, and the microbroth dilution assay for the evaluation of antimicrobial activity against six bacterial species, as well as for the assessment of the activity against five species of Candida fungi, whereas the cytotoxic activity against MCF-7 and HepG2 cells was assessed using the MTT assay. Preliminary characterization of the EOs via GC/MS revealed a particular “chemical profile” with a high concentration of himachalene-type sesquiterpenes, namely, β-himachalene (6.47%) and (+)-α-himachalene (6.46%), together with phenolic monoterpenoids. The EOs showed significant antioxidant activity (IC50 = 172.41 and 378.94 µg/mL, respectively), high phenolic content (97.34 mg GAE/g), and significant antibacterial activity (MIC = 4.68 µg/mL), especially against Pseudomonas aeruginosa, as well as against Candida albicans (MFC = 3.90 µg/mL), together with dose-dependent cytotoxic effects on the two cell lines, with IC50 = 161.62 and 151.87 µg/mL, respectively. This research indicates that the EO of this plant is a potential source of a certain “chemical profile” with noteworthy antibacterial and cytotoxic properties, thus providing scientific support for its ethnobotanical use and highlighting its particular potential for developing pharmaceutical agents against infections and cancer. Full article
Show Figures

Figure 1

24 pages, 11128 KB  
Article
Fibrous Polycaprolactone-Based Composite Materials with the Addition of Hardystonite: Haemostatic Potential, Antioxidant Activity, and Biocompatibility Assessment
by Anna Kaczmarek, Marcin H. Kudzin, Michał Juszczak, Katarzyna Woźniak, Paulina Król, César I. Hernández Vázquez, Zdzisława Mrozińska and Jerzy J. Chruściel
Macromol 2026, 6(1), 5; https://doi.org/10.3390/macromol6010005 - 13 Jan 2026
Viewed by 124
Abstract
Fibrous polycaprolactone-based composite materials with the addition of hardystonite (1, 3, and 5 wt.%) were developed using the electrospinning method. The obtained PCL and PCL-HT nonwovens were evaluated in terms of their physiochemical properties (SEM, EDS, BET, and zeta potential). Furthermore, the antioxidant [...] Read more.
Fibrous polycaprolactone-based composite materials with the addition of hardystonite (1, 3, and 5 wt.%) were developed using the electrospinning method. The obtained PCL and PCL-HT nonwovens were evaluated in terms of their physiochemical properties (SEM, EDS, BET, and zeta potential). Furthermore, the antioxidant potential [measured by thiobarbituric acid reactive substance (TBARS) levels], blood plasma coagulation parameters, and cyto- and genotoxicity towards PBM and Hs68 cells were assessed to determine the biochemical activity of the composites. The conducted experiments confirmed that hardystonite was successfully incorporated into the PCL matrix. No substantial changes in the fibres’ surface morphology and the structure of the composites were observed. Similarly, the specific surface area, total pore volume, and average pore size did not change significantly. The addition of hardystonite to the polymer solution resulted in a shift in zeta potential toward less negative values. With regard to plasma coagulation parameters, no significant changes were observed in the aPTT, PT, or TT, likely due to the counterbalancing effect of Zn2+ and Ca2+ ions. Furthermore, the PCL-HT composites exhibited a lowered TBARS level, suggesting antioxidant properties, which could be attributed to the presence of zinc in hardystonite. The PCL and PCL-HT composites demonstrated no cytotoxic or genotoxic effects on the tested blood or skin cell types, suggesting their safety. Full article
Show Figures

Figure 1

23 pages, 18251 KB  
Article
Ponicidin Inhibits Lung Cancer Progression Through Coordinated Downregulation of Sulfhydryl Antioxidants and TrxR1
by Yufei Huang, Yanfen Liu, Zehua Liao, Ruonan Zhang, Xinbing Sui and Xueni Sun
Antioxidants 2026, 15(1), 100; https://doi.org/10.3390/antiox15010100 - 13 Jan 2026
Viewed by 272
Abstract
Ponicidin, a bioactive diterpenoid derived from Rabdosia rubescens, has been shown to exhibit antitumor activity across a range of cancer types. Despite its potential therapeutic applications, the precise effects and underlying molecular mechanisms of ponicidin in the context of lung cancer remain [...] Read more.
Ponicidin, a bioactive diterpenoid derived from Rabdosia rubescens, has been shown to exhibit antitumor activity across a range of cancer types. Despite its potential therapeutic applications, the precise effects and underlying molecular mechanisms of ponicidin in the context of lung cancer remain insufficiently characterized. This study aims to investigate the antitumor effects of ponicidin in lung cancer, focusing on its impact on cell growth and cellular oxidative stress. Our findings demonstrate that ponicidin significantly inhibits the viability of lung cancer cells while exhibiting minimal cytotoxicity to normal lung cells. Notably, ponicidin induces cell death in lung cancer cells via the induction of oxidative stress, a process likely mediated by the depletion of sulfhydryl antioxidants and the downregulation of thioredoxin reductase (TrxR), both of which play critical roles in maintaining cellular redox homeostasis. Moreover, ponicidin was found to concurrently activate endoplasmic reticulum stress, induce mitochondrial dysfunction, and promote DNA damage, further contributing to its antitumor effects. In vivo, the efficacy of ponicidin was confirmed in tumor-bearing mouse models, where ponicidin treatment led to a significant reduction in tumor growth without significant toxicity or adverse effects on the animals. These findings suggest that ponicidin holds significant promise as a safe and effective therapeutic agent for lung cancer, warranting further investigation into its clinical applicability. Full article
Show Figures

Graphical abstract

27 pages, 2479 KB  
Article
Quantitative Analysis of Polyphenols and In Vitro Antioxidant, Antimicrobial and Toxicity Assessments in Needles of Five Pinus Species from Montenegro
by Alma Kurtiš, Jelena Antić-Stanković, Biljana Bufan, Dragana D. Božić, Slađana Krivokapić, Biljana Damjanović-Vratnica and Svetlana Perović
Microorganisms 2026, 14(1), 170; https://doi.org/10.3390/microorganisms14010170 - 13 Jan 2026
Viewed by 210
Abstract
This study aimed to investigate the chemical composition and biological potential of needle extracts from five pine species, including antimicrobial, antioxidant, and cytotoxic activity, as well as their influence on cell cycle progression. Needle extracts were prepared using three extraction methods: conventional maceration [...] Read more.
This study aimed to investigate the chemical composition and biological potential of needle extracts from five pine species, including antimicrobial, antioxidant, and cytotoxic activity, as well as their influence on cell cycle progression. Needle extracts were prepared using three extraction methods: conventional maceration (CM), ultrasound-assisted extraction (UAE), and digestion (D). The chemical profile was determined with an emphasis on phenolic acids, flavonoids, and related phenolic compounds. The highest total phenolic content was observed in Pinus sylvestris (3.438 mg/g GAE), followed by Pinus heldreichii (2.732 mg/g GAE). Rutin, ferulic acid, and quercitrin were identified as the predominant phenolic compounds. The highest total flavonoid content was found in Pinus pinea extracts obtained by digestion (1.213 mg/g QE), followed by P. heldreichii (1.074 mg/g QE) and Pinus halepensis (1.074 mg/g QE), both obtained by UAE. Among all examined species, Pinus pinea exhibited the highest TTC values, regardless of the extraction method (7.31–8.21 mg/g GAE). Antibacterial testing showed that P. pinea had an MIC of 19 mg/mL against Enterococcus faecium, while P. sylvestris had the same MIC against Bacillus spizizenii. All extracts exhibited cytotoxic effects using MTT assay against HeLa cells at concentrations of 8%, 16%, and 32%, while LS 174T cells were the least sensitive. Pine needle extracts from Montenegro are a valuable source of phenolic and flavonoid compounds, and they demonstrate antimicrobial and cytotoxic activities. The results support the need for further in vivo studies and elucidation of mechanisms of action in order to assess their potential application as novel bioactive agents. Full article
(This article belongs to the Special Issue Advanced Research on Antimicrobial Activity of Natural Products)
Show Figures

Figure 1

38 pages, 2430 KB  
Review
Advances in Natural Products from Mangrove-Associated Fungi Along the Indian Ocean Coast
by Parakkrama Wijerathna, Xinqi Chen, Rongxiang Qiu, P.V.J.S. Wijethilake, Yi Chen, Nuwan Madushanka, I.J.J.U.N. Perera, Jian Cai, Lalith Jayasinghe, Yonghong Liu, Vajira P. Bulugahapitiya and Xuefeng Zhou
Molecules 2026, 31(2), 261; https://doi.org/10.3390/molecules31020261 - 12 Jan 2026
Viewed by 215
Abstract
Mangrove ecosystems along the Indian Ocean coast show great biodiversity, adapting to harsh environmental conditions of high salinity and higher organic matter, and they are a host for a range of microbial communities with special features that produce unique secondary metabolites. Of this, [...] Read more.
Mangrove ecosystems along the Indian Ocean coast show great biodiversity, adapting to harsh environmental conditions of high salinity and higher organic matter, and they are a host for a range of microbial communities with special features that produce unique secondary metabolites. Of this, mangrove-associated endophytic fungi, the second largest ecological group of marine fungi, show the greater potential, being a diverse pool for discovering novel bio-actives with pharmacological and biotechnological interest. This review summarizes the research findings on structural diversity and the associated pharmacological activities of secondary metabolites produced by mangrove-associated fungi along the Indian Ocean coast reported over the period of 2002–2025, based on the literature retrieved from Google Scholar. The total of 302 secondary metabolites is presented mainly from classes of polyketides (208), alkaloids (34), and terpenoids (60). Interestingly, 164 compounds were identified, as first reported in those publications. These compounds have been reported to show diverse biological activities, and the most prominent activities are cytotoxic, antibacterial, antifungal, antioxidant, enzyme inhibitory, and anti-inflammatory effects. The structural novelty and pharmacological activities of these metabolites highlight the importance of mangrove fungi as promising sources for new drug discovery and advancing industrial biotechnology. Therefore, this review highlights the insight into the possible application of these chemical compounds in the future drug industry, as well as in biotechnology for advancing human well-being. Furthermore, though significant progress has been made in exploring the fungi community from mangroves of the African and Middle Eastern coasts, the Indian coast mangrove fungi are yet to be explored more for novel discoveries. Full article
Show Figures

Figure 1

23 pages, 5093 KB  
Article
Positive Effects of Allicin on Cytotoxicity, Antioxidative Status, and Immunity in “Eriocheir sinensis” Hepatopancreatic Cells Against Oxidative Stress-Induced Injury
by Yiqing Guo, Peng Huang, Wenhui Wang, Jingwen Wu, Jinliang Du, Jiayi Li, Jiancao Gao, Haojun Zhu, Jun Gao, Yao Zheng, Yanbing Zhuang, Gangchun Xu and Liping Cao
Antioxidants 2026, 15(1), 93; https://doi.org/10.3390/antiox15010093 - 12 Jan 2026
Viewed by 189
Abstract
Oxidative stress represents a critical threat to aquatic animal health and aquaculture productivity. Allicin, a natural plant extract, has not been systematically investigated for its antioxidant mechanisms in aquatic crustaceans. This study established in vitro and in vivo models of tert-butyl hydroperoxide (T-BHP)-induced [...] Read more.
Oxidative stress represents a critical threat to aquatic animal health and aquaculture productivity. Allicin, a natural plant extract, has not been systematically investigated for its antioxidant mechanisms in aquatic crustaceans. This study established in vitro and in vivo models of tert-butyl hydroperoxide (T-BHP)-induced oxidative stress in Chinese mitten crabs (Eriocheir sinensis) to evaluate the hepatoprotective effects of allicin. Integrating biochemical, transcriptomic, and ultrastructural analyses, we found that allicin significantly alleviated T-BHP-induced cytotoxicity and oxidative damage in vitro. Mechanistically, allicin up-regulated antioxidant genes including glutathione peroxidase (gpx) and thioredoxin reductase 1 (trxr1), and down-regulated pro-inflammatory cytokines such as interleukin-1 beta (il-1β), suggesting the concomitant activation of the Nrf2 signaling pathway and inhibition of the p38-MAPK/NF-κB pathway. Transcriptomics further indicated its role in restoring proteostasis and mitochondrial function. A 35-day feeding trial validated these findings in vivo; dietary supplementation with 300 mg·kg−1 allicin effectively reversed T-BHP-induced disturbances in antioxidant enzyme activities and immune-related gene expression. These consistent findings demonstrate that allicin alleviates hepatopancreatic oxidative damage through multi-pathway synergism, supporting its potential as a green and effective antioxidant feed additive in aquaculture. Full article
Show Figures

Figure 1

Back to TopTop