Streptomyces as Biofactories: A Bibliometric Analysis of Antibiotic Production Against Staphylococcus aureus
Abstract
1. Introduction
- Map the volume and temporal evolution of publications, as well as the citation index, highlighting growth trends in the field;
- Identify the most relevant journals, countries, institutions, and authors with the greatest influence and international collaboration, providing an overview of collaboration networks;
- Determine the most cited articles and the predominant keywords, highlighting emerging research lines and their respective contributions;
- Discuss the results in light of the growing challenges of bacterial resistance, in order to identify gaps and opportunities for the development of new antimicrobial therapies.
2. Materials and Methods
3. Results
Paper | DOI | Total Citations | TC per Year | Normalized TC |
---|---|---|---|---|
Peterson, E.; Kaur, P. [28], Front. Microbiol. 2018 | 10.3389/fmicb.2018.02928 | 573 | 71.63 | 16.29 |
Dunbar, K.L. et al., [29], Chem. Rev. 2017 | 10.1021/acs.chemrev.6b00697 | 469 | 52.11 | 14.09 |
Smyth, J.E.; Butler, N.M.; Keller, P.A. [30], Nat. Prod. Rep. 2015 | 10.1039/c4np00121d | 433 | 39.36 | 11.69 |
Martens, E.; Demain, A.L. [31], J. Antibiot. 2017 | 10.1038/ja.2017.30 | 319 | 35.44 | 9.58 |
Ashour, A.H. et al. [33], Particuology 2018 | 10.1016/j.partic.2017.12.001 | 241 | 30.13 | 6.85 |
Tang, X.; et al. [34], ACS Chem. Biol. 2015 | 10.1021/acschembio.5b00658 | 183 | 16.64 | 4.94 |
Taylor, S.D.; Palmer, M. [35], Bioorgan. Med. Chem. 2016 | 10.1016/j.bmc.2016.05.052 | 179 | 17.9 | 6.32 |
Allocati, N.; Masulli, M.; Di Ilio, C.; De Laurenzi, V. [36], Cell Death Dis. 2015 | 10.1038/cddis.2014.570 | 169 | 15.36 | 4.56 |
Salem, S.S. et al. [32], Nanomaterials 2020 | 10.3390/nano10102082 | 157 | 26.17 | 8.07 |
Miller, W.R.; Bayer, A.S.; Arias, C.A. [37], Cold Spring Harb. Perspect. Med. 2016 | 10.1101/cshperspect.a026997 | 151 | 15.1 | 5.33 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chan, Y.L.; Chee, C.F.; Tang, S.N.; Tay, S.T. Unveilling genetic profiles and correlations of biofilm-associated genes, quorum sensing, and antibiotic resistance in Staphylococcus aureus isolated from a Malaysian Teaching Hospital. Eur. J. Med. Res. 2024, 29, 246. [Google Scholar] [CrossRef]
- Esposito, S.; Blasi, F.; Curtis, N.; Kaplan, S.; Lazzarotto, T.; Meschiari, M.; Mussini, C.; Peghin, M.; Rodrigo, C.; Vena, A.; et al. New Antibiotics for Staphylococcus aureus Infection: An Update from the World Association of Infectious Diseases and Immunological Disorders (WAidid) and the Italian Society of Anti-Infective Therapy (SITA). Antibiotics 2023, 12, 742. [Google Scholar] [CrossRef] [PubMed]
- Rasquel-Oliveira, F.S.; Ribeiro, J.M.; Martelossi-Cebinelli, G.; Costa, F.B.; Nakazato, G.; Casagrande, R.; Verri, W.A. Staphylococcus aureus in Inflammation and Pain: Update on Pathologic Mechanisms. Pathogens 2025, 14, 185. [Google Scholar] [CrossRef] [PubMed]
- Murray, C.J.L.; Ikuta, K.S.; Sharara, F.; Swetschinski, L.; Aguilar, G.R.; Gray, A.; Han, C.; Bisignano, C.; Rao, P.; Wool, E.; et al. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Röhrig, C.; Huemer, M.; Lorgé, D.; Luterbacher, S.; Phothaworn, P.; Schefer, C.; Sobieraj, A.M.; Zinsli, L.V.; Shambat, S.M.; Leimer, N.; et al. Targeting Hidden Pathogens: Cell-Penetrating Enzybiotics Eradicate Intracellular Drug-Resistant Staphylococcus aureus. mBio 2020, 11, e00209-20. [Google Scholar] [CrossRef]
- Song, F. Antimicrobial Natural Products. Antibiotics 2022, 11, 1765. [Google Scholar] [CrossRef]
- Schlimpert, S.; Elliot, M.A. The Best of Both Worlds—Streptomyces coelicolor and Streptomyces venezuelae as Model Species for Studying Antibiotic Production and Bacterial Multicellular Development. J. Bacteriol. 2023, 205, e0015323. [Google Scholar] [CrossRef]
- Newman, D.J.; Cragg, G.M. Natural Products as Sources of New Drugs over the Nearly Four Decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed]
- Donald, L.; Pipite, A.; Subramani, R.; Owen, J.; Keyzers, R.A.; Taufa, T. Streptomyces: Still the Biggest Producer of New Natural Secondary Metabolites, a Current Perspective. Microbiol. Res. 2022, 13, 418–465. [Google Scholar] [CrossRef]
- Caicedo-Montoya, C.; Manzo-Ruiz, M.; Ríos-Estepa, R. Pan-Genome of the Genus Streptomyces and Prioritization of Biosynthetic Gene Clusters With Potential to Produce Antibiotic Compounds. Front. Microbiol. 2021, 12, 677558. [Google Scholar] [CrossRef]
- Chang, T.-L.; Huang, T.-W.; Wang, Y.-X.; Liu, C.-P.; Kirby, R.; Chu, C.-M.; Huang, C.-H. An Actinobacterial Isolate, Streptomyces sp. YX44, Produces Broad-Spectrum Antibiotics That Strongly Inhibit Staphylococcus aureus. Microorganisms 2021, 9, 630. [Google Scholar] [CrossRef]
- Román-Hurtado, F.; Sánchez-Hidalgo, M.; Martín, J.; Ortiz-López, F.J.; Carretero-Molina, D.; Reyes, F.; Genilloud, O. One Pathway, Two Cyclic Non-Ribosomal Pentapeptides: Heterologous Expression of BE-18257 Antibiotics and Pentaminomycins from Streptomyces cacaoi CA-170360. Microorganisms 2021, 9, 135. [Google Scholar] [CrossRef]
- Hoshino, K.; Imai, Y.; Mukai, K.; Hamauzu, R.; Ochi, K.; Hosaka, T. A putative mechanism underlying secondary metabolite overproduction by Streptomyces strains with a 23S rRNA mutation conferring erythromycin resistance. Appl. Microbiol. Biotechnol. 2020, 104, 2193–2203. [Google Scholar] [CrossRef]
- Baltz, R.H. Regulation of daptomycin biosynthesis in Streptomyces roseosporus: New insights from genomic analysis and synthetic biology to accelerate lipopeptide discovery and commercial production. Nat. Prod. Rep. 2024, 41, 1895–1914. [Google Scholar] [CrossRef] [PubMed]
- Opimakh, S. Selman abraham waksman, born in ukraine—An outstanding scientist, a nobel laureate, the discoverer of streptomycin and the modern era of anti-tuberculosis chemotherapy. Ukr. Pulmonol. J. 2023, 31, 65–73. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, X.; Peng, Y.; Su, M.; Zhu, S.; Pan, J.; Shen, B.; Duan, Y.; Huang, Y. Platensimycin-Encapsulated Liposomes or Micelles as Biosafe Nanoantibiotics Exhibited Strong Antibacterial Activities against Methicillin-Resistant Staphylococcus aureus Infection in Mice. Mol. Pharm. 2020, 17, 2451–2462. [Google Scholar] [CrossRef] [PubMed]
- Maiti, P.K.; Das, S.; Sahoo, P.; Mandal, S. Streptomyces sp. SM01 isolated from Indian soil produces a novel antibiotic picolinamycin effective against multi drug resistant bacterial strains. Sci. Rep. 2020, 10, 10092. [Google Scholar] [CrossRef]
- Sagurna, L.; Heinrich, S.; Kaufmann, L.-S.; Rückert-Reed, C.; Busche, T.; Wolf, A.; Eickhoff, J.; Klebl, B.; Kalinowski, J.; Bandow, J.E. Characterization of the Antibacterial Activity of Quinone-Based Compounds Originating from the Alnumycin Biosynthetic Gene Cluster of a Streptomyces Isolate. Antibiotics 2023, 12, 1116. [Google Scholar] [CrossRef]
- Alam, K.; Hao, J.; Zhong, L.; Fan, G.; Ouyang, Q.; Islam, M.; Islam, S.; Sun, H.; Zhang, Y.; Li, R.; et al. Complete genome sequencing and in silico genome mining reveal the promising metabolic potential in Streptomyces strain CS-7. Front. Microbiol. 2022, 13, 939919. [Google Scholar] [CrossRef]
- Matarrita-Carranza, B.; Murillo-Cruz, C.; Avendaño, R.; Ríos, M.I.; Chavarría, M.; Gómez-Calvo, M.L.; Tamayo-Castillo, G.; Araya, J.J.; Pinto-Tomás, A.A. Streptomyces sp. M54: An actinobacteria associated with a neotropical social wasp with high potential for antibiotic production. Antonie Van Leeuwenhoek 2021, 114, 379–398. [Google Scholar] [CrossRef]
- Lee, N.; Kim, W.; Hwang, S.; Lee, Y.; Cho, S.; Palsson, B.; Cho, B.-K. Thirty complete Streptomyces genome sequences for mining novel secondary metabolite biosynthetic gene clusters. Sci. Data 2020, 7, 55. [Google Scholar] [CrossRef]
- Kang, H.-S.; Kim, E.-S. Recent advances in the heterologous expression of biosynthetic gene clusters of natural products in hosts Streptomyces. Curr. Opin. Biotechnol. 2021, 69, 118–127. [Google Scholar] [CrossRef]
- Li, X.; Hu, X.; Sheng, Y.; Wang, H.; Tao, M.; Ou, Y.; Deng, Z.; Bai, L.; Kang, Q. Adaptive Optimization Boosted the Production of Moenomycin A in the Microbial Chassis Streptomyces albus J1074. ACS Synth. Biol. 2021, 10, 2210–2221. [Google Scholar] [CrossRef]
- Sankhwar, R.; Kumar, A.; Yadav, S.; Singh, V.; Gupta, R.K. Purified Emicina-E from Streptomyces sp. RG1011 isolated from Himalayan soil exhibits antibiofilm activity against Staphylococcus aureus. Microb. Pathog. 2023, 182, 106256. [Google Scholar] [CrossRef] [PubMed]
- Aria, M.; Cuccurullo, C. Bibliometrix: Uma ferramenta R para análise abrangente de mapeamento científico. J. Informetr. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Van Eck, N.J.; Waltman, L. Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics 2010, 84, 523–538. [Google Scholar] [CrossRef] [PubMed]
- Pham-Duc, B.; Tran, T.; Le, H.; Nguyen, N.; Cao, H.; Nguyen, T. Research on Industry 4.0 and on key related technologies in Vietnam: A bibliometric analysis using Scopus. Learn. Publ. 2021, 34, 414–428. [Google Scholar] [CrossRef]
- Peterson, E.; Kaur, P. Antibiotic Resistance Mechanisms in Bacteria: Relationships Between Resistance Determinants of Antibiotic Producers, Environmental Bacteria, and Clinical Pathogens. Front. Microbiol. 2018, 9, 2928. [Google Scholar] [CrossRef]
- Dunbar, K.L.; Scharf, D.H.; Litomska, A.; Hertweck, C. Enzymatic Carbon–Sulfur Bond Formation in Natural Product Biosynthesis. Chem. Rev. 2017, 117, 5521–5577. [Google Scholar] [CrossRef]
- Smyth, J.E.; Butler, N.M.; Keller, P.A. A twist of nature—The significance of atropisomers in biological systems. Nat. Prod. Rep. 2015, 32, 1562–1583. [Google Scholar] [CrossRef]
- Martens, E.; Demain, A.L. The antibiotic resistance crisis, with a focus on the United States. J. Antibiot. 2017, 70, 520–526. [Google Scholar] [CrossRef]
- Salem, S.S.; El-Belely, E.F.; Niedbała, G.; Alnoman, M.M.; Hassan, S.E.-D.; Eid, A.M.; Shaheen, T.I.; Elkelish, A.; Fouda, A. Bactericidal and In-Vitro Cytotoxic Efficacy of Silver Nanoparticles (Ag-NPs) Fabricated by Endophytic Actinomycetes and Their Use as Coating for the Textile Fabrics. Nanomaterials 2020, 10, 2082. [Google Scholar] [CrossRef]
- Ashour, A.; El-Batal, A.I.; Maksoud, M.A.; El-Sayyad, G.S.; Labib, S.; Abdeltwab, E.; El-Okr, M. Antimicrobial activity of metal-substituted cobalt ferrite nanoparticles synthesized by sol–gel technique. Particuology 2018, 40, 141–151. [Google Scholar] [CrossRef]
- Tang, X.; Li, J.; Millán-Aguiñaga, N.; Zhang, J.J.; O’nEill, E.C.; Ugalde, J.A.; Jensen, P.R.; Mantovani, S.M.; Moore, B.S. Identification of Thiotetronic Acid Antibiotic Biosynthetic Pathways by Target-directed Genome Mining. ACS Chem. Biol. 2015, 10, 2841–2849. [Google Scholar] [CrossRef] [PubMed]
- Taylor, S.D.; Palmer, M. The action mechanism of daptomycin. Bioorg. Med. Chem. 2016, 24, 6253–6268. [Google Scholar] [CrossRef] [PubMed]
- Allocati, N.; Masulli, M.; Di Ilio, C.; De Laurenzi, V. Die for the community: An overview of programmed cell death in bacteria. Cell Death Dis. 2015, 6, e1609. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R.; Bayer, A.S.; Arias, C.A. Mechanism of Action and Resistance to Daptomycin in Staphylococcus aureus and Enterococci. Cold Spring Harb. Perspect. Med. 2016, 6, a026997. [Google Scholar] [CrossRef]
- Sun, G.; Zhang, Q.; Dong, Z.; Dong, D.; Fang, H.; Wang, C.; Dong, Y.; Wu, J.; Tan, X.; Zhu, P.; et al. Antibiotic resistant bacteria: A bibliometric review of literature. Front. Public Health 2022, 10, 1002015. [Google Scholar] [CrossRef]
- Ouchene, R.; Stien, D.; Segret, J.; Kecha, M.; Rodrigues, A.M.S.; Veckerlé, C.; Suzuki, M.T. Integrated Metabolomic, Molecular Networking, and Genome Mining Analyses Uncover Novel Angucyclines From Streptomyces sp. RO-S4 Strain Isolated From Bejaia Bay, Algeria. Front. Microbiol. 2022, 13, 906161. [Google Scholar] [CrossRef]
- Ikuta, K.S.; Swetschinski, L.R.; Aguilar, G.R.; Sharara, F.; Mestrovic, T.; Gray, A.P.; Weaver, N.D.; Wool, E.E.; Han, C.; Hayoon, A.G.; et al. Global mortality associated with 33 bacterial pathogens in 2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet 2022, 400, 2221–2248. [Google Scholar] [CrossRef]
- Donthu, N.; Kumar, S.; Mukherjee, D.; Pandey, N.; Lim, W.M. How to conduct a bibliometric analysis: An overview and guidelines. J. Bus. Res. 2021, 133, 285–296. [Google Scholar] [CrossRef]
- Fuller, A.A.; Dounay, A.B.; Schirch, D.; Rivera, D.G.; Hansford, K.A.; Elliott, A.G.; Zuegg, J.; Cooper, M.A.; Blaskovich, M.A.T.; Hitchens, J.R.; et al. Multi-Institution Research and Education Collaboration Identifies New Antimicrobial Compounds. ACS Chem. Biol. 2020, 15, 3187–3196. [Google Scholar] [CrossRef] [PubMed]
- Lacret, R.; Oves-Costales, D.; Gómez, C.; Díaz, C.; De la Cruz, M.; Pérez-Victoria, I.; Vicente, F.; Genilloud, O.; Reyes, F. New Ikarugamycin Derivatives with Antifungal and Antibacterial Properties from Streptomyces zhaozhouensis. Mar. Drugs 2014, 13, 128–140. [Google Scholar] [CrossRef]
- Chen, M.; Chai, W.; Zhu, R.; Song, T.; Zhang, Z.; Lian, X.-Y. Streptopyrazinones A−D, rare metabolites from marine-derived Streptomyces sp. ZZ446. Tetrahedron 2018, 74, 2100–2106. [Google Scholar] [CrossRef]
- Polinko, A.D.; Coupland, K. Paradigm shifts in forestry and forest research: A bibliometric analysis. Can. J. For. Res. 2021, 51, 154–162. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, W.; Ding, J.; Liu, Y. Shifting research paradigms in landscape ecology: Insights from bibliometric analysis. Landsc. Ecol. 2025, 40, 63. [Google Scholar] [CrossRef]
- Xu, Z.; Ji, L.; Tang, W.; Guo, L.; Gao, C.; Chen, X.; Liu, J.; Hu, G.; Liu, L. Metabolic engineering of Streptomyces to enhance the synthesis of valuable natural products. Eng. Microbiol. 2022, 2, 100022. [Google Scholar] [CrossRef]
- Procópio, R.E.d.L.; da Silva, I.R.; Martins, M.K.; de Azevedo, J.L.; de Araújo, J.M. Antibiotics produced by Streptomyces. Braz. J. Infect. Dis. 2012, 16, 466–471. [Google Scholar] [CrossRef]
- Feng, X.-L.; Zhang, R.-Q.; Wang, D.-C.; Dong, W.-G.; Wang, Z.-X.; Zhai, Y.-J.; Han, W.-B.; Yin, X.; Tian, J.; Wei, J.; et al. Genomic and Metabolite Profiling Reveal a Novel Streptomyces Strain, QHH-9511, from the Qinghai-Tibet Plateau. Microbiol. Spectr. 2023, 11, e02764-22. [Google Scholar] [CrossRef] [PubMed]
- Dehghanbanadaki, H.; Seif, F.; Vahidi, Y.; Razi, F.; Hashemi, E.; Khoshmirsafa, M.; Aazami, H. Bibliometric analysis of global scientific research on Coronavirus (COVID-19). Med. J. Islam. Repub. Iran 2020, 34, 51. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Yu, J.; Wang, C.; Hua, Y.; Wang, H.; Chen, J. The Deep Mining Era: Genomic, Metabolomic, and Integrative Approaches to Microbial Natural Products from 2018 to 2024. Mar. Drugs 2025, 23, 261. [Google Scholar] [CrossRef] [PubMed]
Description | Value |
---|---|
Original articles and review articles | 755.0 |
Authors | 3705.0 |
Appearances of the author | 4776.0 |
Authors of single-author documents | 10.0 |
Authors of multi-author documents | 746.0 |
Authors per document | 6.32 |
Co-authors per document | 5.32 |
Documents per author | 0.2 |
Order | Country | Total Articles | % Articles | Total Citations | % Citations |
---|---|---|---|---|---|
1 | China | 147 | 21.43 | 2341 | 15.4 |
2 | India | 110 | 16.03 | 1579 | 13.3 |
3 | USA | 60 | 8.75 | 2064 | 45.9 |
4 | Egypt | 47 | 6.85 | 1026 | 25 |
5 | South Korea | 40 | 5.83 | 399 | 17.6 |
6 | Japan | 33 | 4.81 | 475 | 17.6 |
7 | Germany | 26 | 3.79 | 951 | 43.5 |
8 | Spain | 24 | 3.5 | 383 | 23.9 |
9 | Thailand | 20 | 2.92 | 96 | 4.8 |
10 | France | 18 | 2.62 | 120 | 15 |
Order | Author | Institution/Country | Nº of Articles | Nº of Citations |
---|---|---|---|---|
1 | Reyes, F. | Fdn Medina, Ctr Excelencia Invest Medicamentos Innovadores An, Granada 18016/Spain | 14 | 258 |
2 | Zhang, Z.Z. | Zhejiang Univ, Ocean Coll, Zhoushan Campus, Zhoushan 316021/China | 13 | 290 |
3 | Ju, J.H. | Chinese Acad Sci, Cas Key Lab Trop Marine Bioresources & Ecol/China | 12 | 218 |
4 | Li, J. | Shanghai Jiao Tong Univ, Ren Ji Hosp, Res Ctr Marine Drugs, Dept Pharm, State Key Lab Oncogenes & Related Genes, Sch Med/China | 11 | 361 |
5 | Lian, X.Y. | Zhejiang Univ, Ocean Coll, Zhoushan Campus, Zhoushan 316021/China | 11 | 242 |
6 | Lee, J. | Seoul Natl Univ, Coll Agr & Life Sci, Dept Agr Biotechnol, Seoul 08826/South Korea | 10 | 116 |
7 | Genilloud, O. | Fdn Medina, Ctr Excelencia Invest Medicamentos Innovadores An, Granada 18016/Spain | 9 | 184 |
8 | Li, Q.L. | Chinese Acad Sci, Cas Key Lab Trop Marine Bioresources & Ecol/China | 9 | 125 |
9 | Martín, J. | Fdn Medina, Ctr Excelencia Invest Medicamentos Innovadores An, Granada 18016/Spain | 9 | 154 |
10 | Vicente, F. | Fdn Medina, Ctr Excelencia Invest Medicamentos Innovadores An, Granada 18016/Spain | 9 | 221 |
Affiliation | Country | Articles |
---|---|---|
Egyptian Knowledge Bank (EKB) | Egypt | 121 |
Chinese Academy of Sciences | China | 78 |
Zhejiang University | China | 38 |
Kitasato University | Japan | 29 |
Seoul National University (SNU) | South Korea | 26 |
Sathyabama Institute of Science and Technology | India | 25 |
Centre National de La Recherche Scientifique (CNRS) | France | 24 |
Council of Scientific and Industrial Research (CSIR)—INDIA | India | 24 |
University of Chinese Academy of Sciences (CAS) | China | 24 |
University of California System | United States | 21 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cardoso, P.P.; Vasconcelos, K.B.P.; Pereira, S.R.; Cardoso, R.S.; de Souza, R.C.; Nogueira, L.F.d.S.; Bentes, S.F.d.S.; de Almeida, V.G.; da Silva, S.K.R. Streptomyces as Biofactories: A Bibliometric Analysis of Antibiotic Production Against Staphylococcus aureus. Antibiotics 2025, 14, 983. https://doi.org/10.3390/antibiotics14100983
Cardoso PP, Vasconcelos KBP, Pereira SR, Cardoso RS, de Souza RC, Nogueira LFdS, Bentes SFdS, de Almeida VG, da Silva SKR. Streptomyces as Biofactories: A Bibliometric Analysis of Antibiotic Production Against Staphylococcus aureus. Antibiotics. 2025; 14(10):983. https://doi.org/10.3390/antibiotics14100983
Chicago/Turabian StyleCardoso, Pablício Pereira, Kamila Brielle Pantoja Vasconcelos, Sámia Rocha Pereira, Rafael Silva Cardoso, Ramillys Carvalho de Souza, Lucas Francisco da Silva Nogueira, Suelen Fabrícia dos Santos Bentes, Vivaldo Gemaque de Almeida, and Silvia Katrine Rabelo da Silva. 2025. "Streptomyces as Biofactories: A Bibliometric Analysis of Antibiotic Production Against Staphylococcus aureus" Antibiotics 14, no. 10: 983. https://doi.org/10.3390/antibiotics14100983
APA StyleCardoso, P. P., Vasconcelos, K. B. P., Pereira, S. R., Cardoso, R. S., de Souza, R. C., Nogueira, L. F. d. S., Bentes, S. F. d. S., de Almeida, V. G., & da Silva, S. K. R. (2025). Streptomyces as Biofactories: A Bibliometric Analysis of Antibiotic Production Against Staphylococcus aureus. Antibiotics, 14(10), 983. https://doi.org/10.3390/antibiotics14100983