Antimicrobial and Anti-Inflammatory Bioactive Peptides: Their Role in Potential Therapeutic Applications for Periodontitis—A Narrative Review
Abstract
1. Introduction
2. Methodology: Inclusion and Exclusion Criteria
3. Insights into Periodontal Disease: Diagnosis and Molecular Biomarkers
3.1. Diagnosis of Periodontal Diseases
3.2. Endogenous Peptides Acting as Markers of Periodontitis Pathogenesis
3.3. Periodontal Therapy
4. Bioactive Peptides in the Management of Chronic Diseases
4.1. Anti-Inflammatory Peptides (AIPs)
4.2. Antimicrobial Peptides (AMPs)
4.3. AMP and AIP Peptides in Periodontal Diseases and DM
4.3.1. In Vitro Studies on the Effects of BPs on Periodontal Diseases
4.3.2. In Vivo Studies on the Effects of BPs on Periodontal Diseases
4.3.3. Clinical Trials on the Effects of BPs on Periodontal Diseases
4.3.4. Effects of Bioactive Peptides on Risk Factors for Periodontal Diseases
5. Future Directions for Bioactive Peptides in the Management of Periodontal Disease and DM
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Zaky, A.A.; Simal-Gandara, J.; Eun, J.B.; Shim, J.H.; Abd El-Aty, A.M. Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides From Food and By-Products: A Review. Front. Nutr. 2022, 8, 815640. [Google Scholar] [CrossRef]
- Du, Z.; Li, Y. Review and Perspective on Bioactive Peptides: A Roadmap for Research, Development, and Future Opportunities. J. Agric. Food Res. 2022, 9, 100353. [Google Scholar] [CrossRef]
- Sánchez, A. Alfredo Vázquez Bioactive Peptides: A Review. Food Qual. Safety 2017, 1, 29–46. [Google Scholar] [CrossRef]
- Manzoor, M.; Singh, J.; Gani, A. Exploration of Bioactive Peptides from Various Origin as Promising Nutraceutical Treasures: In Vitro, In Silico and In Vivo Studies. Food Chem. 2022, 373, 131395. [Google Scholar] [CrossRef] [PubMed]
- Akbarian, M.; Khani, A.; Eghbalpour, S.; Uversky, V.N. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int. J. Mol. Sci. 2022, 23, 1445. [Google Scholar] [CrossRef] [PubMed]
- Colombo, R.; Pellicorio, V.; Barberis, M.; Frosi, I.; Papetti, A. Recent Advances in the Valorization of Seed Wastes as Source of Bioactive Peptides with Multifunctional Properties. Trends Food Sci. Technol. 2024, 144, 104322. [Google Scholar] [CrossRef]
- Minkiewicz, P.; Iwaniak, A.; Darewicz, M. BIOPEP-UWM Virtual—A Novel Database of Food-Derived Peptides with In Silico-Predicted Biological Activity. Appl. Sci. 2022, 12, 7204. [Google Scholar] [CrossRef]
- Dadar, M.; Shahali, Y.; Chakraborty, S.; Prasad, M.; Tahoori, F.; Tiwari, R.; Dhama, K. Antiinflammatory Peptides: Current Knowledge and Promising Prospects. Inflamm. Res. 2019, 68, 125–145. [Google Scholar] [CrossRef]
- de Medeiros, A.F.; de Queiroz, J.L.C.; Maciel, B.L.L.; de Araújo Morais, A.H. Hydrolyzed Proteins and Vegetable Peptides: Anti-Inflammatory Mechanisms in Obesity and Potential Therapeutic Targets. Nutrients 2022, 14, 690. [Google Scholar] [CrossRef]
- Silva, J.D.; Leal, E.C.; Carvalho, E. Bioactive Antimicrobial Peptides as Therapeutic Agents for Infected Diabetic Foot Ulcers. Biomolecules 2021, 11, 1894. [Google Scholar] [CrossRef]
- Luong, A.D.; Buzid, A.; Luong, J.H.T. Important Roles and Potential Uses of Natural and Synthetic Antimicrobial Peptides (AMPs) in Oral Diseases: Cavity, Periodontal Disease, and Thrush. J. Funct. Biomater. 2022, 13, 175. [Google Scholar] [CrossRef]
- Martini, S.; Tagliazucchi, D. Bioactive Peptides in Human Health and Disease. Int. J. Mol. Sci. 2023, 24, 5837. [Google Scholar] [CrossRef]
- Zhao, L.; Li, D.; Qi, X.; Guan, K.; Chen, H.; Wang, R.; Ma, Y. Potential of Food-Derived Bioactive Peptides in Alleviation and Prevention of Alzheimer’s Disease. Food Funct. 2022, 13, 10851–10869. [Google Scholar] [CrossRef] [PubMed]
- Wei, M.; Wu, T.; Chen, N. Bridging Neurotrophic Factors and Bioactive Peptides to Alzheimer’s Disease. Ageing Res. Rev. 2024, 94, 102177. [Google Scholar] [CrossRef]
- Cruz-Chamorro, I.; Santos-Sánchez, G.; Bollati, C.; Bartolomei, M.; Capriotti, A.L.; Cerrato, A.; Laganà, A.; Pedroche, J.; Millán, F.; del Carmen Millán-Linares, M.; et al. Chemical and Biological Characterization of the DPP-IV Inhibitory Activity Exerted by Lupin (Lupinus angustifolius) Peptides: From the Bench to the Bedside Investigation. Food Chem. 2023, 426, 136458. [Google Scholar] [CrossRef]
- Ganguly, A.; Sharma, K.; Majumder, K. Food-Derived Bioactive Peptides and Their Role in Ameliorating Hypertension and Associated Cardiovascular Diseases. Adv. Food Nutr. Res. 2019, 89, 165–207. [Google Scholar] [CrossRef]
- Gorr, S.U.; Abdolhosseini, M. Antimicrobial Peptides and Periodontal Disease. J. Clin. Periodontol. 2011, 38, 126–141. [Google Scholar] [CrossRef] [PubMed]
- Aslam, M.Z.; Firdos, S.; Li, Z.; Wang, X.; Liu, Y.; Qin, X.; Yang, S.; Ma, Y.; Xia, X.; Zhang, B.; et al. Detecting the Mechanism of Action of Antimicrobial Peptides by Using Microscopic Detection Techniques. Foods 2022, 11, 2809. [Google Scholar] [CrossRef] [PubMed]
- Mark Bartold, P.; Van Dyke, T.E. Periodontitis: A Host-Mediated Disruption of Microbial Homeostasis. Unlearning Learned Concepts. Periodontol 2000 2013, 62, 203–217. [Google Scholar] [CrossRef]
- Budala, D.G.; Martu, M.-A.; Maftei, G.-A.; Diaconu-Popa, D.A.; Danila, V.; Luchian, I. The Role of Natural Compounds in Optimizing Contemporary Dental Treatment—Current Status and Future Trends. J. Funct. Biomater. 2023, 14, 273. [Google Scholar] [CrossRef]
- Baeza, M.; Morales, A.; Cisterna, C.; Cavalla, F.; Jara, G.; Isamitt, Y.; Pino, P.; Gamonal, J. Effect of Periodontal Treatment in Patients with Periodontitis and Diabetes: Systematic Review and Meta-Analysis. J. Appl. Oral Sci. 2020, 28, e20190248. [Google Scholar] [CrossRef]
- Chapple, I.L.C.; Mealey, B.L.; Van Dyke, T.E.; Bartold, P.M.; Dommisch, H.; Eickholz, P.; Geisinger, M.L.; Genco, R.J.; Glogauer, M.; Goldstein, M.; et al. Periodontal Health and Gingival Diseases and Conditions on an Intact and a Reduced Periodontium: Consensus Report of Workgroup 1 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions. J. Periodontol. 2018, 89, S74–S84. [Google Scholar] [CrossRef] [PubMed]
- Kinane, D.F.; Stathopoulou, P.G.; Papapanou, P.N. Periodontal Diseases. Nat. Rev. Dis. Primers 2017, 3, 17038. [Google Scholar] [CrossRef] [PubMed]
- Heitz-Mayfield, L.J.A. Conventional Diagnostic Criteria for Periodontal Diseases (Plaque-induced Gingivitis and Periodontitis). Periodontol 2000 2024, 95, 10–19. [Google Scholar] [CrossRef] [PubMed]
- Abusleme, L.; Hoare, A.; Hong, B.; Diaz, P.I. Microbial Signatures of Health, Gingivitis, and Periodontitis. Periodontol 2000 2021, 86, 57–78. [Google Scholar] [CrossRef]
- Usui, M.; Onizuka, S.; Sato, T.; Kokabu, S.; Ariyoshi, W.; Nakashima, K. Mechanism of Alveolar Bone Destruction in Periodontitis—Periodontal Bacteria and Inflammation. Jpn. Dent. Sci. Rev. 2021, 57, 201–208. [Google Scholar] [CrossRef]
- Belibasakis, G.N.; Belstrøm, D.; Eick, S.; Gursoy, U.K.; Johansson, A.; Könönen, E. Periodontal Microbiology and Microbial Etiology of Periodontal Diseases: Historical Concepts and Contemporary Perspectives. Periodontol 2000 2023, 1–17. [Google Scholar] [CrossRef]
- Nascimento, G.G.; Alves-Costa, S.; Romandini, M. Burden of Severe Periodontitis and Edentulism in 2021, with Projections up to 2050: The Global Burden of Disease 2021 Study. J. Periodontal. Res. 2024, 59, 823–867. [Google Scholar] [CrossRef]
- Trindade, D.; Carvalho, R.; Machado, V.; Chambrone, L.; Mendes, J.J.; Botelho, J. Prevalence of Periodontitis in Dentate People between 2011 and 2020: A Systematic Review and Meta-Analysis of Epidemiological Studies. J. Clin. Periodontol. 2023, 50, 604–626. [Google Scholar] [CrossRef]
- Valverde, A.; George, A.; Nares, S.; Naqvi, A.R. Emerging Therapeutic Strategies Targeting Bone Signaling Pathways in Periodontitis. J. Periodontal Res. 2025, 60, 101–120. [Google Scholar] [CrossRef]
- Monti, F.; Perazza, F.; Leoni, L.; Stefanini, B.; Ferri, S.; Tovoli, F.; Zavatta, G.; Piscaglia, F.; Petroni, M.L.; Ravaioli, F. RANK–RANKL–OPG Axis in MASLD: Current Evidence Linking Bone and Liver Diseases and Future Perspectives. Int. J. Mol. Sci. 2024, 25, 9193. [Google Scholar] [CrossRef]
- Ru, L.; Pan, B.; Zheng, J. Signalling Pathways in the Osteogenic Differentiation of Periodontal Ligament Stem Cells. Open Life Sci. 2023, 18, 20220706. [Google Scholar] [CrossRef] [PubMed]
- Cirelli, T.; Nicchio, I.G.; Bussaneli, D.G.; Silva, B.R.; Nepomuceno, R.; Orrico, S.R.P.; Cirelli, J.A.; Theodoro, L.H.; Barros, S.P.; Scarel-Caminaga, R.M. Evidence Linking PPARG Genetic Variants with Periodontitis and Type 2 Diabetes Mellitus in a Brazilian Population. Int. J. Mol. Sci. 2023, 24, 6760. [Google Scholar] [CrossRef]
- Cirelli, T.; Nepomuceno, R.; Rios, A.C.S.; Orrico, S.R.P.; Cirelli, J.A.; Theodoro, L.H.; Barros, S.P.; Scarel-Caminaga, R.M. Genetic Polymorphisms in the Interleukins IL1B, IL4, and IL6 Are Associated with Concomitant Periodontitis and Type 2 Diabetes Mellitus in Brazilian Patients. J. Periodontal Res. 2020, 55, 918–930. [Google Scholar] [CrossRef]
- Cirelli, T.; Nepomuceno, R.; Goveia, J.M.; Orrico, S.R.P.; Cirelli, J.A.; Theodoro, L.H.; Barros, S.P.; Scarel-Caminaga, R.M. Association of Type 2 Diabetes Mellitus and Periodontal Disease Susceptibility with Genome-Wide Association–Identified Risk Variants in a Southeastern Brazilian Population. Clin. Oral. Investig. 2021, 25, 3873–3892. [Google Scholar] [CrossRef] [PubMed]
- Wu, K.C.H.; Liu, L.; Xu, A.; Chan, Y.H.; Cheung, B.M.Y. Shared Genetic Architecture between Periodontal Disease and Type 2 Diabetes: A Large Scale Genome-Wide Cross-Trait Analysis. Endocrine 2024, 85, 685–694. [Google Scholar] [CrossRef]
- Loos, B.G.; Van Dyke, T.E. The Role of Inflammation and Genetics in Periodontal Disease. Periodontol 2000 2020, 83, 26–39. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Schmalz, G.; Schmidt, J.; Krause, F.; Haak, R.; Ziebolz, D. Antimicrobial Peptides as a Possible Interlink between Periodontal Diseases and Its Risk Factors: A Systematic Review. J. Periodontal. Res. 2018, 53, 145–155. [Google Scholar] [CrossRef]
- Güncü, G.N.; Yilmaz, D.; Könönen, E.; Gürsoy, U.K. Salivary Antimicrobial Peptides in Early Detection of Periodontitis. Front. Cell Infect. Microbiol. 2015, 5, 99. [Google Scholar] [CrossRef]
- Schulz, S.; Stein, J.M.; Schumacher, A.; Kupietz, D.; Yekta-Michael, S.S.; Schittenhelm, F.; Conrads, G.; Schaller, H.-G.; Reichert, S. Nonsurgical Periodontal Treatment Options and Their Impact on Subgingival Microbiota. J. Clin. Med. 2022, 11, 1187. [Google Scholar] [CrossRef]
- Graziani, F.; Karapetsa, D.; Alonso, B.; Herrera, D. Nonsurgical and Surgical Treatment of Periodontitis: How Many Options for One Disease? Periodontol 2000 2017, 75, 152–188. [Google Scholar] [CrossRef]
- da Silva-Junior, P.G.B.; Abreu, L.G.; Costa, F.O.; Cota, L.O.M.; Esteves-Lima, R.P. The Effect of Antimicrobial Photodynamic Therapy Adjunct to Non-Surgical Periodontal Therapy on the Treatment of Periodontitis in Individuals with Type 2 Diabetes Mellitus: A Systematic Review and Meta-Analysis. Photodiagnosis Photodyn. Ther. 2023, 42, 103573. [Google Scholar] [CrossRef]
- Salvi, G.E.; Stähli, A.; Schmidt, J.C.; Ramseier, C.A.; Sculean, A.; Walter, C. Adjunctive Laser or Antimicrobial Photodynamic Therapy to Non-surgical Mechanical Instrumentation in Patients with Untreated Periodontitis: A Systematic Review and Meta-analysis. J. Clin. Periodontol. 2020, 47, 176–198. [Google Scholar] [CrossRef]
- Li, N.; Xie, L.; Wu, Y.; Wu, Y.; Liu, Y.; Gao, Y.; Yang, J.; Zhang, X.; Jiang, L. Dexamethasone-Loaded Zeolitic Imidazolate Frameworks Nanocomposite Hydrogel with Antibacterial and Anti-Inflammatory Effects for Periodontitis Treatment. Mater. Today Bio 2022, 16, 100360. [Google Scholar] [CrossRef]
- Silva, R.C.L.; Sasso-Cerri, E.; Cerri, P.S. Diacerein-induced Interleukin-1β Deficiency Reduces the Inflammatory Infiltrate and Immunoexpression of Matrix Metalloproteinase-8 in Periodontitis in Rat Molars. J. Periodontol. 2022, 93, 1540–1552. [Google Scholar] [CrossRef]
- Jain, P.; Mirza, M.A.; Talegaonkar, S.; Nandy, S.; Dudeja, M.; Sharma, N.; Anwer, M.K.; Alshahrani, S.M.; Iqbal, Z. Design and in Vitro/in Vivo Evaluations of a Multiple-Drug-Containing Gingiva Disc for Periodontotherapy. RSC Adv. 2020, 10, 8530–8538. [Google Scholar] [CrossRef] [PubMed]
- Ramirez-Peña, A.M.; Sánchez-Pérez, A.; Campos-Aranda, M.; Hidalgo-Tallón, F.J. Ozone in Patients with Periodontitis: A Clinical and Microbiological Study. J. Clin. Med. 2022, 11, 2946. [Google Scholar] [CrossRef] [PubMed]
- D′Ambrosio, F.; Caggiano, M.; Acerra, A.; Pisano, M.; Giordano, F. Is Ozone a Valid Adjuvant Therapy for Periodontitis and Peri-Implantitis? A Systematic Review. J. Pers. Med. 2023, 13, 646. [Google Scholar] [CrossRef] [PubMed]
- Uraz, A.; Karaduman, B.; Isler, S.Ç.; Gönen, S.; Çetiner, D. Ozone Application as Adjunctive Therapy in Chronic Periodontitis: Clinical, Microbiological and Biochemical Aspects. J. Dent. Sci. 2019, 14, 27–37. [Google Scholar] [CrossRef]
- Terby, S.; Shereef, M.; Ramanarayanan, V.; Balakrishnan, B. The Effect of Curcumin as an Adjunct in the Treatment of Chronic Periodontitis: A Systematic Review and Meta-Analysis. Saudi Dent. J. 2021, 33, 375–385. [Google Scholar] [CrossRef]
- Mohammad, C.A.; Ali, K.M.; Sha, A.M.; Gul, S.S. Antioxidant Effects of Curcumin Gel in Experimental Induced Diabetes and Periodontitis in Rats. Biomed. Res. Int. 2022, 2022, 7278064. [Google Scholar] [CrossRef]
- Hurjui, I.; Delianu, C.; Liliana, H.L.; Raluca, J.; Mihaela, M.; Carina, B.; Oana, A.A.; Alexandra, M.M.; Irina, G. Platelet Derivatives with Dental Medicine Applications. Rom. J. Oral. Rehabil. 2020, 12, 142–152. [Google Scholar]
- Serhan, C.N.; Savill, J. Resolution of Inflammation: The Beginning Programs the End. Nat. Immunol. 2005, 6, 1191–1197. [Google Scholar] [CrossRef]
- Biji, C.A.; Balde, A.; Nazeer, R.A. Anti-Inflammatory Peptide Therapeutics and the Role of Sulphur Containing Amino Acids (Cysteine and Methionine) in Inflammation Suppression: A Review. Inflamm. Res. 2024, 73, 1203–1221. [Google Scholar] [CrossRef]
- Guha, S.; Majumder, K. Structural-Features of Food-Derived Bioactive Peptides with Anti-Inflammatory Activity: A Brief Review. J. Food Biochem. 2019, 43, e12531. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, X.; Zhang, X.-L.; Xie, Q.-F. Purification and Identification of Anti-Inflammatory Peptides Derived from Simulated Gastrointestinal Digests of Velvet Antler Protein (Cervus Elaphus Linnaeus). J. Food Drug Anal. 2016, 24, 376–384. [Google Scholar] [CrossRef]
- Chakrabarti, S.; Wu, J. Milk-Derived Tripeptides IPP (Ile-Pro-Pro) and VPP (Val-Pro-Pro) Promote Adipocyte Differentiation and Inhibit Inflammation in 3T3-F442A Cells. PLoS ONE 2015, 10, e0117492. [Google Scholar] [CrossRef]
- Rivera-Jiménez, J.; Berraquero-García, C.; Pérez-Gálvez, R.; García-Moreno, P.J.; Espejo-Carpio, F.J.; Guadix, A.; Guadix, E.M. Peptides and Protein Hydrolysates Exhibiting Anti-Inflammatory Activity: Sources, Structural Features and Modulation Mechanisms. Food Funct. 2022, 13, 12510–12540. [Google Scholar] [CrossRef] [PubMed]
- Jiehui, Z.; Liuliu, M.; Haihong, X.; Yang, G.; Yingkai, J.; Lun, Z.; An Li, D.X.; Dongsheng, Z.; Shaohui, Z. Immunomodulating Effects of Casein-Derived Peptides QEPVL and QEPV on Lymphocytes in Vitro and in Vivo. Food Funct. 2014, 5, 2061–2069. [Google Scholar] [CrossRef] [PubMed]
- Tonolo, F.; Folda, A.; Scalcon, V.; Marin, O.; Bindoli, A.; Rigobello, M.P. Nrf2-Activating Bioactive Peptides Exert Anti-Inflammatory Activity through Inhibition of the NF-ΚB Pathway. Int. J. Mol. Sci. 2022, 23, 4382. [Google Scholar] [CrossRef]
- Bamdad, F.; Shin, S.H.; Suh, J.-W.; Nimalaratne, C.; Sunwoo, H. Anti-Inflammatory and Antioxidant Properties of Casein Hydrolysate Produced Using High Hydrostatic Pressure Combined with Proteolytic Enzymes. Molecules 2017, 22, 609. [Google Scholar] [CrossRef] [PubMed]
- Baird, L.; Dinkova-Kostova, A.T. The Cytoprotective Role of the Keap1–Nrf2 Pathway. Arch. Toxicol. 2011, 85, 241–272. [Google Scholar] [CrossRef]
- Tonolo, F.; Coletta, S.; Fiorese, F.; Grinzato, A.; Albanesi, M.; Folda, A.; Ferro, S.; De Mario, A.; Piazza, I.; Mammucari, C.; et al. Sunflower Seed-Derived Bioactive Peptides Show Antioxidant and Anti-Inflammatory Activity: From in Silico Simulation to the Animal Model. Food Chem. 2024, 439, 138124. [Google Scholar] [CrossRef] [PubMed]
- Chidike Ezeorba, T.P.; Ezugwu, A.L.; Chukwuma, I.F.; Anaduaka, E.G.; Udenigwe, C.C. Health-Promoting Properties of Bioactive Proteins and Peptides of Garlic (Allium Sativum). Food Chem. 2024, 435, 137632. [Google Scholar] [CrossRef]
- Fan, H.; Bhullar, K.S.; Wang, Z.; Wu, J. Chicken Muscle Protein-Derived Peptide VVHPKESF Reduces TNFα-Induced Inflammation and Oxidative Stress by Suppressing TNFR1 Signaling in Human Vascular Endothelial Cells. Mol. Nutr. Food Res. 2022, 66, 2200184. [Google Scholar] [CrossRef]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.S.; Yang, H.; Sun, L. Antimicrobial Peptides for Combating Drug-Resistant Bacterial Infections. Drug Resist. Updates 2023, 68, 100954. [Google Scholar]
- Govindarajan, D.K.; Kandaswamy, K. Antimicrobial Peptides: A Small Molecule for Sustainable Healthcare Applications. Med. Microecol. 2023, 18, 100090. [Google Scholar] [CrossRef]
- Moretta, A.; Scieuzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; et al. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. Front. Cell Infect. Microbiol. 2021, 11, 668632. [Google Scholar]
- Liang, Q.; Liu, Z.; Liang, Z.; Zhu, C.; Li, D.; Kong, Q.; Mou, H. Development Strategies and Application of Antimicrobial Peptides as Future Alternatives to In-Feed Antibiotics. Sci. Total Environ. 2024, 927, 172150. [Google Scholar]
- Assoni, L.; Milani, B.; Carvalho, M.R.; Nepomuceno, L.N.; Waz, N.T.; Guerra, M.E.S.; Converso, T.R.; Darrieux, M. Resistance Mechanisms to Antimicrobial Peptides in Gram-Positive Bacteria. Front. Microbiol. 2020, 11, 593215. [Google Scholar] [CrossRef]
- Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Laboratory and Beyond. Front. Chem. 2021, 9, 691532. [Google Scholar] [CrossRef]
- Brogden, K.A. Antimicrobial Peptides: Pore Formers or Metabolic Inhibitors in Bacteria? Nat. Rev. Microbiol. 2005, 3, 238–250. [Google Scholar] [CrossRef]
- Bechinger, B.; Gorr, S.U. Antimicrobial Peptides: Mechanisms of Action and Resistance. J. Dent. Res. 2017, 96, 254–260. [Google Scholar] [CrossRef] [PubMed]
- Simons, A.; Alhanout, K.; Duval, R.E. Bacteriocins, Antimicrobial Peptides from Bacterial Origin: Overview of Their Biology and Their Impact against Multidrug-Resistant Bacteria. Microorganisms 2020, 8, 639. [Google Scholar] [CrossRef]
- Grassi, L.; Maisetta, G.; Esin, S.; Batoni, G. Combination Strategies to Enhance the Efficacy of Antimicrobial Peptides against Bacterial Biofilms. Front. Microbiol. 2017, 8, 2409. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Song, Y. Mechanism of Antimicrobial Peptides: Antimicrobial, Anti-Inflammatory and Antibiofilm Activities. Int. J. Mol. Sci. 2021, 22, 11401. [Google Scholar] [CrossRef] [PubMed]
- León Madrazo, A.; Quintana Owen, P.; Pérez Mendoza, G.; Segura Campos, M.R. Chia Derived Peptides Affecting Bacterial Membrane and DNA: Insights from Staphylococcus Aureus and Escherichia Coli Studies. Plant Foods Hum. Nutr. 2025, 80, 22. [Google Scholar] [CrossRef] [PubMed]
- Shivanna, S.K.; Nataraj, B.H. Revisiting Therapeutic and Toxicological Fingerprints of Milk-Derived Bioactive Peptides: An Overview. Food Biosci. 2020, 38, 100771. [Google Scholar] [CrossRef]
- Kulyar, M.F.-A.; Yao, W.; Ding, Y.; Li, K.; Zhang, L.; Li, A.; Waqas, M.; Huachun, P.; Quan, M.; Zeng, Z.; et al. Bioactive Potential of Yak’s Milk and Its Products; Pathophysiological and Molecular Role as an Immune Booster in Antibiotic Resistance. Food Biosci. 2021, 39, 100838. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Wang, Z. APD3: The Antimicrobial Peptide Database as a Tool for Research and Education. Nucleic Acids Res. 2016, 44, D1087–D1093. [Google Scholar] [CrossRef]
- Segura-Campos, M.R.; Salazar-Vega, I.M.; Chel-Guerrero, L.A.; Betancur-Ancona, D.A. Biological Potential of Chia (Salvia hispanica L.) Protein Hydrolysates and Their Incorporation into Functional Foods. LWT 2013, 50, 723–731. [Google Scholar] [CrossRef]
- Abadía-García, L.; Cardador, A.; Martín del Campo, S.T.; Arvízu, S.M.; Castaño-Tostado, E.; Regalado-González, C.; García-Almendarez, B.; Amaya-Llano, S.L. Influence of Probiotic Strains Added to Cottage Cheese on Generation of Potentially Antioxidant Peptides, Anti-Listerial Activity, and Survival of Probiotic Microorganisms in Simulated Gastrointestinal Conditions. Int. Dairy. J. 2013, 33, 191–197. [Google Scholar] [CrossRef]
- Wang, G.; Vaisman, I.I.; van Hoek, M.L. Machine Learning Prediction of Antimicrobial Peptides. Methods Mol. Biol. 2022, 2405, 1–37. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Li, T.; Ren, X.; Luo, X.; Wang, Z.; Li, Z.; Luo, X.; Shen, J.; Li, Y.; Yuan, D.; Nussinov, R.; et al. A Foundation Model Identifies Broad-Spectrum Antimicrobial Peptides against Drug-Resistant Bacterial Infection. Nat. Commun. 2024, 15, 7538. [Google Scholar] [CrossRef]
- Asif, F.; Zaman, S.U.; Arnab, M.K.H.; Hasan, M.; Islam, M.M. Antimicrobial Peptides as Therapeutics: Confronting Delivery Challenges to Optimize Efficacy. Microbe 2024, 2, 100051. [Google Scholar] [CrossRef]
- Körtvélyessy, G.; Tarjányi, T.; Baráth, Z.L.; Minarovits, J.; Tóth, Z. Bioactive Coatings for Dental Implants: A Review of Alternative Strategies to Prevent Peri-Implantitis Induced by Anaerobic Bacteria. Anaerobe 2021, 70, 102404. [Google Scholar] [CrossRef]
- Ferrazzano, G.F.; D’Ambrosio, F.; Caruso, S.; Gatto, R.; Caruso, S. Bioactive Peptides Derived from Edible Insects: Effects on Human Health and Possible Applications in Dentistry. Nutrients 2023, 15, 4611. [Google Scholar] [CrossRef]
- Hardan, L.; Chedid, J.C.A.; Bourgi, R.; Cuevas-Suárez, C.E.; Lukomska-Szymanska, M.; Tosco, V.; Monjarás-Ávila, A.J.; Jabra, M.; Salloum-Yared, F.; Kharouf, N.; et al. Peptides in Dentistry: A Scoping Review. Bioengineering 2023, 10, 214. [Google Scholar] [CrossRef]
- Czarnowski, M.; Wnorowska, U.; Łuckiewicz, M.; Dargiewicz, E.; Spałek, J.; Okła, S.; Sawczuk, B.; Savage, P.B.; Bucki, R.; Piktel, E. Natural Antimicrobial Peptides and Their Synthetic Analogues for Effective Oral Microflora Control and Oral Infection Treatment—The Role of Ceragenins in the Development of New Therapeutic Methods. Pharmaceuticals 2024, 17, 1725. [Google Scholar] [CrossRef]
- Zhang, C.; Han, Y.; Miao, L.; Yue, Z.; Xu, M.; Liu, K.; Hou, J. Human Β-defensins Are Correlated with the Immune Infiltration and Regulated by Vitamin D3 in Periodontitis. J. Periodontal Res. 2023, 58, 986–996. [Google Scholar] [CrossRef]
- Zhao, M.; Xie, Y.; Gao, W.; Li, C.; Ye, Q.; Li, Y. Diabetes Mellitus Promotes Susceptibility to Periodontitis—Novel Insight into the Molecular Mechanisms. Front. Endocrinol. 2023, 14, 1192625. [Google Scholar] [CrossRef]
- Altalhi, A.M.; AlNajdi, L.N.; Al-Harbi, S.G.; Aldohailan, A.M.; Al-Ghadeer, J.Y.; Al-Bahrani, J.I.; Al-Gahnem, Z.J.; Alenezi, A.H.; Al-Majid, A. Laser Therapy Versus Traditional Scaling and Root Planing: A Comparative Review. Cureus 2024, 16, e61997. [Google Scholar] [CrossRef]
- Khattri, S.; Kumbargere Nagraj, S.; Arora, A.; Eachempati, P.; Kusum, C.K.; Bhat, K.G.; Johnson, T.M.; Lodi, G. Adjunctive Systemic Antimicrobials for the Non-Surgical Treatment of Periodontitis. Cochrane Database Syst. Rev. 2020, 11, CD012568. [Google Scholar] [CrossRef]
- Ramanauskaite, E.; Machiulskiene, V. Antiseptics as Adjuncts to Scaling and Root Planing in the Treatment of Periodontitis: A Systematic Literature Review. BMC Oral Health 2020, 20, 143. [Google Scholar] [CrossRef] [PubMed]
- Mineo, S.; Takahashi, N.; Yamada-Hara, M.; Tsuzuno, T.; Aoki-Nonaka, Y.; Tabeta, K. Rice Bran-Derived Protein Fractions Enhance Sulforaphane-Induced Anti-Oxidative Activity in Gingival Epithelial Cells. Arch. Oral Biol. 2021, 129, 105215. [Google Scholar] [CrossRef]
- Tamura, H.; Maekawa, T.; Domon, H.; Hiyoshi, T.; Yonezawa, D.; Nagai, K.; Ochiai, A.; Taniguchi, M.; Tabeta, K.; Maeda, T.; et al. Peptides from Rice Endosperm Protein Restrain Periodontal Bone Loss in Mouse Model of Periodontitis. Arch. Oral Biol. 2019, 98, 132–139. [Google Scholar] [CrossRef]
- Attik, N.; Garric, X.; Bethry, A.; Subra, G.; Chevalier, C.; Bouzouma, B.; Verdié, P.; Grosgogeat, B.; Gritsch, K. Amelogenin-Derived Peptide (ADP-5) Hydrogel for Periodontal Regeneration: An In Vitro Study on Periodontal Cells Cytocompatibility, Remineralization and Inflammatory Profile. J. Funct. Biomater. 2023, 14, 53. [Google Scholar] [CrossRef]
- Wang, H.; He, H.; Cheng, X.; Feng, Q.; Yang, X.; Chen, X.; Huang, Y. CH02 Peptide-Stimulated Periodontal Ligament Cells Enhance Periodontal Defect Repair in Rats. BMC Oral Health 2025, 25, 1078. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Yu, J.; Li, C.; Yu, D.; Dai, R.; Li, Q.; Cao, C.Y. A Dual Functional Polypeptide with Antibacterial and Anti-Inflammatory Properties for the Treatment of Periodontitis. Int. J. Biol. Macromol. 2023, 242, 124920. [Google Scholar] [CrossRef]
- Wu, W.; Li, G.; Dong, S.; Huihan Chu, C.; Ma, S.; Zhang, Z.; Yuan, S.; Wu, J.; Guo, Z.; Shen, Y.; et al. Bomidin Attenuates Inflammation of Periodontal Ligament Stem Cells and Periodontitis in Mice via Inhibiting Ferroptosis. Int. Immunopharmacol. 2024, 127, 111423. [Google Scholar] [CrossRef]
- Kim, S.E.; Sung, H.; Shin, S.; Bae, J.; Kim, G.; Lee, D.; Kim, H.W.; Seo, J.; Roh, S.Y.; Park, S.; et al. Evaluation of the Clinical Efficacy of Copine 7-Derived Peptides for Naturally Occurring Periodontitis in Dogs. J. Clin. Periodontol. 2025, 52, 1491–1498. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, L.; Liu, C. Expression of TNF-α, Omentin-1, and IL-6 before and after Adjunctive Treatment with a Bioactive Antimicrobial Peptide Periodontal Gel. J. Oral Pathol. Med. 2024, 53, 201–207. [Google Scholar] [CrossRef]
- Xiang, S.; Han, N.; Xie, Y.; Du, J.; Luo, Z.; Xu, J.; Liu, Y. Antimicrobial Peptides in Treatment of Stage III Grade B Periodontitis: A Randomized Clinical Trial. Oral Dis. 2024, 30, 3376–3385. [Google Scholar] [CrossRef]
- Wu, Y.-F.; Han, B.-C.; Lin, W.-Y.; Wang, S.-Y.; Linn, T.Y.; Hsu, H.-W.; Wen, C.-C.; Liu, H.-Y.; Chen, Y.-H.; Chang, W.-J. Efficacy of Antimicrobial Peptide P113 Oral Health Care Products on the Reduction of Oral Bacteria Number and Dental Plaque Formation in a Randomized Clinical Assessment. J. Dent. Sci. 2024, 19, 2367–2376. [Google Scholar] [CrossRef] [PubMed]
- Jalali, P.; Almasi, P.; Faramarzi, M.; Hamishehkar, H.; Kouhsoltani, M. Effect of Spirulina Platensis Algae Purified Bioactive Peptides on Wound Healing after Periodontal Flap Surgery: A Randomized Clinical Trial. Sci. Rep. 2025, 15, 17971. [Google Scholar] [CrossRef]
- Chelliah, R.; Wei, S.; Daliri, E.B.-M.; Elahi, F.; Yeon, S.-J.; Tyagi, A.; Liu, S.; Madar, I.H.; Sultan, G.; Oh, D.-H. The Role of Bioactive Peptides in Diabetes and Obesity. Foods 2021, 10, 2220. [Google Scholar] [CrossRef] [PubMed]
- Drummond, E.; Flynn, S.; Whelan, H.; Nongonierma, A.B.; Holton, T.A.; Robinson, A.; Egan, T.; Cagney, G.; Shields, D.C.; Gibney, E.R.; et al. Casein Hydrolysate with Glycemic Control Properties: Evidence from Cells, Animal Models, and Humans. J. Agric. Food Chem. 2018, 66, 4352–4363. [Google Scholar] [CrossRef]
- Li, Y.; Fan, Y.; Liu, J.; Meng, Z.; Huang, A.; Xu, F.; Wang, X. Identification, Characterization and in Vitro Activity of Hypoglycemic Peptides in Whey Hydrolysates from Rubing Cheese by-Product. Food Res. Int. 2023, 164, 112382. [Google Scholar] [CrossRef]
- Santos-Hernández, M.; Vivanco-Maroto, S.M.; Miralles, B.; Recio, I. Food Peptides as Inducers of CCK and GLP-1 Secretion and GPCRs Involved in Enteroendocrine Cell Signalling. Food Chem. 2023, 402, 134225. [Google Scholar] [CrossRef] [PubMed]
- de Campos Zani, S.C.; Son, M.; Bhullar, K.S.; Chan, C.B.; Wu, J. IRW (Isoleucine–Arginine–Tryptophan) Improves Glucose Tolerance in High Fat Diet Fed C57BL/6 Mice via Activation of Insulin Signaling and AMPK Pathways in Skeletal Muscle. Biomedicines 2022, 10, 1235. [Google Scholar] [CrossRef]
- Sharkey, S.J.; Harnedy-Rothwell, P.A.; Allsopp, P.J.; Hollywood, L.E.; FitzGerald, R.J.; O’Harte, F.P.M. A Narrative Review of the Anti-Hyperglycemic and Satiating Effects of Fish Protein Hydrolysates and Their Bioactive Peptides. Mol. Nutr. Food Res. 2020, 64, 2000403. [Google Scholar] [CrossRef]
- Garcés-Rimón, M.; Morales, D.; Miguel-Castro, M. Potential Role of Bioactive Proteins and Peptides Derived from Legumes towards Metabolic Syndrome. Nutrients 2022, 14, 5271. [Google Scholar] [CrossRef]
- Valenzuela Zamudio, F.; Segura Campos, M.R. Amaranth, Quinoa and Chia Bioactive Peptides: A Comprehensive Review on Three Ancient Grains and Their Potential Role in Management and Prevention of Type 2 Diabetes. Crit. Rev. Food Sci. Nutr. 2022, 62, 2707–2721. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, C.; Gleddie, S.; Xiao, C.-W. Soybean Bioactive Peptides and Their Functional Properties. Nutrients 2018, 10, 1211. [Google Scholar] [CrossRef] [PubMed]
- Sanz, M.; Herrera, D.; Kebschull, M.; Chapple, I.; Jepsen, S.; Berglundh, T.; Sculean, A.; Tonetti, M.S. Treatment of Stage I–III Periodontitis—The EFP S3 Level Clinical Practice Guideline. J. Clin. Periodontol. 2020, 47, 4–60. [Google Scholar] [CrossRef] [PubMed]
- American Dental Association. Available online: https://www.Ada.Org/Resources/Research/Science/Evidence-Based-Dental-Research/Nonsurgical-Treatment-of-Periodontitis-Guideline (accessed on 19 September 2025).
- American Academy of Periodontology. Available online: https://www.Perio.Org/for-Patients/Periodontal-Treatments-and-Procedures/Non-Surgical-Treatments (accessed on 19 September 2025).
- Tonolo, F.; Fiorese, F.; Rilievo, G.; Grinzato, A.; Latifidoost, Z.; Nikdasti, A.; Cecconello, A.; Cencini, A.; Folda, A.; Arrigoni, G.; et al. Bioactive Peptides from Food Waste: New Innovative Bio-Nanocomplexes to Enhance Cellular Uptake and Biological Effects. Food Chem. 2025, 463, 141326. [Google Scholar] [CrossRef]
- Bortoluzzi, M. Created in BioRender. 2025. Available online: https://BioRender.com/k8h235l (accessed on 25 September 2025).
- Silva, R. Created in BioRender. 2025. Available online: https://BioRender.com/vxirtdy (accessed on 26 September 2025).
Bioactive Peptide | Source | Potential Therapeutic Effect on Periodontal Diseases/T2DM | Ref. |
---|---|---|---|
K-8-K, S-10-S | Milk | Antioxidant and anti-inflammatory | [60] |
SPI (sunflower protein isolate) | Sunflower | Anti-inflammatory | [63] |
Garlic bioactive proteins | Garlic | Anti-inflammatory | [64] |
Chia hydrolysates | Chia | Antimicrobial activity | [81] |
REP9, REP11 | Rice | Anti-inflammatory and inhibition of osteoclastogenesis | [95,96] |
LL37-C15 | Endogenous (human catelicidin) | Anti-inflammatory | [99] |
Milk-derived hydrolysates | Milk (casein hydrolysates and rubing cheese) | Antidiabetic–glycemic management | [106,107,108] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tonolo, F.; Lima Silva, R.C.; Bortoluzzi, M.; Scarel-Caminaga, R.M.; Vianello, F. Antimicrobial and Anti-Inflammatory Bioactive Peptides: Their Role in Potential Therapeutic Applications for Periodontitis—A Narrative Review. Nutrients 2025, 17, 3105. https://doi.org/10.3390/nu17193105
Tonolo F, Lima Silva RC, Bortoluzzi M, Scarel-Caminaga RM, Vianello F. Antimicrobial and Anti-Inflammatory Bioactive Peptides: Their Role in Potential Therapeutic Applications for Periodontitis—A Narrative Review. Nutrients. 2025; 17(19):3105. https://doi.org/10.3390/nu17193105
Chicago/Turabian StyleTonolo, Federica, Renata Cristina Lima Silva, Mary Bortoluzzi, Raquel Mantuaneli Scarel-Caminaga, and Fabio Vianello. 2025. "Antimicrobial and Anti-Inflammatory Bioactive Peptides: Their Role in Potential Therapeutic Applications for Periodontitis—A Narrative Review" Nutrients 17, no. 19: 3105. https://doi.org/10.3390/nu17193105
APA StyleTonolo, F., Lima Silva, R. C., Bortoluzzi, M., Scarel-Caminaga, R. M., & Vianello, F. (2025). Antimicrobial and Anti-Inflammatory Bioactive Peptides: Their Role in Potential Therapeutic Applications for Periodontitis—A Narrative Review. Nutrients, 17(19), 3105. https://doi.org/10.3390/nu17193105