Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,495)

Search Parameters:
Keywords = antimicrobial mechanism of action

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2035 KB  
Review
Streptomyces as Biofactories: A Bibliometric Analysis of Antibiotic Production Against Staphylococcus aureus
by Pablício Pereira Cardoso, Kamila Brielle Pantoja Vasconcelos, Sámia Rocha Pereira, Rafael Silva Cardoso, Ramillys Carvalho de Souza, Lucas Francisco da Silva Nogueira, Suelen Fabrícia dos Santos Bentes, Vivaldo Gemaque de Almeida and Silvia Katrine Rabelo da Silva
Antibiotics 2025, 14(10), 983; https://doi.org/10.3390/antibiotics14100983 - 30 Sep 2025
Abstract
Infections caused by Staphylococcus aureus pose significant public health challenges, particularly due to antibiotic-resistant strains like MRSA. In this context, Streptomyces, a genus known for producing natural antibiotics, emerges as a promising source for novel therapeutic agents. In this study, a bibliometric [...] Read more.
Infections caused by Staphylococcus aureus pose significant public health challenges, particularly due to antibiotic-resistant strains like MRSA. In this context, Streptomyces, a genus known for producing natural antibiotics, emerges as a promising source for novel therapeutic agents. In this study, a bibliometric analysis of the scientific literature (2015–2024) on Streptomyces as antibiotic biofactories against S. aureus was performed, aiming to identify publication trends, collaborative networks, and emerging research areas. Using the Web of Science database, searches were performed with descriptors (“Streptomyces” AND “Staphylococcus aureus”), including original articles and reviews in English. Data were analyzed with VOSviewer and Biblioshiny to visualize collaborative networks, keyword co-occurrences, and trends. A total of 755 articles from 3705 authors were analyzed, highlighting significant collaboration (98.7%). Publications showed marked growth, particularly in Microbiology (21.7%), Pharmacology and Pharmacy (16.8%), and Biotechnology and Applied Microbiology (16.1%). China and India led in publication volume, whereas the United States exhibited the highest citation impact. Key emerging research topics include biosynthesis and metabolic optimization, antimicrobial activity and bioprospecting, mechanisms of antibiotic action and bacterial resistance, and genomic analyses. Research on Streptomyces for antibiotic production against S. aureus demonstrates continuous expansion and global interest, emphasizing the importance of international collaboration and multidisciplinary approaches. Future studies should intensify exploration of biodiverse environments, genetic engineering applications, and combinatorial strategies to effectively address antimicrobial resistance. Full article
Show Figures

Figure 1

18 pages, 1541 KB  
Review
Antimicrobial and Anti-Inflammatory Bioactive Peptides: Their Role in Potential Therapeutic Applications for Periodontitis—A Narrative Review
by Federica Tonolo, Renata Cristina Lima Silva, Mary Bortoluzzi, Raquel Mantuaneli Scarel-Caminaga and Fabio Vianello
Nutrients 2025, 17(19), 3105; https://doi.org/10.3390/nu17193105 - 30 Sep 2025
Abstract
Bioactive peptides have garnered increasing interest in recent years due to their potential applications in the medical field, for example, as promising adjuvant therapeutic agents to modulate the host immune response and counteract microbial dysbiosis in chronic pathologies. Primarily derived from protein hydrolysates [...] Read more.
Bioactive peptides have garnered increasing interest in recent years due to their potential applications in the medical field, for example, as promising adjuvant therapeutic agents to modulate the host immune response and counteract microbial dysbiosis in chronic pathologies. Primarily derived from protein hydrolysates of food waste, these components exhibit beneficial properties, such as anti-inflammatory, antimicrobial, antioxidant, and antidiabetic effects. This narrative review focuses on bioactive peptides with antimicrobial and anti-inflammatory properties, highlighting their mechanisms of action, sources, and therapeutic potential in the context of chronic conditions, particularly periodontal disease, especially when comorbidities are present (i.e., type 2 diabetes mellitus). The mechanisms of action and sources, as well as preclinical and clinical studies evaluating bioactive peptides efficacy, are discussed. Further research is warranted to establish their clinical viability and integration into conventional therapeutic strategies. Full article
(This article belongs to the Section Nutritional Immunology)
Show Figures

Figure 1

45 pages, 7020 KB  
Review
Mechanism, Efficacy, and Safety of Natural Antibiotics
by Andrei Teodor Matei and Anita Ioana Visan
Antibiotics 2025, 14(10), 981; https://doi.org/10.3390/antibiotics14100981 - 29 Sep 2025
Abstract
The growing ineffectiveness of common antibiotics against multidrug-resistant pathogens has made antimicrobial resistance (AMR) a serious global health concern. This review emphasizes that natural antibiotics from animals, bacteria, fungi, and plants are worthy alternatives for combating this crisis. Evolutionary pressure has shaped these [...] Read more.
The growing ineffectiveness of common antibiotics against multidrug-resistant pathogens has made antimicrobial resistance (AMR) a serious global health concern. This review emphasizes that natural antibiotics from animals, bacteria, fungi, and plants are worthy alternatives for combating this crisis. Evolutionary pressure has shaped these molecules, leading to antibiotic-resistant bacteria that can withstand single-target synthetic drugs but are vulnerable to multiple attack pathways (e.g., cell wall disruption, protein synthesis inhibition, biofilm interference) from natural compounds. Natural antibiotics are frequently incorporated into treatment strategies or drug-delivery systems for minimizing side effects, reducing doses, and improving their effectiveness. The review discusses recent progress in this field, describing the mechanisms of action of natural antibiotics, their incorporation into several drug-delivery systems, and their ‘omics’-driven discovery to improve production, while expressing the challenges that remain. Extracellular application of these compounds, however, is compromised by their low stability in the extracellular environment; furthermore, formulation advancements, such as nanoparticle encapsulation, have been shown to enhance the bioavailability and activity of these substances. Combining indigenous knowledge and modern scientific advances, natural antibiotics may be developed to fight AMR both as monotherapy and adjuvants in a sustainable way. Leveraging these synergies, alongside the latest advances in research, is key to bridging the antibiotic discovery–resistance gap and may provide a route to clinical translation and global AMR control. The promise of natural antibiotics is clear, but their path to mainstream medicine is fraught with obstacles like reproducibility, standardization, and scalability. It is more realistic to see these substances as powerful complements to existing therapies, not outright replacements. Their true strength is in their ability to interfere with resistance mechanisms and create new possibilities for drug development, positioning them as a vital, though complicated, part of the global effort to combat AMR. Full article
Show Figures

Figure 1

15 pages, 737 KB  
Review
Activity of Peptides Modulating the Action of p2x Receptors: Focus on the p2x7 Receptor
by Jonathas Albertino De Souza Oliveira Carneiro, Guilherme Pegas Teixeira, Leandro Rocha and Robson Xavier Faria
Pharmaceuticals 2025, 18(10), 1452; https://doi.org/10.3390/ph18101452 - 28 Sep 2025
Abstract
P2X receptors are a family of ATP-gated ion channels widely distributed in various tissues, especially in neuronal cells and hematopoietic cells. ATP activates P2X receptors, causing the opening of an ionic channel with preferential permeability to the passage of mono- and divalent cations. [...] Read more.
P2X receptors are a family of ATP-gated ion channels widely distributed in various tissues, especially in neuronal cells and hematopoietic cells. ATP activates P2X receptors, causing the opening of an ionic channel with preferential permeability to the passage of mono- and divalent cations. High concentrations of ATP stimulate the P2X7 subtype through prolonged activation, which opens pores and causes inflammation, proalgesic effects, and cell death. Peptides, including antimicrobials (antimicrobial peptides), are present in several organisms, such as amphibians, mammals, fish, arachnids, and plants, where they act as the first line of defense. Thus, these peptides have the capacity to eliminate a wide spectrum of microorganisms, such as bacteria, fungi, and some viruses. In general, the mechanism of action of antimicrobial peptides involves interactions with the lipid bilayer of the cell membrane, which can lead to an increase in the internal liquid content of liposomes. However, many peptides can act on ion channels, such as those of the P2X family, especially the P2X7 receptor. We investigated the action of peptides that directly modulate P2X7 receptors, such as beta-amyloid, LL-37/hCap18, Pep19-2.5, rCRAMP, ADESG, and polymyxin B. Additionally, we evaluated peptides that modulate the activity of P2X family receptor subtypes. In this review, we intend to describe the relationships between peptides with distinct characteristics and how they modulate the functionality of P2X receptors. Full article
(This article belongs to the Special Issue P2X Receptors and Their Pharmacology)
Show Figures

Figure 1

19 pages, 2625 KB  
Article
Silver Nanoparticle–Antibiotic Combinations: A Strategy to Overcome Bacterial Resistance in Escherichia coli, Salmonella Enteritidis and Staphylococcus aureus
by Mariana Homem de Mello Santos, Thiago Hideo Endo, Sara Scandorieiro, Wander Rogério Pavanelli, Renata Katsuko Takayama Kobayashi and Gerson Nakazato
Antibiotics 2025, 14(10), 960; https://doi.org/10.3390/antibiotics14100960 - 24 Sep 2025
Viewed by 73
Abstract
Background/Objectives: Bacterial resistance to antimicrobials is a major global health challenge, limiting the effectiveness of conventional therapies and complicating infection control. The aim of this study was to investigate the antibacterial potential of biologically synthesized silver nanoparticles (Bio-AgNP), alone and in combination [...] Read more.
Background/Objectives: Bacterial resistance to antimicrobials is a major global health challenge, limiting the effectiveness of conventional therapies and complicating infection control. The aim of this study was to investigate the antibacterial potential of biologically synthesized silver nanoparticles (Bio-AgNP), alone and in combination with ampicillin (AMP) and enrofloxacin (ENRO), against multidrug-resistant (MDR) bacterial isolates of clinical and veterinary relevance. Methods: The antibacterial activity of Bio-AgNP, AMP, and ENRO, alone or in combination, was assessed against reference strains and MDR isolates of Escherichia coli, Salmonella enterica serovar Typhimurium and Enteritidis, and Staphylococcus aureus. Minimum inhibitory concentration (MIC) values were determined, and bacterial tolerance to prolonged antimicrobial exposure was evaluated. Additionally, assays were conducted to explore potential mechanisms of action, including cell membrane permeability and oxidative stress induction. Results: All bacterial strains developed increased MIC values after prolonged exposure to conventional antibiotics, confirming resistance. Only E. coli developed resistance to Bio-AgNP. Notably, the Bio-AgNP + AMP combination effectively restored susceptibility in E. coli, while only S. Enteritidis developed resistance to this combination upon prolonged exposure. The synergistic effect of Bio-AgNP with conventional antibiotics significantly reduced bacterial growth within two hours, compared with longer times observed in monotherapy. Mechanistic analysis suggested that the combinations increased membrane permeability, facilitating antibiotic entry. Conclusions: Bio-AgNPs combined with AMP or ENRO enhanced antibacterial activity and overcame resistance in MDR isolates, representing a promising therapeutic alternative. The biological synthesis of Bio-AgNPs, capped with organic biomolecules, supports their potential as safe adjuvants to conventional antibiotics in combating MDR bacterial infections. Full article
Show Figures

Figure 1

17 pages, 2079 KB  
Review
Microalgae, Cell Factories for Antimicrobial Peptides: A Promising Response to Antibiotic Resistance
by Malika Mekhalfi and Sabine Berteina-Raboin
Antibiotics 2025, 14(10), 959; https://doi.org/10.3390/antibiotics14100959 - 24 Sep 2025
Viewed by 84
Abstract
The prevalence of infectious diseases is steadily increasing. If left untreated, they can lead to more serious health problems. Antibiotics currently available on the market are facing growing resistance, prompting the development of increasingly powerful antibacterial molecules. One alternative currently under investigation is [...] Read more.
The prevalence of infectious diseases is steadily increasing. If left untreated, they can lead to more serious health problems. Antibiotics currently available on the market are facing growing resistance, prompting the development of increasingly powerful antibacterial molecules. One alternative currently under investigation is the use of antibacterial peptides, whose mechanisms of action differ from those of conventional drugs. These peptides are produced naturally by all living organisms and can also be synthesized. However, as peptide chains become longer, synthesis and purification become increasingly complex and laborious. For decades, antimicrobial peptides have been synthesized on polymer supports using automated systems. Unfortunately, longer chains tend to fold more, preventing access of reagents within the cross-linked polymer network. Recombinant production of antimicrobial peptides has been achieved in various organisms called “cell factories,” allowing for more sustainable synthesis. Recently, microalgae have emerged as a promising and sustainable alternative for the production of antimicrobial peptides. They are inexpensive, easy to cultivate, and capable of producing biologically valuable molecules, offering a potential solution to antibiotic resistance. This work reviews the current state of these “cell factories” and examines the advantages and limitations of microalgae for the future of biopharmaceutical production. Full article
Show Figures

Figure 1

47 pages, 903 KB  
Review
The Role of Natural Hydrogels in Enhancing Wound Healing: From Biomaterials to Bioactive Therapies
by Paula Stefana Pintilei, Roya Binaymotlagh, Laura Chronopoulou and Cleofe Palocci
Pharmaceutics 2025, 17(10), 1243; https://doi.org/10.3390/pharmaceutics17101243 - 23 Sep 2025
Viewed by 131
Abstract
Wound healing is a complex, multifaceted biological process that plays a vital role in recovery and overall quality of life. However, conventional wound care methods often prove insufficient, resulting in delayed healing, higher infection risk, and other complications. In response, biomaterials—especially hydrogels—have gained [...] Read more.
Wound healing is a complex, multifaceted biological process that plays a vital role in recovery and overall quality of life. However, conventional wound care methods often prove insufficient, resulting in delayed healing, higher infection risk, and other complications. In response, biomaterials—especially hydrogels—have gained attention for their advanced wound management capabilities, which support wound healing by maintaining moisture, mimicking the extracellular matrix (ECM), and enabling targeted drug delivery triggered by wound-specific signals. They frequently carry antimicrobial or anti-inflammatory agents, promote blood vessel and nerve regeneration, and are biocompatible with customizable properties suited to different healing stages. Natural hydrogels, derived from polysaccharides, proteins, and peptides, offer several advantages over synthetic options, including inherent bioactivity, enzymatic degradability, and cell-adhesive qualities that closely resemble the native ECM. These features facilitate cell interaction, modulate inflammation, and speed up tissue remodeling. Moreover, natural hydrogels can be engineered as delivery systems for therapeutic agents like antimicrobial compounds, nanoparticles, growth factors, and exosomes. This review discusses recent advances in the use of natural hydrogels as multifunctional wound dressings and delivery platforms, with a focus on their composition, mechanisms of action, and potential for treating chronic and infected wounds by incorporating antimicrobial and regenerative additives such as silver and zinc oxide nanoparticles. Full article
Show Figures

Graphical abstract

19 pages, 3838 KB  
Article
Synthesis of the Supramolecular Structure of Vanadium Pentoxide Nanoparticles with Native and Modified β-Cyclodextrins for Antimicrobial Performance
by Rajaram Rajamohan, Kanagaraj Thamaraiselvi, Chaitany Jayprakash Raorane, Kuppusamy Murugavel, Chandramohan Govindasamy, Seong-Cheol Kim and Seho Sun
Bioengineering 2025, 12(10), 1010; https://doi.org/10.3390/bioengineering12101010 - 23 Sep 2025
Viewed by 137
Abstract
Cyclodextrins in metal oxide nanoparticles (NPs) serve as stabilizing, dispersing, and functionalizing agents that enhance antimicrobial performance through better nanoparticle stability, synergistic action, and potential controlled release mechanisms, making them ideal for advanced biomedical and environmental antimicrobial applications. In this study, NPs of [...] Read more.
Cyclodextrins in metal oxide nanoparticles (NPs) serve as stabilizing, dispersing, and functionalizing agents that enhance antimicrobial performance through better nanoparticle stability, synergistic action, and potential controlled release mechanisms, making them ideal for advanced biomedical and environmental antimicrobial applications. In this study, NPs of vanadium pentoxide (V2O5) were obtained by the precipitation method, and, following a supramolecular assembly, were synthesized using the impregnation method via addition of β-cyclodextrin (BCD) and its derivatives, such as hydroxypropyl-β-cyclodextrin (HCD) and methyl-β-cyclodextrin (MCD). The formation of the V2O5:CDs was driven by non-covalent host–guest interactions, leading to a stable supramolecular structure with enhanced physicochemical properties. Morphological analysis using scanning electron microscopy (SEM) revealed uniformly distributed V2O5 NPs within the CD matrix. Structural characterization was further supported by proton nuclear magnetic resonance (NMR) spectroscopy, which confirmed the inclusion interactions between V2O5 and CDs. The synthesized NPs demonstrated significant antimicrobial activity against Gram-positive and fungal strains, indicating a synergistic enhancement in bioactivity due to the supramolecular architecture. This work highlights the potential of CD-assisted V2O5 NPs as promising antimicrobial agents for biomedical and environmental applications. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Graphical abstract

35 pages, 1628 KB  
Review
Feed Additives in Aquaculture: Benefits, Risks, and the Need for Robust Regulatory Frameworks
by Ekemini Okon, Matthew Iyobhebhe, Paul Olatunji, Mary Adeleke, Nelson Matekwe and Reuben Okocha
Fishes 2025, 10(9), 471; https://doi.org/10.3390/fishes10090471 - 22 Sep 2025
Viewed by 347
Abstract
Aquaculture currently supplies over half of the world’s fish and relies heavily on feed additives to enhance growth, improve feed efficiency, and increase disease resistance. This review consolidates peer-reviewed studies identified through targeted searches of Web of Science, Scopus, and Google Scholar, focusing [...] Read more.
Aquaculture currently supplies over half of the world’s fish and relies heavily on feed additives to enhance growth, improve feed efficiency, and increase disease resistance. This review consolidates peer-reviewed studies identified through targeted searches of Web of Science, Scopus, and Google Scholar, focusing on aquaculture feed additives. It emphasizes the principal classes of additives employed in finfish and shrimp cultivation, such as natural immunostimulants (including beta-glucans and nucleotides), probiotics, prebiotics, synbiotics, phytogenics, enzymes, and synthetic nutrients. For each, it summarizes their mechanisms of action, commonly reported inclusion rates, production outcomes, environmental risks, and regulatory statuses. Evidence indicates that immunostimulants enhance innate defences (including phagocyte activity and cytokine responses). Probiotics and prebiotics, on the other hand, regulate gut microbiota and barrier function. Phytogenics offer antimicrobial and antioxidant effects, and synthetic additives provide targeted nutrients or functional compounds that support growth and product quality. Where data are available, typical application ranges include probiotics in the order of 104–109 CFU per gram, prebiotics at approximately 2–10 g per kilogram, and pigments or antioxidants (such as astaxanthin) at 50–100 mg per kilogram. Significant gaps exist, notably the absence of species-specific dose–response data for tropical and subtropical aquaculture species, as well as limited experimental evidence regarding additive–additive interactions under commercial rearing conditions. Additional gaps include long-term ecological fate, regional regulatory discrepancies, and species-specific dose–response relationships. It is recommended that mechanistic studies employing omics approaches, standardised dose–response trials, and harmonized risk assessments be conducted to promote the sustainable and evidence-based application of feed additives. Full article
(This article belongs to the Special Issue Advances in Aquaculture Feed Additives)
Show Figures

Graphical abstract

26 pages, 3122 KB  
Review
Biomedical Applications of Humic Substances: From Natural Biopolymers to Therapeutic Agents
by Yana Gvozdeva, Petya Peneva and Plamen Katsarov
Antioxidants 2025, 14(9), 1139; https://doi.org/10.3390/antiox14091139 - 21 Sep 2025
Viewed by 322
Abstract
Humic substances, which include humic acid and fulvic acid, are natural biopolymers formed from the decomposition of organic matter. There is growing interest in them because of their diverse potential in the biomedical field. Their complex structures, rich in various functional groups, provide [...] Read more.
Humic substances, which include humic acid and fulvic acid, are natural biopolymers formed from the decomposition of organic matter. There is growing interest in them because of their diverse potential in the biomedical field. Their complex structures, rich in various functional groups, provide antioxidant, anti-inflammatory, antimicrobial, antiviral, and immunomodulatory properties. Recent studies demonstrate that humic substances can scavenge reactive oxygen species, modulate cytokine production, inhibit viral fusion, promote wound healing, and enhance gut microbiota balance. Humic acid and fulvic acid also exhibit anticancer activity by inducing apoptosis in tumor cells, while protecting healthy tissues from oxidative stress. Furthermore, their chelating capacity underlies detoxifying activity and heavy metal binding effects. Despite promising research, variability in composition and potential cytotoxicity under certain conditions emphasize the need for standardized extraction methods and rigorous preclinical evaluation. This review offers a comprehensive overview of the biological effects of humic substances, exploring the mechanisms behind their actions and their potential biomedical applications. It highlights both the benefits and the limitations associated with their use in drug delivery systems. Full article
Show Figures

Figure 1

27 pages, 1842 KB  
Review
Endophytic and Epiphytic Microorganisms as Biocontrol Agents: Mechanisms, Applications, and Metagenomic Approaches in Tomato Cultivation
by Phathutshedzo Rakhalaru, Beverly Mmakatane Mampholo, Tshifhiwa Paris Mamphogoro and Mapitsi Silvester Thantsha
Molecules 2025, 30(18), 3816; https://doi.org/10.3390/molecules30183816 - 19 Sep 2025
Viewed by 286
Abstract
Tomato (Solanum lycopersicum) is an essential crop worldwide, yet it remains highly vulnerable to severe fungal and bacterial diseases. Traditional chemical-based disease management strategies, aimed at controlling these diseases face increasing scrutiny, due to concerns regarding pathogen resistance, environmental degradation, and [...] Read more.
Tomato (Solanum lycopersicum) is an essential crop worldwide, yet it remains highly vulnerable to severe fungal and bacterial diseases. Traditional chemical-based disease management strategies, aimed at controlling these diseases face increasing scrutiny, due to concerns regarding pathogen resistance, environmental degradation, and potential health risks to humans. This has catalyzed the exploration of sustainable alternatives, with biological control emerging as a viable and promising strategy. Endophytic and epiphytic microorganisms are pivotal as biocontrol agents (BCAs), employing diverse strategies, such as generating antimicrobial substances, enzymes, and volatile organic compounds (VOCs), to suppress pathogen growth and enhance plant health. The efficacy of these antagonistic microorganisms is influenced by the cultivation systems employed, with significant variations observed between soil and hydroponic environments. Factors such as nutrient dynamics and microbial interactions play crucial roles in determining the success of BCAs in these different settings. The advent of metagenomic tools has transformed the landscape of microbial community research, facilitating the identification of functional genes associated with antagonistic activities and the adaptation of these microorganisms to diverse environmental conditions. This review aims to elucidate the potential of endophytic and epiphytic microorganisms in biological control, examining their mechanisms of action, the impact of cultivation systems on their effectiveness, and the application of metagenomics to optimize their use in sustainable disease management strategies for tomato crops. Full article
Show Figures

Figure 1

15 pages, 514 KB  
Review
Population-Level Dynamics and Community-Mediated Resistance to Antimicrobial Peptides
by Theresia Mekdessi, Aracely Devora and Sattar Taheri-Araghi
Biomolecules 2025, 15(9), 1319; https://doi.org/10.3390/biom15091319 - 15 Sep 2025
Viewed by 377
Abstract
Antimicrobial peptides (AMPs) are crucial components of innate immunity and promising leads for new anti-infective therapies, prized for their broad-spectrum activity and membrane-disruptive mechanisms. However, traditional models of antimicrobial action and resistance often focus on single-cell responses or genetically encoded resistance, overlooking the [...] Read more.
Antimicrobial peptides (AMPs) are crucial components of innate immunity and promising leads for new anti-infective therapies, prized for their broad-spectrum activity and membrane-disruptive mechanisms. However, traditional models of antimicrobial action and resistance often focus on single-cell responses or genetically encoded resistance, overlooking the complex collective behaviors of bacteria at the population level. A growing body of evidence indicates that bacterial communities can profoundly influence AMP efficacy through emergent, community-level resistance mechanisms. In this review, we examine how population-level dynamics and interactions enable bacteria to withstand AMPs beyond what is predicted by cell-autonomous models. We first describe the mechanisms of peptide sequestration by bacterial debris, dead cells, outer membrane vesicles, and biofilm matrix polymers, which diminish the concentration of active peptide available to kill neighboring cells. We then analyze how population-level traits—including inoculum effects, phenotypic heterogeneity, and persister subpopulations—shape survival outcomes and promote regrowth after treatment. Cooperative processes such as protease secretion further enhance communal defenses by coordinating or amplifying protective responses. Beyond cataloging these mechanisms, we highlight recent advances in microfluidic tools, single-cell imaging, and biophysical modeling that reveal the spatial and temporal dynamics of AMP action in structured populations. Collectively, these insights show how bacterial communities absorb, neutralize, or delay AMP activity without genetic resistance, with important implications for therapeutic design and the evaluation of AMP efficacy. Full article
Show Figures

Figure 1

25 pages, 957 KB  
Review
The Role of Probiotics in Healing Burns and Skin Wounds; An Integrative Approach in the Context of Regenerative Medicine
by Lenuta Ambrose, Ciprian Adrian Dinu, Gabriela Gurau, Nicoleta-Maricica Maftei, Madalina Nicoleta Matei, Maria-Andrada Hincu, Marius Radu and Mihaela-Cezarina Mehedinti
Life 2025, 15(9), 1434; https://doi.org/10.3390/life15091434 - 12 Sep 2025
Cited by 1 | Viewed by 679
Abstract
In the context of thermal injury, local tissue integrity and systemic homeostasis are compromised, often resulting in delayed healing, infections, and disturbances of the skin and intestinal microbial balance. Despite several reviews addressing probiotics in wound healing, none has specifically focused on their [...] Read more.
In the context of thermal injury, local tissue integrity and systemic homeostasis are compromised, often resulting in delayed healing, infections, and disturbances of the skin and intestinal microbial balance. Despite several reviews addressing probiotics in wound healing, none has specifically focused on their role in thermal injuries and burn-associated pathophysiology. This review uniquely integrates evidence on the gut–skin axis, postbiotic innovations, and regenerative perspectives tailored to burn care. We conducted a critical synthesis of recent preclinical and clinical trials evaluating the use of probiotics and their derivatives to promote tissue regeneration following burn injury. Previous reviews have addressed probiotics in general wound repair, but the present synthesis advances the field by bridging mechanistic insights (immune modulation, angiogenesis, microbiome restoration) with translational evidence in burn patients, offering a framework for personalized regenerative approaches. Based on a structured review of the literature—including in vitro models, animal experiments, and randomized trials with topical, enteral, and systemic administration of probiotic—we identified four main mechanisms of action: modulation of the immune response by balancing cytokines and polarization of T lymphocytes; stimulation of tissue repair by increasing the proliferation of keratinocytes and fibroblasts, increased collagen synthesis, and induction of angiogenesis; direct antimicrobial activity against biofilms and multiresistant pathogens; and the restoration of eubiosis with the improvement of the function of epithelial barriers. While these findings endorse the adjunctive use of probiotics in burn management, large multicenter trials are required to standardize strains, dosages, and formulations before their routine clinical adoption. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

39 pages, 6201 KB  
Review
Unlocking Antimicrobial Peptides from Marine Invertebrates: A Comprehensive Review of Antimicrobial Discovery
by Md. Abu Kawsar, Chengqing Zhao, Fan Mao, Ziniu Yu and Yang Zhang
Antibiotics 2025, 14(9), 924; https://doi.org/10.3390/antibiotics14090924 - 12 Sep 2025
Viewed by 796
Abstract
Unlike other animals, marine invertebrates lack an adaptive immune system and instead rely on innate immunity as their first line of defense. A key component of this innate response is the production of biologically active molecules, particularly antimicrobial peptides (AMPs), which offer promising [...] Read more.
Unlike other animals, marine invertebrates lack an adaptive immune system and instead rely on innate immunity as their first line of defense. A key component of this innate response is the production of biologically active molecules, particularly antimicrobial peptides (AMPs), which offer promising solutions to the escalating global crisis of antimicrobial resistance (AMR). This review comprehensively examines the sources, structural diversity, mechanisms of action, biological functions, and therapeutic potential of AMPs derived from a wide range of marine invertebrate phyla. These evolutionarily conserved peptides exhibit broad-spectrum antibacterial, antifungal, antiviral, antiparasitic, and even anticancer activities. The review also summarizes strategies for AMP isolation and production, ranging from natural extraction to recombinant expression and chemical synthesis, and outlines their potential biotechnological applications. Furthermore, we highlight the transformative role of artificial intelligence (AI) in accelerating AMP discovery, design, and production, including predictive modeling, de novo peptide generation, and optimization workflows. Despite significant progress, challenges remain in large-scale production, pharmacokinetic characterization, and functional validation. Addressing these gaps through integrative omics, structural biology, and AI-driven innovation will be crucial for unlocking the full therapeutic potential of marine invertebrate AMPs in combating infectious diseases and antimicrobial resistance. Full article
(This article belongs to the Special Issue Antimicrobial Bioactives from Invertebrates)
Show Figures

Figure 1

23 pages, 992 KB  
Review
Pharmacological and Therapeutic Potential of Chrysopogon zizanioides (Vetiver): A Comprehensive Review of Its Medicinal Applications and Future Prospects
by Conjeevaram J. Gunasekar, Amin F. Majdalawieh, Imad A. Abu-Yousef and Sham A. Al Refaai
Biomolecules 2025, 15(9), 1312; https://doi.org/10.3390/biom15091312 - 12 Sep 2025
Viewed by 581
Abstract
Chrysopogon zizanioides (Linn.) Nash, commonly known as vetiver, has been an integral component of traditional medicinal systems across India and Asia for centuries. The roots and essential oils of this aromatic grass have been widely utilized for their anti-inflammatory, analgesic, anticancer, antioxidant, antimicrobial, [...] Read more.
Chrysopogon zizanioides (Linn.) Nash, commonly known as vetiver, has been an integral component of traditional medicinal systems across India and Asia for centuries. The roots and essential oils of this aromatic grass have been widely utilized for their anti-inflammatory, analgesic, anticancer, antioxidant, antimicrobial, and wound-healing properties. Recent scientific investigations have provided substantial evidence supporting these traditional claims, revealing a diverse array of bioactive phytochemicals with significant pharmacological potential. Preclinical studies have demonstrated the efficacy of C. zizanioides extracts in mitigating inflammation, alleviating pain, combating microbial infections, and even exhibiting anticancer and antidiabetic effects. This review provides a comprehensive analysis of the current literature on the therapeutic properties of C. zizanioides, summarizing findings from in vitro assays, cell line studies, animal models, and available clinical studies. The bioactive constituents responsible for these pharmacological effects, including essential oil components and isolated fractions, are discussed, along with their proposed mechanisms of action. These mechanisms involve modulation of oxidative stress, inflammatory pathways, microbial proliferation, and pain perception. Additionally, current research limitations, gaps in knowledge, and future directions for investigating medicinal applications of C. zizanioides are explored. Emerging scientific evidence increasingly validates traditional claims regarding the healing properties of this versatile medicinal grass. Full article
(This article belongs to the Special Issue Natural Bioactives as Leading Molecules for Drug Development)
Show Figures

Figure 1

Back to TopTop