Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (382)

Search Parameters:
Keywords = antimicrobial-resistance risk assessment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1769 KiB  
Article
Antimicrobial Photodynamic Activity of the Zn(II) Phthalocyanine RLP068/Cl Versus Antimicrobial-Resistant Priority Pathogens
by Ilaria Baccani, Sara Cuffari, Francesco Giuliani, Gian Maria Rossolini and Simona Pollini
Int. J. Mol. Sci. 2025, 26(15), 7545; https://doi.org/10.3390/ijms26157545 - 5 Aug 2025
Viewed by 117
Abstract
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism [...] Read more.
The emergence and spread of antimicrobial resistance among pathogens are significantly reducing available therapeutic options, highlighting the urgent need for novel and complementary treatment strategies. Antimicrobial photodynamic therapy (aPDT) is a promising alternative approach that can overcome antimicrobial resistance through a multitarget mechanism of action, exerting direct bactericidal and fungicidal effects with minimal risk of resistance development. Although aPDT has shown efficacy against a variety of pathogens, data on its activity against large collections of clinical multidrug-resistant strains are still limited. In this study, we assessed the antimicrobial activity of the photosensitizer RLP068/Cl combined with a red light-emitting LED source at 630 nm (Molteni Farmaceutici, Italy) against a large panel of Gram-negative and Gram-positive bacterial strains harboring relevant resistance traits and Candida species. Our results demonstrated the significant microbicidal activity of RLP068/Cl against all of the tested strains regardless of their resistance phenotype, with particularly prominent activity against Gram-positive bacteria (range of bactericidal concentrations 0.05–0.1 µM), which required significantly lower exposure to photosensitizer compared to Candida and Gram-negative species (range 5–20 µM). Overall, these findings support the potential use of RLP068/Cl-mediated aPDT as an effective therapeutic strategy for the management of localized infections caused by MDR organisms, particularly when conventional therapeutic options are limited. Full article
Show Figures

Figure 1

12 pages, 284 KiB  
Communication
Raw Sheep Milk as a Reservoir of Multidrug-Resistant Staphylococcus aureus: Evidence from Traditional Farming Systems in Romania
by Răzvan-Dragoș Roșu, Adriana Morar, Alexandra Ban-Cucerzan, Mirela Imre, Sebastian Alexandru Popa, Răzvan-Tudor Pătrînjan, Alexandra Pocinoc and Kálmán Imre
Antibiotics 2025, 14(8), 787; https://doi.org/10.3390/antibiotics14080787 - 2 Aug 2025
Viewed by 177
Abstract
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk [...] Read more.
Background/Objectives: Staphylococcus aureus is a major pathogen of concern in raw milk due to its potential to cause foodborne illness and its increasing antimicrobial resistance (AMR). In Romania, data on the occurrence and resistance patterns of S. aureus in raw sheep milk from traditional farming systems remain limited. This study investigated the presence and antimicrobial resistance of S. aureus in 106 raw sheep milk samples collected from traditional farms in the Banat region of western Romania. Methods: Coagulase-positive staphylococci (CPS) were enumerated using ISO 6888-1:2021 protocols. Isolates were identified at the species level using the Vitek 2 system and molecularly confirmed via PCR targeting the 16S rDNA and nuc genes. Methicillin resistance was assessed by detecting the mecA gene. Antimicrobial susceptibility was determined using the Vitek 2 AST-GP79 card. Results: CPS were detected in 69 samples, with S. aureus confirmed in 34.9%. The mecA gene was identified in 13.5% of S. aureus isolates, indicating the presence of methicillin-resistant S. aureus (MRSA). Resistance to at least two antimicrobials was observed in 97.3% of isolates, and 33 strains (89.2%) met the criteria for multidrug resistance (MDR). The most frequent MDR phenotype involved resistance to lincomycin, macrolides, β-lactams, tetracyclines, and aminoglycosides. Conclusions: The high prevalence of S. aureus, including MRSA and MDR strains, in raw sheep milk from traditional farms represents a potential public health risk, particularly in regions where unpasteurized dairy consumption persists. These findings underscore the need for enhanced hygiene practices, prudent antimicrobial use, and AMR monitoring in small-scale dairy systems. Full article
14 pages, 841 KiB  
Article
Enhanced Deep Learning for Robust Stress Classification in Sows from Facial Images
by Syed U. Yunas, Ajmal Shahbaz, Emma M. Baxter, Mark F. Hansen, Melvyn L. Smith and Lyndon N. Smith
Agriculture 2025, 15(15), 1675; https://doi.org/10.3390/agriculture15151675 - 2 Aug 2025
Viewed by 183
Abstract
Stress in pigs poses significant challenges to animal welfare and productivity in modern pig farming, contributing to increased antimicrobial use and the rise of antimicrobial resistance (AMR). This study involves stress classification in pregnant sows by exploring five deep learning models: ConvNeXt, EfficientNet_V2, [...] Read more.
Stress in pigs poses significant challenges to animal welfare and productivity in modern pig farming, contributing to increased antimicrobial use and the rise of antimicrobial resistance (AMR). This study involves stress classification in pregnant sows by exploring five deep learning models: ConvNeXt, EfficientNet_V2, MobileNet_V3, RegNet, and Vision Transformer (ViT). These models are used for stress detection from facial images, leveraging an expanded dataset. A facial image dataset of sows was collected at Scotland’s Rural College (SRUC) and the images were categorized into primiparous Low-Stressed (LS) and High-Stress (HS) groups based on expert behavioural assessments and cortisol level analysis. The selected deep learning models were then trained on this enriched dataset and their performance was evaluated using cross-validation on unseen data. The Vision Transformer (ViT) model outperformed the others across the dataset of annotated facial images, achieving an average accuracy of 0.75, an F1 score of 0.78 for high-stress detection, and consistent batch-level performance (up to 0.88 F1 score). These findings highlight the efficacy of transformer-based models for automated stress detection in sows, supporting early intervention strategies to enhance welfare, optimize productivity, and mitigate AMR risks in livestock production. Full article
Show Figures

Figure 1

17 pages, 1284 KiB  
Article
Epidemiology of Carbapenem-Resistant Klebsiella Pneumoniae Co-Producing MBL and OXA-48-Like in a Romanian Tertiary Hospital: A Call to Action
by Violeta Melinte, Maria Adelina Radu, Maria Cristina Văcăroiu, Luminița Mîrzan, Tiberiu Sebastian Holban, Bogdan Vasile Ileanu, Ioana Miriana Cismaru and Valeriu Gheorghiță
Antibiotics 2025, 14(8), 783; https://doi.org/10.3390/antibiotics14080783 - 1 Aug 2025
Viewed by 265
Abstract
Introduction: Carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a critical public health threat due to its rapid nosocomial dissemination, limited therapeutic options, and elevated mortality rates. This study aimed to characterize the epidemiology, carbapenemase profiles, and antimicrobial susceptibility patterns of CRKP isolates, as well [...] Read more.
Introduction: Carbapenem-resistant Klebsiella pneumoniae (CRKP) represents a critical public health threat due to its rapid nosocomial dissemination, limited therapeutic options, and elevated mortality rates. This study aimed to characterize the epidemiology, carbapenemase profiles, and antimicrobial susceptibility patterns of CRKP isolates, as well as the clinical features and outcomes observed in infected or colonized patients. Materials and Methods: We conducted a retrospective analysis of clinical and microbiological data from patients with CRKP infections or colonization admitted between January 2023 and January 2024. Descriptive statistics were used to assess prevalence, resistance patterns, and patient outcomes. Two binary logistic regression models were applied to identify independent predictors of sepsis and in-hospital mortality. Results: Among 89 CRKP isolates, 45 underwent carbapenemase typing. More than half were metallo-β-lactamase (MBL) producers, with 44.4% co-harbouring NDM and OXA-48-like enzymes. Surgical intervention was associated with a significantly lower risk of sepsis (p < 0.01) and in-hospital mortality (p = 0.045), whereas intensive care unit (ICU) stay was a strong predictor of both outcomes. ICU admission conferred a 10-fold higher risk of sepsis (95%Cl 2.4–41.0) and a 40.8-fold higher risk of in-hospital death (95% Cl 3.5–473.3). Limitations: This single-center retrospective study included a limited number of isolates in certain groups. Additionally, cefiderocol (FDC) susceptibility was assessed by disk diffusion rather than by the broth microdilution method. Conclusions: Our study underscores the increasing prevalence of metallo-beta-lactamase-producing CRKP, particularly strains harbouring dual carbapenemases. Timely recognition of high-risk patients, combined with the implementation of targeted infection control measures and the integration of novel therapeutic options, is crucial to optimize clinical management and reduce mortality associated with CRKP. Full article
Show Figures

Figure 1

19 pages, 9488 KiB  
Article
Proteus mirabilis from Captive Giant Pandas and Red Pandas Carries Diverse Antimicrobial Resistance Genes and Virulence Genes Associated with Mobile Genetic Elements
by Yizhou Yang, Yan Liu, Jiali Wang, Caiwu Li, Ruihu Wu, Jialiang Xin, Xue Yang, Haohong Zheng, Zhijun Zhong, Hualin Fu, Ziyao Zhou, Haifeng Liu and Guangneng Peng
Microorganisms 2025, 13(8), 1802; https://doi.org/10.3390/microorganisms13081802 - 1 Aug 2025
Viewed by 209
Abstract
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis [...] Read more.
Proteus mirabilis is a zoonotic pathogen that poses a growing threat to both animal and human health due to rising antimicrobial resistance (AMR). It is widely found in animals, including China’s nationally protected captive giant and red pandas. This study isolated Proteus mirabilis from panda feces to assess AMR and virulence traits, and used whole-genome sequencing (WGS) to evaluate the spread of resistance genes (ARGs) and virulence genes (VAGs). In this study, 37 isolates were obtained, 20 from red pandas and 17 from giant pandas. Multidrug-resistant (MDR) strains were present in both hosts. Giant panda isolates showed the highest resistance to ampicillin and cefazolin (58.8%), while red panda isolates were most resistant to trimethoprim/sulfamethoxazole (65%) and imipenem (55%). Giant panda-derived strains also exhibited stronger biofilm formation and swarming motility. WGS identified 31 ARGs and 73 VAGs, many linked to mobile genetic elements (MGEs) such as plasmids, integrons, and ICEs. In addition, we found frequent co-localization of drug resistance genes/VAGs with MGEs, indicating a high possibility of horizontal gene transfer (HGT). This study provides crucial insights into AMR and virulence risks in P. mirabilis from captive pandas, supporting targeted surveillance and control strategies. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and the Use of Antibiotics in Animals)
Show Figures

Figure 1

13 pages, 1321 KiB  
Article
Intravitreal Povidone-Iodine Injection and Low-Dose Antibiotic Irrigation for Infectious Endophthalmitis: A Retrospective Case Series
by Yumiko Machida, Hiroyuki Nakashizuka, Hajime Onoe, Yorihisa Kitagawa, Naoya Nakagawa, Keisuke Miyata, Misato Yamakawa, Yu Wakatsuki, Koji Tanaka, Ryusaburo Mori and Hiroyuki Shimada
Pharmaceutics 2025, 17(8), 995; https://doi.org/10.3390/pharmaceutics17080995 (registering DOI) - 31 Jul 2025
Viewed by 249
Abstract
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the [...] Read more.
Background/Objectives: Infectious endophthalmitis is a vision-threatening complication of intraocular surgery and intravitreal injections. Standard treatment involves intravitreal antibiotics; however, concerns regarding multidrug resistance and vancomycin-associated hemorrhagic occlusive retinal vasculitis (HORV) highlight the need for alternative antimicrobial strategies. This study aimed to evaluate the clinical efficacy and safety of a protocol combining intravitreal injection of 1.25% povidone-iodine (PI) with intraoperative irrigation using low concentrations of vancomycin and ceftazidime. Methods: We retrospectively analyzed 11 eyes from patients diagnosed with postoperative or injection-related endophthalmitis. Six of the eleven cases received an initial intravitreal injection of 1.25% PI, followed by pars plana vitrectomy with irrigation using balanced salt solution PLUS containing vancomycin (20 μg/mL) and ceftazidime (40 μg/mL). A second intravitreal PI injection was administered at the end of surgery in all cases. Additional PI injections were administered postoperatively based on clinical response. Clinical outcomes included best-corrected visual acuity (BCVA), microbial culture results, corneal endothelial cell density, and visual field testing. Results: All eyes achieved complete infection resolution without recurrence. The mean BCVA improved significantly from 2.18 logMAR at baseline to 0.296 logMAR at final follow-up (p < 0.001). No adverse events were observed on specular microscopy or visual field assessment. The protocol was well tolerated, and repeated PI injections showed no signs of ocular toxicity. Conclusions: This combination protocol provides a safe and effective treatment strategy for infectious endophthalmitis. It enables rapid and complete infection resolution while minimizing the risks associated with intravitreal antibiotics. These findings support further investigation of this protocol as a practical and globally accessible alternative to standard intravitreal antimicrobial therapy. Full article
(This article belongs to the Special Issue Drug Delivery Systems for Ocular Diseases)
Show Figures

Graphical abstract

13 pages, 513 KiB  
Article
Impact of Dietary Inputs on Carbapenem Resistance Gene Dynamics and Microbial Safety During Bioconversion of Agri-Food Waste and Anaerobic Digestate by Hermetia illucens Larvae
by Andrea Marcelli, Alessio Ilari, Vesna Milanović, Ester Foppa Pedretti, Kofi Armah Boakye-Yiadom, Federica Cardinali, Giorgia Rampanti, Andrea Osimani, Cristiana Garofalo and Lucia Aquilanti
Genes 2025, 16(8), 907; https://doi.org/10.3390/genes16080907 - 29 Jul 2025
Viewed by 211
Abstract
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of [...] Read more.
Background/Objectives: Hermetia illucens larvae can efficiently convert agri-food residues into high-protein biomass for animal feed and nutrient-rich frass for soil amendment. However, the potential spread of carbapenem resistance genes (CRGs), which confer resistance to last-resort carbapenem antibiotics, and Enterobacteriaceae, common carriers of these genes and opportunistic pathogens, raises important safety concerns. This study aimed to assess the influence of different agri-food-based diets on Enterobacteriaceae loads and the CRG occurrence during the bioconversion process. Methods: Four experimental diets were formulated from agri-food residues and anaerobic digestate: Diet 1 (peas and chickpea waste), Diet 2 (peas and wheat waste), Diet 3 (onion and wheat waste), and Diet 4 (wheat waste and digestate). Enterobacteriaceae were quantified by viable counts, while five CRGs (blaKPC, blaNDM, blaOXA-48, blaVIM, and blaGES) were detected and quantified using quantitative PCRs (qPCRs). Analyses were performed on individual substrates, formulated diets, larvae (before and after bioconversion), and frass. Results: Plant-based diets sustained moderate Enterobacteriaceae loads. In contrast, the digestate-based diet led to a significant increase in Enterobacteriaceae in both the frass and mature larvae. CRGs were detected only in legume-based diets: blaVIM and blaGES were found in both mature larvae and frass, while blaOXA-48 and blaKPC were found exclusively in either larvae or frass. No CRGs were detected in onion- or digestate-based diets nor in young larvae or diet inputs. Conclusions: The findings suggest that the diet composition may influence the proliferation of Enterobacteriaceae and the persistence of CRGs. Careful substrate selection and process monitoring are essential to minimize antimicrobial resistance risks in insect-based bioconversion systems. Full article
(This article belongs to the Section Microbial Genetics and Genomics)
Show Figures

Figure 1

19 pages, 2130 KiB  
Article
Isolation of ESBL-Producing Enterobacteriaceae in Food of Animal and Plant Origin: Genomic Analysis and Implications for Food Safety
by Rosa Fraccalvieri, Stefano Castellana, Angelica Bianco, Laura Maria Difato, Loredana Capozzi, Laura Del Sambro, Adelia Donatiello, Domenico Pugliese, Maria Tempesta, Antonio Parisi and Marta Caruso
Microorganisms 2025, 13(8), 1770; https://doi.org/10.3390/microorganisms13081770 - 29 Jul 2025
Viewed by 320
Abstract
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food [...] Read more.
Background: The spread of ESBL-producing Enterobacteriaceae (ESBL-PE) strains in food poses a potential risk to human health. The aim of the study was to determine the occurrence of ESBL-PE and to investigate their distribution on foods. Methods: A total of 1000 food samples, including both raw and ready-to-eat products, was analyzed for the presence of ESBL-producing Enterobacteriaceae using chromogenic selective agar. Antibiotic resistance in the isolated strains was assessed using conventional methods, while whole-genome sequencing was employed to predict antimicrobial resistance and virulence genes. Results: The overall occurrence of ESBL-PE strains was 2.8%, with the highest contamination in raw meat samples (10%). A total of 31 multidrug-resistant (MDR) strains was isolated, mainly Escherichia coli, followed by Klebsiella pneumoniae, Salmonella enterica, and Enterobacter hormaechei. All strains exhibited high levels of resistance to at least four different β-lactam antibiotics, as well as to other antimicrobial classes including sulfonamides, tetracyclines, aminoglycosides, and quinolones. Whole-genome sequencing identified 63 antimicrobial resistance genes, with blaCTX-M being the most prevalent ESBL gene. Twenty-eight (90%) isolates carried Inc plasmids, known vectors of multiple antimicrobial resistance genes, including those associated with ESBLs. Furthermore, several virulence genes were identified. Conclusions: The contamination of food with ESBL-PE represents a potential public health risk, underscoring the importance of the implementation of genomic surveillance to monitor and control the spread of antimicrobial resistance. Full article
(This article belongs to the Special Issue Food Microorganisms and Genomics, 2nd Edition)
Show Figures

Figure 1

22 pages, 1255 KiB  
Article
Assessment of Bacterial Contamination and Biofilm Formation in Popular Street Foods of Biskra, Algeria
by Sara Boulmaiz, Ammar Ayachi and Widad Bouguenoun
Acta Microbiol. Hell. 2025, 70(3), 32; https://doi.org/10.3390/amh70030032 - 28 Jul 2025
Viewed by 499
Abstract
This study assessed microbiological contamination in street-sold meat products, focusing on Enterobacterales and coagulase-negative staphylococci (CoNS) species and their antibiotic resistance. Chicken and mutton street foods like shawarma and brochettes were tested for bacterial load, species distribution. and resistance profiles. The results showed [...] Read more.
This study assessed microbiological contamination in street-sold meat products, focusing on Enterobacterales and coagulase-negative staphylococci (CoNS) species and their antibiotic resistance. Chicken and mutton street foods like shawarma and brochettes were tested for bacterial load, species distribution. and resistance profiles. The results showed significant contamination, with Enterobacter cloacae (5.38 Log 10 CFU/g). Staphylococcus lentus and Staphylococcus xylosus were also common, reaching 6.23 Log 10 CFU/g in some samples. Contamination levels varied significantly by food type, with chicken shawarma showing the highest risk. Antimicrobial susceptibility testing revealed high multidrug resistance, particularly among E. cloacae and Staphylococcus species. Biofilm formation an indicator of resistance was observed mainly in staphylococci and enhanced under fed-batch culture. These findings highlight public health concerns tied to poor hygiene and undercooking in street food environments. The study emphasizes the need for improved hygiene practices, standardized cooking methods, and systematic food safety monitoring to reduce contamination and antibiotic resistance risks. Full article
Show Figures

Figure 1

27 pages, 4093 KiB  
Article
Antimicrobial Resistance in Commensal Bacteria from Large-Scale Chicken Flocks in the Dél-Alföld Region of Hungary
by Ádám Kerek, Ábel Szabó, Franciska Barnácz, Bence Csirmaz, László Kovács and Ákos Jerzsele
Vet. Sci. 2025, 12(8), 691; https://doi.org/10.3390/vetsci12080691 - 24 Jul 2025
Viewed by 562
Abstract
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs [...] Read more.
Background: Antimicrobial resistance (AMR) is increasingly acknowledged as a critical global challenge, posing serious risks to human and animal health and potentially disrupting poultry production systems. Commensal bacteria such as Staphylococcus spp., Enterococcus spp., and Escherichia coli may serve as important reservoirs and vectors of resistance genes. Objectives: This study aimed to assess the AMR profiles of bacterial strains isolated from industrial chicken farms in the Dél-Alföld region of Hungary, providing region-specific insights into resistance dynamics. Methods: A total of 145 isolates, including Staphylococcus spp., Enterococcus spp., and E. coli isolates, were subjected to minimum inhibitory concentration (MIC) testing against 15 antimicrobial agents, following Clinical and Laboratory Standards Institute (CLSI) guidelines. Advanced multivariate statistics, machine learning algorithms, and network-based approaches were employed to analyze resistance patterns and co-resistance associations. Results Multidrug resistance (MDR) was identified in 43.9% of Staphylococcus spp. isolates, 28.8% of Enterococcus spp. isolates, and 75.6% of E. coli isolates. High levels of resistance to florfenicol, enrofloxacin, and potentiated sulfonamides were observed, whereas susceptibility to critical antimicrobials such as imipenem and vancomycin remained largely preserved. Discussion: Our findings underscore the necessity of implementing region-specific AMR monitoring programs and strengthening multidisciplinary collaboration within the “One Health” framework with proper animal hygiene and biosecurity measures to limit the spread of antimicrobial resistance and protect both animal and human health. Full article
Show Figures

Graphical abstract

26 pages, 1616 KiB  
Article
Infections with Staphylococcus spp. in Children Undergoing Anticancer Therapy or Haematopoietic Cell Transplantation: A Nationwide Multicentre Study
by Anna Jabłońska, Monika Richert-Przygońska, Kamila Jaremek, Krzysztof Czyżewski, Wanda Badowska, Walentyna Balwierz, Ewa Bień, Tomasz Brzeski, Radosław Chaber, Wojciech Czogała, Bożenna Dembowska-Bagińska, Katarzyna Derwich, Katarzyna Drabko, Katarzyna Dzierżanowska-Fangrat, Jowita Frączkiewicz, Agnieszka Gietka, Jolanta Goździk, Olga Gryniewicz-Kwiatkowska, Łukasz Hutnik, Ninela Irga-Jaworska, Krzysztof Kałwak, Grażyna Karolczyk, Aleksandra Królak, Pawel Łaguna, Katarzyna Machnik, Hanna Mańko-Glińska, Agnieszka Mizia-Malarz, Wojciech Młynarski, Jakub Musiał, Katarzyna Mycko, Tomasz Ociepa, Sonia Pająk, Jarosław Peregud-Pogorzelski, Filip Pierlejewski, Marcin Płonowski, Małgorzata Salamonowicz-Bodzioch, Małgorzata Sawicka-Żukowska, Katarzyna Semczuk, Katarzyna Skowron-Kandzia, Weronika Stolpa, Tomasz Szczepański, Anna Szmydki-Baran, Renata Tomaszewska, Tomasz Urasiński, Agnieszka Urbanek-Dądela, Justyna Urbańska-Rakus, Paweł Wawryków, Olga Zając-Spychała, Patrycja Zalas-Więcek, Agnieszka Zaucha-Prażmo, Joanna Zawitkowska, Iwona Żak and Jan Styczyńskiadd Show full author list remove Hide full author list
J. Clin. Med. 2025, 14(15), 5200; https://doi.org/10.3390/jcm14155200 - 22 Jul 2025
Viewed by 327
Abstract
Background: Staphylococcus spp. represent the most prevalent Gram-positive organisms in children with malignancies or undergoing haematopoietic cell transplantation (HCT), contributing to significant morbidity and mortality. This study aimed to assess the epidemiology, risk factors, treatment strategies, and outcomes of staphylococcal infections (SIs) [...] Read more.
Background: Staphylococcus spp. represent the most prevalent Gram-positive organisms in children with malignancies or undergoing haematopoietic cell transplantation (HCT), contributing to significant morbidity and mortality. This study aimed to assess the epidemiology, risk factors, treatment strategies, and outcomes of staphylococcal infections (SIs) in paediatric haemato-oncology (PHO) and HCT patients in Poland over a 12-year period. Methods: A retrospective, multicentre study was conducted across 17 paediatric oncology centres in Poland. The clinical and microbiological data of patients under the age of 18, diagnosed with malignancies or post-HCT, were analysed for confirmed SI between 2012 and 2023. The variables assessed included demographics, underlying conditions, infection type and source, antimicrobial susceptibility, treatment, and 30-day infection-free survival. Results: Among 1725 patients with SI, 1433 were PHO and 292 were HCT patients. The cumulative incidence of SI was 12.7% in PHO and 14.3% in HCT patients (p = 0.008). The 30-day survival rate was significantly higher in PHO compared to HCT patients (98.4% vs. 93.2%, p < 0.001). Most deaths were caused by S. epidermidis, S. haemolyticus, and S. hominis, predominantly involving methicillin-resistant coagulase-negative Staphylococci (MRCNS). Multivariate Cox regression identified undergoing HCT (HR = 3.0, 95% CI: 1.6–5.6, p < 0.001) and treatment of infection > 10 days (HR = 2.0, 95% CI: 1.1–3.6, p = 0.019) as independent risk factors for mortality. Conclusions: Staphylococcal infections pose a significant challenge in paediatric oncology and transplant populations. Optimising prevention, diagnostics, and antimicrobial therapy is crucial for improving outcomes in these high-risk groups. Full article
(This article belongs to the Section Clinical Pediatrics)
Show Figures

Figure 1

14 pages, 1340 KiB  
Article
Exploring the Prevalence of Antimicrobial Resistance in the Environment Through Bonelli’s Eagles (Aquila fasciata) as Sentinels
by Barbara Martin-Maldonado, Ana Marco-Fuertes, Laura Montoro-Dasi, Laura Lorenzo-Rebenaque, Jose Sansano-Maestre, Jaume Jordá, Daniel Martín Solance, Fernando Esperón and Clara Marin
Antibiotics 2025, 14(8), 734; https://doi.org/10.3390/antibiotics14080734 - 22 Jul 2025
Viewed by 405
Abstract
Background/Objectives: Increasing levels of antimicrobial resistance (AMR) have recently been observed at the human–domestic animal–wildlife interface. Wild birds have been identified as carriers of antimicrobial-resistant bacteria and serve as excellent biomarkers for epidemiological studies. This study assessed the current AMR presence in Eastern [...] Read more.
Background/Objectives: Increasing levels of antimicrobial resistance (AMR) have recently been observed at the human–domestic animal–wildlife interface. Wild birds have been identified as carriers of antimicrobial-resistant bacteria and serve as excellent biomarkers for epidemiological studies. This study assessed the current AMR presence in Eastern Spain’s commensal Escherichia coli isolated from free-ranging Bonelli’s eagles (Aquila fasciata). Methods: Nestlings and their nests were intensively sampled between 2022 and 2024 to determine their AMR profile and characterize E. coli. AMR testing was conducted using the broth microdilution method, following the European Committee on Antimicrobial Susceptibility Testing guidelines. Additionally, the presence of eaeA (intimin gene) and stx-1 and stx-2 (shiga toxins) was analyzed by real-time PCR to classify E. coli strains into enteropathogenic (EPEC) and Shiga-toxigenic (STEC) pathotypes. Results: Of all E. coli isolates, 41.7% were resistant to at least one antimicrobial, and 30% were multidrug-resistant. Only two strains were classified as EPEC and none as STEC. The highest resistance rates were observed for amoxicillin and tetracycline (19.6% each). Alarmingly, resistance to colistin and meropenem, last-resort antibiotics in human medicine, was also detected. Conclusions: Although the mechanisms of resistance acquisition remain unclear, transmission is likely to occur through the food chain, with synanthropic prey acting as intermediary vectors. These results highlight the role of Bonelli’s eagles as essential sentinels of environmental AMR dissemination, even in remote ecosystems. Strengthening One Health-based surveillance is necessary to address AMR’s ecological and public health risks in wildlife. Full article
(This article belongs to the Special Issue Antimicrobial Resistance and Infections in Animals)
Show Figures

Figure 1

21 pages, 594 KiB  
Article
Trends in Positive Urine Culture Rates and Antimicrobial Resistance in Non-Hospitalized Children from Western Romania: A Retrospective Observational Study
by Constantin Catalin Marc, Maria Daniela Mot, Monica Licker, Delia Muntean, Daniela Teodora Marti, Ana Alexandra Ardelean, Alina Ciceu, Sergiu Adrian Sprintar, Daniela Adriana Oatis, Alin Gabriel Mihu and Tudor Rares Olariu
Antibiotics 2025, 14(7), 723; https://doi.org/10.3390/antibiotics14070723 - 18 Jul 2025
Viewed by 319
Abstract
Background: Urinary tract infections (UTIs) are among the most common types of infections during childhood. Limited data are available on the prevalence of UTI in children from Romania, with most being available for hospitalized children. For this reason, we conducted a retrospective observational [...] Read more.
Background: Urinary tract infections (UTIs) are among the most common types of infections during childhood. Limited data are available on the prevalence of UTI in children from Romania, with most being available for hospitalized children. For this reason, we conducted a retrospective observational study in consecutive non-hospitalized children to assess the number of positive UTI samples and the antibacterial resistance of causative pathogens. Methods: This study included 7222 consecutive urine cultures collected from children aged 1 to 18 years who are residents of Arad County, Western Romania. Urine samples were analyzed for leukocyturia and cultures for the presence of monomorphic bacteria. Results: The overall number of positive UTI samples was 10.44%. A higher number of positive UTI samples was observed in females when compared to males and in children aged 6–12 and 12 to 18 years when compared to those aged 1–5 years. The antibiotic susceptibility testing of E. coli isolates revealed high sensitivity to most tested antibacterials. Near-complete susceptibility was observed for fosfomycin (99.71%) and nitrofurantoin (96.01%), while high susceptibility rates were also observed for ciprofloxacin (85.43%) and amoxicillin–clavulanic acid (75.05%). In contrast, high resistance was found for ampicillin (62.28% resistant) and trimethoprim–sulfamethoxazole (36.53% resistant). Conclusions: Given the clinical risks associated with UTI in children, our findings underscore the urgent need for the continued monitoring of multidrug-resistant strains. Our study provides important epidemiological and resistance data to guide empirical treatment and strengthen pediatric antimicrobial resistance surveillance. Future studies should focus on different regions and regularly update resistance patterns to keep treatment and prevention strategies aligned with local conditions. Full article
Show Figures

Figure 1

23 pages, 752 KiB  
Review
Antibiotic Therapy Duration for Multidrug-Resistant Gram-Negative Bacterial Infections: An Evidence-Based Review
by Andrea Marino, Egle Augello, Carlo Maria Bellanca, Federica Cosentino, Stefano Stracquadanio, Luigi La Via, Antonino Maniaci, Serena Spampinato, Paola Fadda, Giuseppina Cantarella, Renato Bernardini, Bruno Cacopardo and Giuseppe Nunnari
Int. J. Mol. Sci. 2025, 26(14), 6905; https://doi.org/10.3390/ijms26146905 - 18 Jul 2025
Viewed by 677
Abstract
Determining the optimal duration of antibiotic therapy for infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) is a critical challenge in clinical medicine, balancing therapeutic efficacy against the risks of adverse effects and antimicrobial resistance. This narrative review synthesises current evidence and guidelines regarding [...] Read more.
Determining the optimal duration of antibiotic therapy for infections caused by multidrug-resistant Gram-negative bacteria (MDR-GNB) is a critical challenge in clinical medicine, balancing therapeutic efficacy against the risks of adverse effects and antimicrobial resistance. This narrative review synthesises current evidence and guidelines regarding antibiotic duration for MDR-GNB infections, emphasising bloodstream infections (BSI), hospital-acquired and ventilator-associated pneumonia (HAP/VAP), complicated urinary tract infections (cUTIs), and intra-abdominal infections (IAIs). Despite robust evidence supporting shorter courses (3–7 days) in uncomplicated infections caused by more susceptible pathogens, data guiding optimal therapy duration for MDR-GNB remain limited, particularly concerning carbapenem-resistant Enterobacterales (CRE), difficult-to-treat Pseudomonas aeruginosa (DTR-Pa), and carbapenem-resistant Acinetobacter baumannii (CRAB). Current guidelines from major societies, including IDSA and ESCMID, provide explicit antimicrobial selection advice but notably lack detailed recommendations on the duration of therapy. Existing studies demonstrate non-inferiority of shorter versus longer antibiotic courses in specific clinical contexts but frequently exclude critically ill patients or those infected with non-fermenting MDR pathogens. Individualised duration decisions must integrate clinical response, patient immunologic status, infection severity, source control adequacy, and pharmacologic considerations. Significant knowledge gaps persist, underscoring the urgent need for targeted research, particularly randomised controlled trials assessing optimal antibiotic duration for the most challenging MDR-GNB infections. Clinicians must navigate considerable uncertainty, relying on nuanced judgement and close monitoring to achieve successful outcomes while advancing antimicrobial stewardship goals. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

24 pages, 3099 KiB  
Article
Comprehensive Assessment of Health Risks Associated with Gram-Negative Bacterial Contamination on Healthcare Personnel Gowns in Clinical Settings
by Daniela Moreno-Torres, Carlos Alberto Jiménez-Zamarripa, Sandy Mariel Munguía-Mogo, Claudia Camelia Calzada-Mendoza, Clemente Cruz-Cruz, Emilio Mariano Durán-Manuel, Antonio Gutiérrez-Ramírez, Graciela Castro-Escarpulli, Madeleine Edith Vélez-Cruz, Oscar Sosa-Hernández, Araceli Rojas-Bernabé, Beatriz Leal-Escobar, Omar Agni García-Hernández, Enzo Vásquez-Jiménez, Gustavo Esteban Lugo-Zamudio, María Concepción Tamayo-Ordóñez, Yahaira de Jesús Tamayo-Ordóñez, Dulce Milagros Razo Blanco-Hernández, Benito Hernández-Castellanos, Julio César Castañeda-Ortega, Marianela Paredes-Mendoza, Miguel Ángel Loyola-Cruz and Juan Manuel Bello-Lópezadd Show full author list remove Hide full author list
Microorganisms 2025, 13(7), 1687; https://doi.org/10.3390/microorganisms13071687 - 18 Jul 2025
Viewed by 838
Abstract
Microbiological contamination of healthcare workers’ gowns represents a critical risk for the transmission of healthcare-associated infections (HAIs). Despite their use as protective equipment, gowns can act as reservoirs of antibiotic-resistant bacteria, favouring the spread of pathogens between healthcare workers and patients. The presence [...] Read more.
Microbiological contamination of healthcare workers’ gowns represents a critical risk for the transmission of healthcare-associated infections (HAIs). Despite their use as protective equipment, gowns can act as reservoirs of antibiotic-resistant bacteria, favouring the spread of pathogens between healthcare workers and patients. The presence of these resistant bacteria on healthcare workers’ gowns highlights the urgent need to address this risk as part of infection control strategies. The aim of this work was to assess the microbiological risks associated with the contamination of healthcare staff gowns with Gram-negative bacteria, including the ESKAPE group, and their relationship with antimicrobial resistance. An observational, cross-sectional, prospective study was conducted in 321 hospital workers. The imprinting technique was used to quantify the bacterial load on the gowns, followed by bacterial identification by MALDI-TOF mass spectrometry. In addition, antimicrobial resistance profiles were analysed, and tests for carbapenemases and BLEE production were performed. The ERIC-PCR technique was also used for molecular analysis of Pantoea eucrina clones. Several Gram-negative bacteria were identified, including bacteria of the ESKAPE group. The rate of microbiological contamination of the gowns was 61.05% with no association with the sex of the healthcare personnel. It was observed that critical areas of the hospital, such as intensive care units and operating theatres, showed contamination by medically important bacteria. In addition, some strains of P. eucrina showed resistance to carbapenemics and cephalosporins. ERIC-PCR analysis of P. eucrina isolates showed genetic heterogeneity, indicating absence of clonal dissemination. Healthcare personnel gowns are a significant reservoir of pathogenic bacteria, especially in critical areas of Hospital Juárez de México. It is essential to implement infection control strategies that include improving the cleaning and laundering of gowns and ideally eliminating them from clothing to reduce the risk of transmission of nosocomial infections. Full article
(This article belongs to the Section Medical Microbiology)
Show Figures

Figure 1

Back to TopTop